mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-05 01:13:40 +01:00
382 lines
12 KiB
Python
382 lines
12 KiB
Python
# from wappy import *
|
|
from earsim import *
|
|
from atmocal import *
|
|
|
|
import matplotlib.pyplot as plt
|
|
from scipy.signal import hilbert
|
|
from scipy import signal
|
|
from scipy.interpolate import interp1d
|
|
from scipy.optimize import curve_fit,minimize
|
|
import pandas as pd
|
|
import os
|
|
|
|
try:
|
|
from joblib import Parallel, delayed
|
|
except:
|
|
Parallel = None
|
|
delayed = lambda x: x
|
|
|
|
plt.rcParams.update({'font.size': 16})
|
|
|
|
atm = AtmoCal()
|
|
|
|
from matplotlib import cm
|
|
|
|
def set_pol_and_bp(e,low=0.03,high=0.08):
|
|
for ant in e.antennas:
|
|
E = [np.dot(e.uAxB,[ex,ey,ez]) for ex,ey,ez in zip(ant.Ex,ant.Ey,ant.Ez)]
|
|
dt = ant.t[1] -ant.t[0]
|
|
E = block_filter(E,dt,low,high)
|
|
ant.E_AxB = E
|
|
ant.t_AxB = ant.t
|
|
|
|
|
|
def pow_and_time(test_loc,ev,dt=1.0):
|
|
t_ = []
|
|
a_ = []
|
|
t_min = 1e9
|
|
t_max = -1e9
|
|
for ant in ev.antennas:
|
|
#propagate to test location
|
|
aloc = [ant.x,ant.y,ant.z]
|
|
delta,dist = atm.light_travel_time(test_loc,aloc)
|
|
delta = delta*1e9
|
|
t__ = np.subtract(ant.t_AxB,delta)
|
|
t_.append(t__)
|
|
a_.append(ant.E_AxB)
|
|
if t__[0] < t_min:
|
|
t_min = t__[0]
|
|
if t__[-1] > t_max:
|
|
t_max = t__[-1]
|
|
|
|
t_sum = np.arange(t_min+1,t_max-1,dt)
|
|
a_sum = np.zeros(len(t_sum))
|
|
#interpolation
|
|
for t_r,E_ in zip (t_,a_):
|
|
f = interp1d(t_r,E_,assume_sorted=True,bounds_error=False,fill_value=0.)
|
|
a_int = f(t_sum)
|
|
a_sum = np.add(a_sum,a_int)
|
|
if len(a_sum) != 0:
|
|
P = np.sum(np.square(np.absolute(np.fft.fft(a_sum))))
|
|
else:
|
|
print("ERROR, a_sum lenght = 0",
|
|
"tmin ",t_min,
|
|
"t_max ",t_max,
|
|
"dt",dt)
|
|
P = 0
|
|
return P,t_,a_,a_sum,t_sum
|
|
|
|
def shower_axis_slice(e,Xb=200,Xe=1200,dX=2,zgr=0):
|
|
zgr = zgr + e.core[2]
|
|
N = int((Xe-Xb)/dX)
|
|
Xs = np.array(np.linspace(Xb,Xe,N+1))
|
|
ds = np.array([atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr) for X in Xs])
|
|
|
|
locs = []
|
|
for d_ in ds:
|
|
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* d_
|
|
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* d_
|
|
zc = np.cos(np.deg2rad(e.zenith))* d_
|
|
locs.append([xc,yc,zc])
|
|
p = []
|
|
for loc in locs:
|
|
P,t_,pulses_,wav,twav = pow_and_time(loc,e)
|
|
p.append(P)
|
|
p = np.asanyarray(p)
|
|
return ds,Xs,locs,p
|
|
|
|
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None):
|
|
zgr = zgr + e.core[2]
|
|
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
|
x = np.linspace(-wx,wx,Nx)
|
|
y = np.linspace(-wy,wy,Ny)
|
|
|
|
def loop_func(x_, y_, xoff=xoff, yoff=yoff):
|
|
loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
|
|
P,t_,pulses_,wav,twav = pow_and_time(loc,e)
|
|
|
|
return x_+xoff, y_+yoff, P, loc
|
|
|
|
res = ( delayed(loop_func)(x_, y_) for x_ in x for y_ in y)
|
|
|
|
if Parallel:
|
|
#if n_jobs is None change with `with parallel_backend`
|
|
res = Parallel(n_jobs=n_jobs)(res)
|
|
|
|
# unpack loop results
|
|
xx, yy, p, locs = zip(*res)
|
|
|
|
xx = np.asarray(xx)
|
|
yy = np.asarray(yy)
|
|
p = np.asanyarray(p)
|
|
|
|
return xx,yy,p,locs[np.argmax(p)]
|
|
|
|
def slice_figure(e,X,xx,yy,p,mode='horizontal'):
|
|
fig, axs = plt.subplots(1,figsize=(10,8))
|
|
fig.suptitle(r'E = %.1f EeV, $\theta$ = %.1f$^\circ$, $\phi$ = %.1f$^\circ$ X = %.f'%(e.energy,e.zenith,e.azimuth,X))
|
|
sc = axs.scatter(xx/1e3,yy/1e3,c=p,cmap='Spectral_r',alpha=0.6)
|
|
fig.colorbar(sc,ax=axs)
|
|
zgr = 0 + e.core[2]
|
|
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
|
|
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* dX
|
|
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* dX
|
|
if mode == 'horizontal':
|
|
axs.plot(xc/1e3,yc/1e3,'r+',ms=30)
|
|
axs.set_xlabel('x (km)')
|
|
axs.set_ylabel('y (km)')
|
|
elif mode == "sp":
|
|
axs.plot(0,0,'r+',ms=30)
|
|
axs.set_xlabel('-v x B (km)')
|
|
axs.set_ylabel(' vxvxB (km)')
|
|
im = np.argmax(p)
|
|
axs.plot(xx[im]/1e3,yy[im]/1e3,'bx',ms=30)
|
|
fig.tight_layout()
|
|
return fig,axs
|
|
|
|
def dist_to_line(xp,core,u):
|
|
xp = np.array(xp)
|
|
xp_core = xp-core
|
|
c2 = np.dot(xp_core,xp_core)
|
|
a2 = np.dot((np.dot(xp_core,u)*u),(np.dot(xp_core,u)*u))
|
|
d = (np.abs(c2 - a2))**0.5
|
|
return d
|
|
|
|
def dist_to_line_sum(param,data,weights):
|
|
#distance line point: a = xp-core is D= | (a)^2-(a dot n)n |
|
|
#where ux is direction of line and x0 is a point in the line (like t = 0)
|
|
x0 = param[0]
|
|
y0 = param[1]
|
|
theta = param[2]
|
|
phi = param[3]
|
|
core = np.array([x0, y0, 0.])
|
|
u = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
|
|
dsum = 0
|
|
for xp,w in zip(data,weights):
|
|
dsum += dist_to_line(xp,core,u)*w**2
|
|
# print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
|
|
return dsum/len(data)
|
|
|
|
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None):
|
|
Xsteps = np.linspace(Xlow, Xhigh, N_X)
|
|
zgr=zgr+e.core[2] #not exact
|
|
dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
|
|
scale2d = dXref*np.tan(np.deg2rad(2.))
|
|
scale4d = dXref*np.tan(np.deg2rad(4.))
|
|
scale0_2d=dXref*np.tan(np.deg2rad(0.2))
|
|
|
|
def loop_func(X):
|
|
print("Starting", X)
|
|
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale2d,scale2d)
|
|
if savefig:
|
|
fig,axs = slice_figure(e,X,x,y,p,'sp')
|
|
fig.savefig(path+'X%d_a.pdf'%(X))
|
|
plt.close(fig)
|
|
im = np.argmax(p)
|
|
if np.abs(x[im]) == np.max(x) or np.abs(y[im]) == (np.max(y)):
|
|
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale4d,scale4d)
|
|
if savefig:
|
|
fig,axs = slice_figure(e,X,x,y,p,'sp')
|
|
fig.savefig(path+'X%d_c.pdf'%(X))
|
|
plt.close(fig)
|
|
im = np.argmax(p)
|
|
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale0_2d,scale0_2d,x[im],y[im])
|
|
if savefig:
|
|
fig,axs = slice_figure(e,X,x,y,p,'sp')
|
|
fig.savefig(path+'X%d_b.pdf'%(X))
|
|
plt.close(fig)
|
|
|
|
print("Finished", X)
|
|
return np.max(p), loc_max
|
|
|
|
res = (delayed(loop_func)(X) for X in Xsteps)
|
|
|
|
if Parallel:
|
|
#if n_jobs is None change with `with parallel_backend`
|
|
res = Parallel(n_jobs=n_jobs)(res)
|
|
|
|
# unpack loop results
|
|
max_vals, axis_points = zip(*res)
|
|
|
|
return Xsteps,axis_points,max_vals
|
|
|
|
def fit_track(e,axis_points,vals,nscale=1e0):
|
|
weights = vals/np.max(vals)
|
|
data=axis_points[:]
|
|
data = [d/nscale for d in data] #km, to have more comparable step sizes
|
|
x0=[0,0,np.deg2rad(e.zenith),np.deg2rad(e.azimuth)]
|
|
res = minimize(dist_to_line_sum,args=(data,weights),x0=x0)
|
|
zen_r = np.rad2deg(res.x[2])
|
|
azi_r = np.rad2deg(res.x[3])
|
|
print(res,zen_r,e.zenith,azi_r,e.azimuth)
|
|
return zen_r,azi_r,[res.x[0]*nscale,res.x[1]*nscale,0]
|
|
|
|
|
|
def update_event(e,core,theta,phi,axp=None):
|
|
#recalculate
|
|
e.zenith = theta
|
|
e.azimuth = phi
|
|
theta = np.deg2rad(theta)
|
|
phi = np.deg2rad(phi)
|
|
e.core = e.core+core
|
|
e.uA = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
|
|
e.uAxB = np.cross(e.uA,e.uB)
|
|
e.uAxB = e.uAxB/(np.dot(e.uAxB,e.uAxB))**0.5
|
|
e.uAxAxB = np.cross(e.uA,e.uAxB)
|
|
#antenna position
|
|
for a in e.antennas:
|
|
a.x -= core[0]
|
|
a.y -= core[1]
|
|
a.z -= core[2]
|
|
if axp != None:
|
|
for ap in axp:
|
|
ap[0] -= core[0]
|
|
ap[1] -= core[1]
|
|
ap[2] -= core[2]
|
|
|
|
def longitudinal_figure(dist,Xs,p,mode='grammage'):
|
|
fig, axs = plt.subplots(1,figsize=(6,5))
|
|
if mode=='grammage':
|
|
axs.plot(Xs,p/np.max(p),'o-')
|
|
axs.set_xlabel('X (g/cm$^2$)')
|
|
if mode=='distance':
|
|
axs.plot(dist/1e3,p/np.max(p),'o-')
|
|
axs.set_xlabel('distance from ground (km)')
|
|
axs.grid()
|
|
fig.tight_layout()
|
|
return fig
|
|
|
|
def time_residuals(e,tlable=True):
|
|
ds,tp,nsum,ssum,swidth,azi,x,y,sid = lateral_parameters(e,True,[0,0,0])
|
|
fig, axs = plt.subplots(1,figsize=(6,5),sharex=True)
|
|
tp = tp-np.min(tp)
|
|
cut_outlier = ~((ds<200)&(tp > 10))
|
|
axs.plot(ds,tp,'o')
|
|
if tlable:
|
|
for d,t,s in zip(ds,tp,sid):
|
|
plt.text(d,t,s)
|
|
# axs.text(ds,tp,sid)
|
|
axs.set_xlabel('distance (m)')
|
|
axs.set_ylabel('$\Delta t (ns)$')
|
|
axs.grid()
|
|
z = np.polyfit(ds[cut_outlier],tp[cut_outlier],3)
|
|
pfit = np.poly1d(z)
|
|
xfit = np.linspace(np.min(ds),np.max(ds),100)
|
|
yfit = pfit(xfit)
|
|
tres = tp - pfit(ds)
|
|
sigma =np.std(tres[cut_outlier])
|
|
axs.plot(xfit,yfit,label=r'pol3 fit, $\sigma=%.2f$ (ns)'%(sigma))
|
|
axs.legend()
|
|
fig.tight_layout()
|
|
return fig,tres
|
|
|
|
def figure_3D(axis_points,max_vals,zen,azi,core,res = 0):
|
|
fig = plt.figure(figsize=(5,9))
|
|
# fig, axs = plt.subplots(1,2,figsize=(12,8))
|
|
ax = fig.add_subplot(2,1,1,projection='3d')
|
|
xp = [ap[0]/1e3 for ap in axis_points]
|
|
yp = [ap[1]/1e3 for ap in axis_points]
|
|
zp = [ap[2]/1e3 for ap in axis_points]
|
|
max_vals = np.asarray(max_vals)
|
|
ax.scatter(xp, yp, zp,c=max_vals,s=150*(max_vals/np.max(max_vals))**2,cmap='Spectral_r')
|
|
ax = fig.add_subplot(2,1,2)
|
|
core = np.array(core)
|
|
theta = np.deg2rad(zen)
|
|
phi = np.deg2rad(azi)
|
|
u = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
|
|
residuals = [dist_to_line(ap,core,u) for ap in axis_points]
|
|
dist = [np.sum((ap-core)**2)**0.5 for ap in axis_points]
|
|
ax.scatter(dist,residuals,c=max_vals,cmap='Spectral_r')
|
|
ax.grid()
|
|
# ax.plot(xl,yl,zl,'-')
|
|
# ax.set_zlim(0,18)
|
|
# ax.view_init(15, 10)
|
|
fig.tight_layout()
|
|
if res != 0:
|
|
res.track_dis.append(dist)
|
|
res.track_res.append(residuals)
|
|
res.track_val.append(max_vals)
|
|
return fig
|
|
|
|
class RITResult():
|
|
"""docstring for RITResult."""
|
|
def __init__(self):
|
|
super(RITResult, self).__init__()
|
|
self.xmax_rit = []
|
|
self.xmax = []
|
|
self.profile_rit = []
|
|
self.dX = []
|
|
self.dl = []
|
|
self.zenith_ini = []
|
|
self.azimuth_ini = []
|
|
self.core_ini = []
|
|
self.dcore_rec = []
|
|
self.zenith_rec = []
|
|
self.azimuth_rec = []
|
|
self.index = []
|
|
self.isMC = []
|
|
self.track_dis = []
|
|
self.track_res =[]
|
|
self.track_val =[]
|
|
self.station_ids =[]
|
|
self.station_x =[]
|
|
self.station_y =[]
|
|
self.station_z =[]
|
|
self.station_maxE = []
|
|
self.has_pulse = []
|
|
|
|
def fill_stations_propeties(e,res):
|
|
x = np.array([a.x for a in e.antennas])
|
|
y = np.array([a.y for a in e.antennas])
|
|
z = np.array([a.z for a in e.antennas])
|
|
ids = [a.name for a in e.antennas]
|
|
maxE = np.array([np.max(a.E_AxB) for a in e.antennas])
|
|
#has_pulse = np.array([np.max(a.has_pulse) for a in e.antennas])
|
|
res.station_x.append(x)
|
|
res.station_y.append(y)
|
|
res.station_z.append(z)
|
|
res.station_ids.append(ids)
|
|
#res.has_pulse.append(has_pulse)
|
|
|
|
def reconstruction(e,outfile='', slice_outdir=None, Xlow=300, Xhigh=1000, N_X=15, disable_pol_and_bp=False):
|
|
res = RITResult()
|
|
res.isMC.append(True)
|
|
res.zenith_ini.append(e.zenith)
|
|
res.azimuth_ini.append(e.azimuth)
|
|
res.core_ini.append(e.core)
|
|
|
|
if not disable_pol_and_bp:
|
|
set_pol_and_bp(e, 0.03, 0.08)
|
|
|
|
#only use signal that have a signal in data
|
|
fill_stations_propeties(e,res)
|
|
Xs,axis_points,max_vals = get_axis_points(e,savefig=(slice_outdir is not None), path=slice_outdir, Xlow=Xlow, Xhigh=Xhigh, N_X=N_X)
|
|
zen,azi,core = fit_track(e,axis_points,max_vals,1e2)
|
|
fig = figure_3D(axis_points,max_vals,zen,azi,core,res)
|
|
fig.savefig(outfile)
|
|
update_event(e,core,zen,azi)
|
|
ds,Xs,locs,p = shower_axis_slice(e)
|
|
#result
|
|
res.dX.append(Xs)
|
|
res.dl.append(ds)
|
|
res.profile_rit.append(p)
|
|
res.xmax_rit.append(Xs[np.argmax(p)])
|
|
res.azimuth_rec.append(e.azimuth)
|
|
res.zenith_rec.append(e.zenith)
|
|
res.dcore_rec.append(core)
|
|
return res
|
|
|
|
if __name__ == "__main__":
|
|
file = '../ZH_airshower/mysim.sry'
|
|
ev = REvent(file)
|
|
set_pol_and_bp(ev)
|
|
X = 750
|
|
|
|
dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),X,0)
|
|
scale2d = dXref*np.tan(np.deg2rad(2.))
|
|
xx,yy,p,km= shower_plane_slice(ev,X,21,21,scale2d,scale2d)
|
|
|
|
slice_figure(ev,X,xx,yy,p,mode='sp')
|
|
#plt.scatter(xx,yy,c=p)
|
|
#plt.colorbar()
|
|
plt.show()
|