m-thesis-introduction/simulations/airshower_beacon_simulation/bc_beacon_periods.py

121 lines
4.5 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
fname = "ZH_airshower/mysim.sry"
show_plots = True
ref_ant_id = None # leave None for all baselines
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# run over all baselines
if ref_ant_id is None:
print("Doing all baselines")
baselines = list(combinations(antennas,2))
# use ref_ant
else:
ref_ant = antennas[ref_ant_idx]
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
# Determine integer multiple of periods to shift
# and True phase differences
time_diffs = np.empty( (len(baselines), 3) )
for i, base in enumerate(baselines):
# which traces to keep track of
traces = [ base[0].E_AxB, base[1].E_AxB ]
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
# how many samples do we need to shift
ks, maxima = lib.coherence_sum_maxima(traces[0], traces[1])
max_idx = np.argmax(maxima)
best_k = ks[max_idx]
delta_t_coherence = sampling_dt*best_k # ns
print('A1:', base[0].name, 'A2:', base[1].name, "K:", best_k, '= [ns]', delta_t_coherence)
# get the amount of periods to move
f_beacon = base[0].beacon_info[freq_name]['freq']
k_period, rest = np.divmod(delta_t_coherence, 1/f_beacon)
# always keep the reference before traces[1]
if rest < 0:
k_period -= 1
# Get true phase diffs
try:
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
true_phases_diff = lib.phase_mod(true_phases[0] - true_phases[1])
except IndexError:
# freq_name not in beacon_info
# or true_phase not determined yet
true_phases_diff = np.nan
# save k_period with antenna names
time_diffs[i] = [true_phases_diff, k_period, f_beacon]
# Plotting for one or two iterations
if show_plots and i in [ 0, 1 ]:
print('i',i,'k[T]',k_period, 'rest[ns]',rest, 'T[ns]',1/f_beacon)
# Show correlation maxima plot
if not True:
fig, ax = plt.subplots()
ax.set_title(f"Correlation Maxima {i}")
ax.set_xlabel("k")
ax.set_ylabel("Maximum correlation")
ax.plot(ks, maxima)
ax.plot(best_k, maxima[max_idx], marker='X')
# Delta between first timestamp from both antennas
delta_t_antennas = base[0].t[0] - base[1].t[0]
# Delta t due to the beacon
if true_phases_diff is np.nan:
true_phases_diff = 0
delta_t_beacon = true_phases_diff/(2*np.pi*f_beacon)
print("t0[ns]", delta_t_antennas, "t_beacon[ns]", delta_t_beacon, "phase", true_phases_diff)
fig, ax = plt.subplots()
ax.set_xlabel('t')
ax.plot(base[0].t, traces[0], label=f'Reference {base[0].name}', alpha=0.5)
# plot vertical lines indicating f_beacon
min_t, max_t = base[0].t[0], base[0].t[-1]
N_lines = int( (max_t - min_t)*f_beacon) +1
for i, t in enumerate(np.arange(N_lines)/f_beacon):
ax.axvline( min_t + t, color='k', alpha=0.5, label=None if i!=0 else 'P_beacon')
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label='Beacon only + Periods', alpha=0.6)
ax.legend()
# Save integer periods to antennas
beacon.write_baseline_time_diffs_hdf5(antennas_fname, baselines, time_diffs[:,0], time_diffs[:,1], time_diffs[:,2])
# Report back to CLI
print("Period Multiples resolved and written to ", antennas_fname)
plt.show()