m-thesis-introduction/airshower_beacon_simulation/bb_measure_clock_phase.py

202 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
from lib import figlib
if __name__ == "__main__":
from os import path
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
args = parser.parse_args()
figsize = (12,8)
c_light = lib.c_light
show_plots = args.show_plots
remove_absolute_phase_offset_first_antenna = True # takes precedence
remove_absolute_phase_offset_minimum = True
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname)
fig_dir = args.fig_dir # set None to disable saving
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# Make sure at least one beacon has been identified
if not hasattr(antennas[0], 'beacon_info') or len(antennas[0].beacon_info) == 0:
print(f"No analysed beacon found for {antennas[0].name}, try running the beacon phase analysis script first.")
sys.exit(1)
#
N_beacon_freqs = len(antennas[0].beacon_info)
for freq_name in antennas[0].beacon_info.keys():
beacon_phases = np.empty( (len(antennas)) )
for i, ant in enumerate(antennas):
beacon_phases[i] = ant.beacon_info[freq_name]['beacon_phase']
f_beacon = antennas[0].beacon_info[freq_name]['freq']
clock_phases = lib.remove_antenna_geometry_phase(tx, antennas, f_beacon, beacon_phases, c_light=c_light)
# Remove the phase from one antenna
# this is a free parameter
# (only required for absolute timing)
if remove_absolute_phase_offset_first_antenna or remove_absolute_phase_offset_minimum:
if remove_absolute_phase_offset_first_antenna: # just take the first phase
minimum_phase = clock_phases[0]
else: # take the minimum
minimum_phase = np.min(clock_phases, axis=-1)
clock_phases -= minimum_phase
clock_phases = lib.phase_mod(clock_phases)
# Save to antennas in file
with h5py.File(antennas_fname, 'a') as fp:
h5group = fp['antennas']
for i, ant in enumerate(antennas):
h5ant = fp['antennas'][ant.name]
h5beacon_freq = h5ant['beacon_info'][freq_name]
h5beacon_freq.attrs['clock_phase'] = clock_phases[i]
# Plot True Phases at their locations
if show_plots or fig_dir:
actual_clock_phases = lib.phase_mod(np.array([ -2*np.pi*a.attrs['clock_offset']*f_beacon for a in antennas ]))
for i in range(2):
plot_residuals = i == 1
spatial_unit='m'
antenna_locs = list(zip(*[(ant.x, ant.y) for ant in antennas]))
scatter_kwargs = {}
scatter_kwargs['cmap'] = 'inferno'
# Measurements
if not plot_residuals:
title='Clock phases'
color_label='$\\varphi(\\sigma_t)$ [rad]'
fname_extra='measured.'
#scatter_kwargs['vmin'] = -np.pi
#scatter_kwargs['vmax'] = +np.pi
# Plot Clock Phases - True Clock Phases at their location
else:
title='Clock phase Residuals'
color_label='$\\Delta\\varphi(\\sigma_t) = \\varphi_{meas} - \\varphi_{true}$ [rad]'
fname_extra='residuals.'
# Modify actual_clock_phases, the same way as clock_phases
# was modified
if remove_absolute_phase_offset_first_antenna or remove_absolute_phase_offset_minimum:
if remove_absolute_phase_offset_first_antenna: # just take the first phase
minimum_phase = actual_clock_phases[0]
else: # take the minimum
minimum_phase = np.min(actual_clock_phases, axis=-1)
actual_clock_phases -= minimum_phase
actual_clock_phases = lib.phase_mod(actual_clock_phases)
clock_phase_residuals = lib.phase_mod(clock_phases - actual_clock_phases)
if not plot_residuals:
loc_c = clock_phases
else:
loc_c = clock_phase_residuals
##
## Geometrical Plot
##
fig, ax = plt.subplots(figsize=figsize)
ax.set_xlabel('x' if spatial_unit is None else 'x [{}]'.format(spatial_unit))
ax.set_ylabel('y' if spatial_unit is None else 'y [{}]'.format(spatial_unit))
fig.suptitle(title+'\nf_beacon= {:2.0f}MHz'.format(f_beacon*1e3))
sc = ax.scatter(*antenna_locs, c=loc_c, **scatter_kwargs)
fig.colorbar(sc, ax=ax, label=color_label)
if False:
for i, ant in enumerate(antennas):
ax.text(ant.x, ant.y, ant.name)
if not True:
ax.plot(tx.x, tx.y, 'X', color='k', markeredgecolor='white')
if fig_dir:
fig.tight_layout()
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".geom.{fname_extra}F{freq_name}.pdf"))
##
## Histogram
##
beacon_snrs = beacon.read_snr_file(beacon_snr_fname)
snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1g}"
fig = figlib.phase_comparison_figure(
loc_c,
actual_clock_phases,
plot_residuals=plot_residuals,
f_beacon=f_beacon,
figsize=figsize,
fit_gaussian=plot_residuals,
)
axs = fig.get_axes()
if plot_residuals:
axs[0].set_title("Difference between Measured and True Clock phases")
else:
axs[0].set_title("Comparison Measured and True Clock Phases")
axs[-1].set_xlabel(f'Antenna {title} {color_label}')
#
i=0
secax = axs[i].child_axes[0]
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
#
i=1
axs[i].set_ylabel("Antenna no.")
#
fig.legend(title=snr_str)
# Save figure
if fig_dir:
fig.tight_layout()
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".{fname_extra}F{freq_name}.pdf"))
print(f"True phases written to", antennas_fname)
if show_plots:
plt.show()