m-thesis-introduction/airshower_beacon_simulation/view_beaconed_antenna.py

184 lines
6.1 KiB
Python
Executable file

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import numpy.fft as ft
import aa_generate_beacon as beacon
from view_orig_ant0 import plot_antenna_geometry
import lib
from earsim import Antenna
if __name__ == "__main__":
from os import path
import sys
import matplotlib
import os
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('ant_idx', default=[72], nargs='*', type=int, help='Antenna Indices')
parser.add_argument('-p', '--polarisations', choices=['x', 'y', 'z', 'b', 'AxB', 'n', 'b+n'], action='append', help='Default: x,y,z')
parser.add_argument('--geom', action='store_true', help='Make a figure containg the geometry from tx to antenna(s)')
parser.add_argument('--ft', action='store_true', help='Add FT strenghts of antenna traces')
args = parser.parse_args()
figsize = (12,8)
plot_ft_amplitude = args.ft
plot_geometry = args.geom
fig_dir = args.fig_dir
show_plots = args.show_plots
if not args.polarisations:
args.polarisations = ['x','y', 'z']
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
tx_fname = path.join(fname_dir, beacon.tx_fname)
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
_, __, txdata = beacon.read_tx_file(tx_fname)
beacon_amp = np.max(txdata['amplitudes'])# mu V/m
idx = args.ant_idx
if not idx:
if not True:
idx = [0, 1, len(antennas)//2, len(antennas)//2+1, -2, -1]
elif not True:
idx = np.arange(1, 20, 2, dtype=int)
elif True:
# center 6 antennas
names = [55, 56, 57, 65, 66, 45, 46]
idx = [ i for i, ant in enumerate(antennas) if int(ant.name) in names ]
for i_fig in range(2):
name_dist=''
if i_fig == 1: #read in the raw_traces
_, __, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='prefiltered_traces')
name_dist='.raw'
fig1, axs = plt.subplots(1+plot_ft_amplitude*1 +0*1, figsize=figsize)
if not plot_ft_amplitude:
axs = [axs]
axs[0].set_xlabel('t [ns]')
axs[0].set_ylabel('[$\mu$V/m]')
if i_fig == 1:
axs[0].set_title("UnFiltered traces")
else:
axs[0].set_title("Filtered traces")
if True:
axs[0].set_xlim(-250, 250)
if plot_ft_amplitude:
axs[1].set_xlabel('f [GHz]')
axs[1].set_ylabel('Power')
if len(axs) > 2:
axs[2].set_ylabel("Phase")
axs[2].set_xlabel('f [GHz]')
axs[2].set_ylim(-np.pi,+np.pi)
colorlist = []
for i in idx:
ant = antennas[i]
n_samples = len(ant.t)
samplerate = (ant.t[-1] - ant.t[0])/n_samples
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
mydict = {}
for p in args.polarisations:
pattr = 'E'+str(p)
if p == 'b':
pattr = 'beacon'
elif p == 'n':
pattr = 'noise'
elif p == 'AxB':
pattr = 'E_AxB'
elif p =='b+n':
mydict[p] = getattr(ant,'noise') + beacon_amp*getattr(ant, 'beacon')
continue
mydict[p] = getattr(ant, pattr)
if 'b' in mydict:
mydict['b'] *= beacon_amp
for j, (direction, trace) in enumerate(mydict.items()):
l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.7)
#if False and j == 0 and 't0' in ant.attrs:
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
colorlist.append(l[0].get_color())
if not plot_ft_amplitude:
continue
fft, freqs = lib.get_freq_spec(trace, 1/samplerate)
axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color())
if True:
cft = lib.direct_fourier_transform(f_beacon, ant.t, trace)
amp = (cft[0]**2 + cft[1]**2)
#axs[0].axhline(amp, color=l[0].get_color())
print(amp)
phase = np.arctan2(cft[0],cft[1])
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
if len(axs) > 2:
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
if plot_ft_amplitude:
fig1.legend(loc='center right', ncol=min(2, len(idx)))
else:
axs[0].legend(loc='upper right', ncol=min(3, len(idx)))
# Keep trace plot symmetric around 0
max_lim = max(np.abs(axs[0].get_ylim()))
axs[0].set_ylim(-max_lim, max_lim)
# Keep spectrum between 0 and 100 MHz
if len(axs) > 1:
xlims = axs[1].get_xlim()
axs[1].set_xlim(max(0, xlims[0]), min(0.1, xlims[1]))
if False: # extra zoom
axs[1].set_xlim(f_beacon - 0.01, f_beacon + 0.01)
if fig_dir:
fig1.savefig(path.join(fig_dir, path.basename(__file__) + f".trace{name_dist}.pdf"))
if plot_geometry:
if len(mydict) == 1:
geom_colorlist = colorlist
else:
# only take the colour belonging to mydict[0]
geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ]
fig2, axs2 = plt.subplots(1, figsize=figsize)
plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False)
plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False)
axs2.plot(tx.x, tx.y, marker='X', color='k')
axs2.set_title("Geometry with selected antennas")
if fig_dir:
fig2.savefig(path.join(fig_dir, path.basename(__file__) + f".geom.pdf"))
if show_plots:
plt.show()