mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-14 02:23:32 +01:00
732 lines
291 KiB
Text
732 lines
291 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Beacon Sync\n",
|
|
"\n",
|
|
"Synchronise two delta peaks, by using an intermediate beacon that was sent out together with it."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import scipy.signal as signal\n",
|
|
"\n",
|
|
"import os\n",
|
|
"import sys\n",
|
|
"# Append parent directory to import path so lib can be found\n",
|
|
"sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))\n",
|
|
"from lib.util import *\n",
|
|
"from lib.plotting import *\n",
|
|
"from lib.timing import *\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Beacon period [ns]: 14.285714285714285\n",
|
|
"Beacon initial [ns]: 4.4\n",
|
|
"Beacon initial [phase]: 1.9352210746113125\n",
|
|
"Beacon initial [idx]: 2.2\n",
|
|
"Beacon difference [ns]: 8.571428571428571\n",
|
|
"Beacon difference [phase]: 3.7699111843077517\n",
|
|
"Impulse offsets [ns]: [ 64. 178.]\n",
|
|
"Time difference Impulses [ns]: 113.99999999999999\n",
|
|
"Time difference Impulses [T]: 7.9799999999999995\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"us = 1e3 # ns\n",
|
|
"ns = 1/us # us\n",
|
|
"\n",
|
|
"\n",
|
|
"band = (30, 80) # MHz\n",
|
|
"samplerate = 500 # MHz\n",
|
|
"timelength = 0.2 # us\n",
|
|
"\n",
|
|
"time = np.arange(0, timelength, 1/samplerate)\n",
|
|
"\n",
|
|
"# generate beacons\n",
|
|
"if True: # in-band\n",
|
|
" f_beacon = 70 # MHz\n",
|
|
"else: # under band\n",
|
|
" f_beacon = 20 # MHz\n",
|
|
"\n",
|
|
"beacon_amplitude = 0.1\n",
|
|
"beacon_init_phase = time2phase(4.4*ns, f_beacon)\n",
|
|
"beacon_phase_offset = 1.2*np.pi\n",
|
|
"\n",
|
|
"beacons = np.array([\n",
|
|
" beacon_amplitude * sin_delay(f_beacon, time, t_delay=0, phase=-beacon_init_phase),\n",
|
|
" beacon_amplitude * sin_delay(f_beacon, time, t_delay=0, phase=-beacon_init_phase-beacon_phase_offset)\n",
|
|
"])\n",
|
|
"\n",
|
|
"\n",
|
|
"# generate impulses\n",
|
|
"impulses = []\n",
|
|
"impulses_offsets = []\n",
|
|
"impulses_def_offsets = [\n",
|
|
" (0.3*len(time),0.4*len(time)),\n",
|
|
" (0.5*len(time),0.9*len(time)),\n",
|
|
" ]# random offsets in interval\n",
|
|
"if True:\n",
|
|
" # freeze impulses\n",
|
|
" impulses_def_offsets = [\n",
|
|
" 0.064*samplerate,\n",
|
|
" 0.178*samplerate \n",
|
|
" ]\n",
|
|
"if not True:\n",
|
|
" # Equal offset to beacon and \n",
|
|
" impulses_def_offsets = [\n",
|
|
" 64*ns*samplerate,\n",
|
|
" (64*ns + (beacon_phase_offset % (2*np.pi))/(2*np.pi*f_beacon) + 6/f_beacon)*samplerate\n",
|
|
" ]\n",
|
|
" if True:\n",
|
|
" impulses_def_offsets = [impulses_def_offsets[0]]\n",
|
|
" \n",
|
|
" \n",
|
|
"for i in range(2):\n",
|
|
" offset = None\n",
|
|
" if impulses_def_offsets:\n",
|
|
" if len(impulses_def_offsets) == 1:\n",
|
|
" offset = impulses_def_offsets[0]\n",
|
|
" else:\n",
|
|
" offset = impulses_def_offsets[i]\n",
|
|
" orig_imp, imp_offset = deltapeak(timelength, samplerate, offset=offset, peaklength=1)\n",
|
|
"\n",
|
|
" orig_imp[imp_offset] = 0.1\n",
|
|
" ## Bandpass it\n",
|
|
" imp, _ = fft_bandpass(orig_imp, band, samplerate)\n",
|
|
" imp /= np.max(imp)\n",
|
|
" \n",
|
|
" impulses.append(imp)\n",
|
|
" impulses_offsets.append(imp_offset/samplerate)\n",
|
|
"\n",
|
|
"impulses = np.array(impulses)\n",
|
|
"impulses_offsets = np.array(impulses_offsets)\n",
|
|
"print(\"Beacon period [ns]:\", 1/f_beacon/ns)\n",
|
|
"print(\"Beacon initial [ns]:\", phase2time(beacon_init_phase, f_beacon) /ns)\n",
|
|
"print(\"Beacon initial [phase]:\", beacon_init_phase)\n",
|
|
"print(\"Beacon initial [idx]:\", phase2time(beacon_init_phase, f_beacon)*samplerate)\n",
|
|
"print(\"Beacon difference [ns]:\", phase2time(beacon_phase_offset, f_beacon)/ns)\n",
|
|
"print(\"Beacon difference [phase]:\", beacon_phase_offset)\n",
|
|
"print(\"Impulse offsets [ns]:\", impulses_offsets[:,0]/ns)\n",
|
|
"print(\"Time difference Impulses [ns]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])/ns ))\n",
|
|
"print(\"Time difference Impulses [T]: {}\".format( (impulses_offsets[1,0]-impulses_offsets[0,0])*f_beacon ))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_signals = impulses + beacons"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEGCAYAAABhKo2JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACKrElEQVR4nOzdd1hUV/7H8feZofcmiIKgInZFxa6JLabHVNMTd1M2vW422WQ3dTfZXzZ93fRkTUxiqmmaZmLsvSBYARugIALSpM7M+f1xh6aUQRnq9/U8PMowc+fD5c6533vuuecqrTVCCCGEEEJ0Jqa2DiCEEEIIIURLkyJXCCGEEEJ0OlLkCiGEEEKITkeKXCGEEEII0elIkSuEEEIIITodF2csNCQkREdHRztj0UIIB5WU7AHAy6t/GycRQgghnGfz5s05WutuJz7ulCI3OjqaTZs2OWPRLW7NmrEATJiwvo2TOCY5ORmA2NjYNk7iGMnrXI3l3bp1CgAjRixrxUSN60zrtz2SvM7TkbKC5HU2ydu+KKUO1ve4DFcQohOTWbCFEEJ0VVLkCtFJHS0qZ/PBPBIz8ts6ihBCCNHqpMgVohO46667iIqKqv4+u7CMg3nHsdo0j3yVhMVqa8N0QgghROtzypjcjiQ09Pq2jtAswcHBbR2hWSSvcwUHB3Pw4EGWLVtGRUUFRUVF+Pr68tT3OxnmBZFBXuzcUMj7q/dz6xl92zpuh1y/HYnkdZ6OlBUkr7NJ3o5Bad3yo/bi4+N1R7nwTIiO7oYbbuC8887jnXfe4Z///CfFfr25+cNN/Pfsp+kR4MnrSS+wMuUov9x3Jr2Cvdo6rhBCCNGilFKbtdbxJz4uwxWE6MB27NjB9u3bufLKKxk4cCCbExL5+7fb6R/mS7i/JwBPzxqMi8nEY98k4YyDWiGEEKI96vJFbmrqXFJT57Z1DIfl5uaSm5vb1jEcJnmd66GHHuKhhx5CKcXAgQOZ/8MqsgrLuHO0L08/vYeHHtpBuL8nfzmnPytTcvg24XCb5u1o61fyOldHytuRsoLkdTbJ2zF0+SI3O3s+2dnz2zqGwzrahip5nWf9+vUsXbqUhx56iOjoaJ546mm2JW3nhnFRXDRpBE88UXMTiGvHRjGiVwBPL9pJ3vGKNsvckdYvSF5n60h5O1JWkLzOJnk7hi5f5ArRUT366KO89dZbLF26lJS9+xh691tYc9P489kn3+HMbFI8d+lQCksr+efiXW2QVgghhGhdUuQK0QEtWbKE8vJyxo8fD8A7K/ex/7grrrqCypKiel8zoLsft53Zl6+2ZLA6Nac14wohhBCtTopcITqgs846i1WrVgGQcayEV39N4dwh3TleVEhQUBC5ubn885/J7NlTzHPPPVf9urumxdA7xJtHv06itMLaVvGFEEIIpzulKcSUUm9rrW9t6OcyhZgQrefJ73bw0bJETD88zcwZ09myZQuPPfYYPXr8G4ARI5bVef7KlKNc/94GXr5yOJeMiGiDxEIIIUTLafYUYkqpoAa+goHznJpWCOGwlSlHidZHcDWb+OCDD0hOTubgwYNUVNR/l7OJfUMI9HJlVUrXuwhBCCFE19HYHc+OAgcBVesxbf8+1JmhhBCOySooY/2Hz3E88RdcXFxwc3OjuLiYO++8k+hoTxYuHHPSa0wmxYSYEFan5qC1RilVz5KFEEKIjq2xMbn7gCla6961vvporXsDR1opn9OtWTOWNWvGtnUMhyUnJ5OcnOz093nrrbcIDw8nLi6OmJgYLr74Yioqmj/11Knmfeedd4iLiyMuLg6TyVT9/wceeKDZy2qO1lq/LeXz3zbgGz+LJ/7vZcLDw/H19cXNzY3HHnuM994b0eDrJseEkFVYxt6jxa2YtuOtX8nrXB0pb0fKCpLX2SRvx9BYkfsKENjAz55v+SiiPUlMTOTZZ58lISGB5ORktm/fTmJiYqu9/y233EJCQgKLFy8mMjKShIQEEhISeOmll1otQ0ew5eAxgn09ue2GqykvL2fChAl069aNsWPHEhjo2uDrJsaEALAqRWZZEEII0Tk1OFxBa/3fRn72H+fEEe1FUlISt9xyCwCpqalorYmNjW2RZV9xxRWEhYWRkJBAeno6H3/8MW+//Tbr1q1j8uTJvPfee9XP3b59O0OHDm2R9+1stNZsTjvGiF6BdO8expEjdU+wbN36YoOvjQzyIirYi1WpucyZ2NvZUYUQQohW19iYXNGF7dixgxtuuIHKykoyMjJYvHgxfn5+jb5m8uTJFBXVnaO1vLychx9+uE6BnJSUxPjx45k7dy6PP/44N910E8uWLSM4OJiwsDBef/113N3dq587ZMiQlv8FO4GU7GLyjlcwqldDJ1waNzEmhO8SDmOx2nAxy2yCQgghOpcuX+SGhl7f1hGaJTg42OnvkZ6eTmhoaPXwhA8//JBnnnmGt956i3/+858UFBTw5ZdfnvS6lStXnvTYibcRLCsrIz8/n/vuuw8AT09PbrrpJsLDwwHw8vLCzc2t+vnbt2/nrLPOaqlfrUmtsX5byqqUHEyevswY2feUXj8pJoRP1qexLaOAUVGnVig3V0davyB5na0j5e1IWUHyOpvk7Ri6fJEbE3NXW0doltbYUBMTExk0aFD198OHD+fFF1+kT58+vPfee1x++eX1vq6+nlyAF154gRkzZgBGD/HIkSMxmYyew23btnH77bcDkJGRQY8ePepc7Z+UlMT999/fYr9bUzpSQ7A6NYeYyHCG9Dm1uW7H9wlGKWM5UuTWT/I6V0fK25GyguR1NsnbMThU5CqlAoF+gEfVY1rrFc4KJdpWUlISAwcOBIxxnx988EF1kdqY+npy61v28OHDq79PTExk2LBhgFHwVv0fwGazkZKSwoABA5r7K3R6lVYb6/blcsnInqe8jEBvN4b08GdVSg73TO/XgumEEEKIttfkQDyl1M3ACuBn4Cn7v086N1brSU2dS2rq3LaO4bDc3NyThgC0tKSkJObNm8eIESMYNWoUZWVlPPPMM6e0rBPzJiUlERcXBxhDF0pLSwkMNHoRaxe8YFzwFhERUT0+tzW0xvptCQnp+RyvsDIsxHxaeSf1C2FL2jGOl1taMF3DOsr6rSJ5nasj5e1IWUHyOpvk7Rgc6cm9FxgNrNNaT1VKDcAodjuF7Oz5wMnDFtrrJPlVG6kzTz18/PHHDb73Y489xtatW3nuuef461//2uSyTsz74os1V/x7eHiwf//+6u9PXF5sbCw7d+5sdv7T0Rrr91TV3iZXpeRgUtDXV5Obm3vKeSfFhPDGsr1s2J/H1AHOv8dLe16/9ZG8ztWR8nakrCB5nU3ydgyOXFJdprUuA1BKuWutdwP9nRur7axatYoZM2bwxz/+sa2jtDvBwcG8+eab7N2716ECV7Ssm266ienTp7Ny5UpWp+YwNCIAX8+G58J1xKioQNxdTKxKlflyhRBCdC6O9ORmKKUCgG+AJUqpY8BhZ4ZqCz///DPPPfccBw4c4MEHH+TKK6/k2LFjbR3rJAUFBQDtMlt9JG/L+de//sVnn33Gtdddx1HtyzW33guceVrL9HA1Mzo6iNVS5AohhOhkmixytdaX2P/7pFLqd8Af+MmpqVrZ/v2lXHfdOZhMJnx8fHj88cd5/PHH2zpWvWw2G0D17ATtneRteRUWK2XH03n/77dySdz3p32TjokxIfzfT7vJLioj1Nej6RcIIYQQHYDSWjf9JKXMQBi1imKtdVpDz4+Pj9ebNm1qkYCt5cCBAzz77LN89dVX3H777TzwwAMEBQW1dSwhquXl5fHSSy/x0mtzces7jnWfz2VAv5gGn7916xQARoxY1uhykzIKuHDuKl65Mo6LR5z6bA1CCCFEW1BKbdZax5/4uCOzK9wNHAGWAIvtX4taPGEbi46O5u2332bz5s1kZ2fz5JNPtnUkIep46qmnOHLkCCPvfpOL7n660QK3OQb38CPAy1XG5QohhOhUHJ1dob/WukvMPVFV7ArR3rz66qscKSxj7LO/cUNMy10hazIpJvYNYXVqTrudVUQIIYRoLkcGHqYDBc4O0lbWrBnLmjVj2zqGw5KTk0lOTm7rGA6TvC2r6gKxiTEhQMvlnRgTQmZBGftyjp/2shrT3tfviSSvc3WkvB0pK0heZ5O8HYMjPbn7gGVKqcVAedWDWuuXnJZKCFGvVak5BHm7MbC7X4sud5K9aF6dmkPfbj4tumwhhBCiLTjSk5uGMR7XDfCt9SWEaEVaa1al5DChbzAmU8sOKegV7EVkkCcrU2RcrhBCiM7BkSnEOs3dzUT7tPngMb5NOIQCXMwmXMwKV5Pxr7+nK7PjI/F2d+SkQ+eWml1MdlF5da9rS5sUE8KibZlYrDZczO13CrXWcji/lE/Wp1FusRK034bFqqm0aiw2G25mEzdOiCYyyKutYwohhGhAk5WDUioW+DMQTd0pxKY5L1brCQ29vq0jNEtHuyVfY3mPl1v49897+GDtATxdzbiaTVisNiptGovVhs0+u938tQd57eoRDOnp36Z529qqE8bjQsvmnRgTwoIN6SQeKmBkr8AWW25t7Xn91vbT9kz+8mUix47lAeCWYsXFpHC1H4SVlFv5ZEMaf57ZnxsnRGNu4Z71U9VR1m+VjpS3I2UFyetskrdjcKR77AvgTeBdwOrcOK0vJuauto7QLB1tQ20o74rko/x1YRKHC0q5YVwUD50zAJ8TemttNs36/Xnc/1kCl76+hkfOHcAfJkY79er/9rx+V6XkEBXsVaf3sCXzTugbglLG+3TVIres0sozi3by8fo0hkX48+1dk4gK8jppeMih/FIe+zqJpxft5PvEwzx/2TD6hbX9KK72vn5P1JHydqSsIHmdTfJ2DI6ck7Rord/QWm/QWm+u+nJ6svYofQOsfNH4t71rp1nzSyp48PNt3PD+BjxcTXx523ieGlmCz4ZXT8pqMinG9w3mh3snc0ZsCE8v2snNH2wi73hFG6VvO5VWG+v25TptqAJAkLcbg3v4saq9jcttpW05+UgRs+au5uP1adx6Rh++vG0CvUO86x3/3DPAk//NGc0rV8ZxIOc457+2ild/TaHywLp2+bmrVzttI+olWUVn0JG2jY6UtRGO9OR+r5S6A/iaurMr5Dkt1SkoKqvk7gVbCff3pIe/B+EBNf+G+3vg4Wqu93WpqXMBB3p0U3+DBVeBtRJc3OCG76FX6089lptrTFfc6FHZwXXw4UVgrQCzG1z3FfSebPwsfQMcWAnRkyFyTKvm/WVHFo9+nUR+SSV3T4vhzqkxeGRthg8uBEsFmF3hyo+h3wxQqjprUPRk3rlhNPPWHOC5H3Zz7qsrePnKOCb0bfmCryqv1dWbg3kljOwVWPdU9MG1sHsRRI6FqIng6ml81crrjHW7NS2f4xVWJvfrVm/eereH8iIoy4e09dBzJFjKjW3CUgaHt0L2bmO7qJV1cr9uvLNiH8XllpN61ltCg3lPXHc2KxzPoXzPElx/uB+lLSizO9z4XYuvW601Czak8/SiHXi7uTDvD6OZ0j+04bz2rCp6MhePGMPkfiH83zcbObz0TVg1D40N5eKcrE1xqH2wWSHxC/juLuP/Lm5w4/etnhUczJv8M3x2LVjtWW/4rqbtbeQzV1RWSWZBGYfzS8ksKCPT/q9SMLZ3MBNjQuju7/htrB1re9fCh7PAVmm0Z9cthOhJTWZ1BofX7f4VRsaoieDqBWaXVs/qSN6KA2txSVuDKWoi9Bhe056lrYPsXdB3aqtuw43mPXH9lRdB8hL45k9gs4CT2rJTyltf27vzW/j6T2C1tGn70BIc2YvdaP/3oVqPaaBPy8c5dUVlFo4WlZOYUVBvT9+oqECuHB3JBcPC8XKr+bWzs+cDJxS5aeth13dG8XL8qLERZO+s+bmlHD66FGJmQNQEcPeDwkPQ+wynbwgnbahVG2j34UZBk7LEyG61H49Yy40iMjgGfLtD2lqw2aCVdsK5ubmUV1p5eeVhPlqXxpCefsy/aSwDA6yQ9DGsfMkouqqyfnK50QB4BUHxEdA2MLuj5iziDxPHMDo6iHsWbOXad9fzl7MHcNuZfVp0+EJG5hE+3ZjO1/tslFXa6BngyTVje3H1ADNBG16CrfMBDWvn1n2h2d2+zpV93bZso7Aq5SgmBeP71m2gGmy4tn4EWYlG1vdnNrxgkytc+yX0nQLA5JgQ3li2l/X7cpk+MKzF8jea9+DamoMyFHgGoMsKUNqGe63XakspesO7mMLjjIa3BZRVWvnrwiS+3nqISTEhvDR7OKF+NYVPvZ+3Dy402gCTGboPI7goi+eLDhvzz9TKys+PoaY9Br0mQGZCqxQN9a7fvb9D0peAgsIMyNgEFUU1P7eUwZd/gCGXG4WO2cU4CGqFAqfe9bt/BXh1M7Km/GKsu9pZP5wFEfHgGQR7fgBtrS4ajgYM56stGXy+Mf2kOZ9NCkJ9PSizWPl8UwYAfUK8mRATzIS+IYzvE0ygd8PbVYOfNZsN0tfB9q8g4ZOattdSDvPOB+9Q8PCHvL2gtVPah2bltVbCnh9h9atwaJPxWO32zORiFGJgdJLc8D1EjXNq1tp53bz9SMkuJvVIMalHizmUlcXUQ+9wqWUxCqCe5l4DasX/waw3YPiVTs9aO+9J63f7QvjqZmO7RNn3DWV1n2MpheX/Bxe+Bv6tcyv1evOmrYcPLjC2CWWCgCijlrGW1zzHUgbf3gnj74TYcyA/rd62TGvN/pzj9GlnU1A6MrtC79YIcrp6BHiy+B6jt7Ks0kpWQRmHC0rJzC/jYF4JixIP85cvE3nm+51cFNeDq0b3YmjECRcyaQ1r5sKSv2N8bABXb4gaDxGjYdsC48OvzBAxxthZ7Pym5vUmF7j+m5peU2c7uNbY4doqax7zDILIcXBwpXFEZnKBobONAvjg6prGy1IK696AnvFgct6V9Ptzinnm+11k6AD+MfwYV5s+x/xDJhzaYuT27WFk1Dbj3/ibjZ3s3qVQlGksxFoOC2+Fi/7DkOhJfH/3JB7+KpH/+2k3KdlFPHfpUNxd6u+pd5TNpvl66yGe/ngjOcXl3D/Wk3O8ktl2+DhhS7fgvywBlDYaUwBMEDsTeo2DihI4sMLoUUAbjcKiB+Di/0L48NPKVWVFSg7DIwPw93Q9+YeZiXDke6OYKskx/q4HV0OcfRtGQZ8pRk+H2d3IuvsHI6utEj65AkZcB/F/JN6lmHvcvmP/1iIYeFWLZG+QtRISPzM+b1bjwFSj2WcJYXHlmeSpQEaEmrng2AcoWyVKgynpMyqTf8F16CUQNgRK80/qjXbU0aJybp2/ia1p+dw/I5a7p8U0PjVbeTEse67moMxmMbbR3mdCt/6gFPr359DWCrQGnbEZlw9nGb1jljKjSWnNHt6iLFj8oHHmoUpgHxg2G7xCYM0rNTs3N1+j0Fn9Ss1zXdzhxkWt14OT+Dl8fZu9OABQxhmTUXMgYYGxrSqzsS0fPwppP1S3fdpSxk9f/Y+7sy/EYtOMjg7kivhIegbWnNEL9XXH1WzCZtPsyipk7d5cVqfm8PWWQ3y0Lg0Xk2LGwDCuHtuLyTEhTU/Tt/Uj46A3J9X43Ll4QuRoox2o2k8Mv9o4y3NgtdHGgbEtLPsXzP4A3FtpHHf6BqN37vhR46DneLbxN0dBVasWM8P4W+/73di3oI3P5WfXwvTHYdiV4Op4z3dzFJRW8kNSJsv2HMXl+A+MYSf7dXfGmpO517wMb0rRykhrQ7HBNJwl5UMYa9rFdNMWzEqjbVbU17eiN72Hir8J/HpAxobW640+sgNWvWw/oKxqezX0iIP+50LFcePzZa00fpHUX+HlwUYves94o+e/31mt93nbvxK+uaO67UVbjQP3sX8ysqyZa/98KaOd/f5e+wvtnwv7wVphtxF8m3CYBevT2JVVyKqHp9EzwLN1fgcHKK11409Qygt4AOiltb5VKdUP4za/ixp6TXx8vN60aVPLJj1NWms2HjjGpxvSWJyUSbnFxuAeftza/y4CvNw4M+o/8OtTkLam5kXKBFMfgzP+bHxf3ymcXx6HNa9RtVFbXH1JGPQQyz1nsC+3nKzCMmK6+TCiVwBxvQLoF+p7WldiJycng9bE6lT47h6jcTXCQvwf4LwXjA21vqzpG7DNu7D6KM2E5qA5ivddr2ZxZTxlFhsjowKZOSiMmYPC6vRoNVfVKeC/ffAzPq6K7yckE7XrrZqsQy+D8XdBeBxkbKw3Kx/Ye/eUCdx9oPSYUcCf8RDazYc1S7/jxeRumHqN5c3rRxHi495QnEZtPJDHM4t2kphRQF+3Av48+Djn7nmk+oDA4h7I2sALWZgVwrN6Lq7KgtnFDVW7N6ZOXmX0kFpKjd+p30zj8VPs6S8oqWTEM79w19QYHpjZv87Pkpd/CV//idiAqsJAg38v6H8uWytfAa0ZsT24bmFVO6vJxch1YKWx81UKm4YKXPG4aXGLN7jJy7+EtHXEdnMzzjgUpENQH2z56dhsViq1C/e6P8Xw8TOZHR9JN193SN+A3r+SVRUxfLtuN5PLl3GeeSOu2A/uzG4wp3lZdx4u5OYPNpJXUsHLs+M4d2j4yU9K30DyyoUQNoRYj1yj56sk19geof5TjvasPxT15dE1mhkeu3nSfzG+eUk1zxl7G5z7f81ab6nZxfyyM4tfdhwh5UgRPh4u+Hu64ufhavzr6Up3fw/GBJbR07OS2OzFsO5N47OuNaCNomvaYzD5weqsdT53FSXw08OwxX62AoyDtCs/hoBIh3KWW6zsOFzI1rR8tqYdI6ugjF5BXkSHeNPb/hUd4l09FCY5ORmKjhCb8Sls/bjmfTHBGQ/CtL/VnxVIT1hK+LdXYtIVKA0VyoUt3WcTdu7D9ImKdnjdVlptJGbk89P2LL7acoi84xX0DPDkqtGRXBEfWT2koepuUbEBNvj+HkhfbyxAmeCMh2HCXUY7VU9W68H1qPkXoSxGQaGwUenmz4GY68kNHE748T2Ex83ALXq8w7mbUp23cC0svq+myI4cB5PuA48AmH9JzbC2G79DR4zm6K6VBH91BcpaCSYT5d498Sw6gNUzGFu/c3HxD0PFnnPabUNxuYVfdx5hUeJhViTncPxoOpN8DvGx/38xa/tnW5lRQy832qjFf66TtSRsJJnbVxC16GqUrYJKbWaBdSrTXJKIItO+JSn70KHT6zm32TRFZRYKSiurv3bu2o3r0STO8UiiW0kqLofWg5uPUdDu+t4oZu1Z67S9VduGV7BREG/5wOg9BaM9vm4h9DnzlHLmFpez+eAxKq0aF7PCxaSMaTlNioKti+h+fDsjBw+EHV8bObyCoazQfsa0kawRo42z2T8/ZhwEYXxSd/hO4qr8OyiuhEHhflw9theXjOjplKFuTVFKbdZax5/0uANF7mfAZuAGrfUQpZQnsFZrHdfQa9pjkVtbQWkl3yYcImHNL5wZ+QhelHPWThdK3ELQw2bjnfB+/RtoLWWVVral55OeuIwLt92OWVdi1SYO6DD6mw6Rqnvwgcf12LzCCMvfxLKyWLboWLzdzAyPDGBErwAuHRnh+N2l7BtccrYF9iwitiIR/CKMI3KbtdGsWmuWJx/l9WV7sRxYxyTX3ez1HE602zGuLf2EHpYMDnnEkhg4g/ScQn4qjmGLjmVErwBmDurO2YPDmnUK4tjxCh77JokfkjK50m09N+pvGWQ+WPOEE3e2TfzORE+G7sOMXpNVrxinMVGAwmp249qKR0n3Hsp7c+IZ0Iw7ge07Wsy/f97Dj9uz6O7nwcPn9GNg+peYVvybWN8Se1YTTHkUznyI0gorK5cuZtuqRQQOmsbN15zQ01k7b7f+sPkDe2FkPxAxuxk9Y80cy/3T9kxu+2gLX9w2ntHRQTU/sFSQ/OolcGA5scH2nuyhV8DFb4LZha3rRkFZPiP6Ljh5uzhxR1ySZ/SipfwMGHVRyfAb8b70tWZlbdS+FSS/Mgt0pZE3dDCc9RS2PtN5dO77RORvZuy0WYyceHaDB4JllVbeXbkPlv2L29VXmJW9/QqJhSs/MtZ7E5bsPMK9n27Fz8OVd2+Mr39qOvuwhOQjJYA28sbMMLYFbXVo6MHOw4XctWALAblb+czjOVxsFaiqIi7uOpj6aIOnKm02zbaMfH7ecYRfdmax76hx6n14hD8jegVSWmGloLSSwjJjhxtRnMTA0s1U5KRztus2hgWVo4ZeAQPOg69vr1McNLqzP/FgDWX8O/oW6DMVjiSe9Huv35fLj9uz2Jqez87DBVRajd+xh78HEYFepB8rIbOg5nTtSJXMDK8UKsOG0ztvLbGZ39E/xIwaeCHsXtxo25uaXcSixEx+SMok+UgxI03JXBlykL4DhjKidD3m7V8YPaqDLgL/COMAsxnFTbnFypKdR1iwIY3VqbmYFEzpH8q4PkGEFCbT/+DHDM5ZbBzEWiuo7+DBZtMcyD1O0qECtqUXkHQon+2HChlo2cU40y7W2QZiwcxdLt8w07zZ6PXHOLB8vvsLdB88mYkxIQzs7ndaN31JXv8rrJ1LbP7vNQ+ekLU4ZQ3ZSb+ykcH8XNiLxIx8coorGKmSq7Nu0f0Yb9rJA+YvGG1ORgNWzCzo9xJeA2YwuKcffbv54NrE3NpVBVjVV2JGARVWG+H+Hpw/NJx4SwK9Nz1Df5fDVWGNYnzGk8a3DY0Ttj9eHjGBpcXRLN52iDOT/8Fl6ndMyli3aUETOHre+wyJCm3w+pwqRWWV7MosYsfhAnYcLmTH4UJSs4uqt+sqM499yf2uXzIwxITW8IPrWaztcw/9onsx3m0vfY9vxdzHgY6NFS/C7/+oOQhx84VznoW4a40Oq0aUVljZcCCP1ak5rErJYWdmYb3PG6mSebroKVyx0D/ETLHJl83Rf4L4OcS5HMT/yPpG2zOtNVmFZRxMWMao5TdislWABrPSZLtHUTL5MaImXIFy4lnhppxOkbtJax2vlNqqtR5hf2yb1rrB87DtvcgFjFNN392Dtp8aW+R6Ln8puoIy5cE14VnM9E7hcEA82f7DcTErTEphNkHe8Uo2Hcir/oACXBx8iHN8U6mMmIB333EMKlxF2MbnUTl7jFOYWqFd3Fgx7j1+K45ma/oxdmUWYdOaC4f14O5pMY1PP5S+wRg3Y7GPk/EMNE4fjbgBDm9pcIdrtWl+3J7JG8v2suNwId39PLjljD5cPSayZlyy1QJJnxu92MVZaECbXFk49A0+yAgn6VABYFxNPrZ3EGP7BDG2dzBRwV7VY2HLLVa2HMxnzd4c1uzNxZSxgQtNqznXP41uxbshqI/xgV3xguM724ZYKuCrPxpHynZ5/S7n3ANXUVxu5bWrRzQ5ljS7sIxXf0vh043pjHVJ5c7eWYzu1wO3pE/hSBIE94P8gw0ePPz9m+18siGNxfdMarqoXv5v+P2fVPdQBUTDZe8apzUd9NjXSXybcJitj59l7EhsNtj+JSz9h5GzgZ7FrVunADBixDLH3she2GmL0funFDDwQpj+JJTmnfqYUks5bJ4Hvz0NFcXGY8pk9NJNfpAvN2fw5y+28e/Lh3FFvGM9hnm7V+Lz2WWYbJVoFJhdcdEVqJE3QOy5kL2j3jFjb63Yx//9tJthPf15+4Z4wuo7W1FeBJ/fCHt/q3ls1B/gwlea93sDJRUWnvpuJymbf2OS624socM423MXQw99hjKZUAMvgsAorH3PYpfLANbvz2P9vlw2HsjjWEklLibFuD7BzBwcxlmDwgj3r+c04N6l8PEVaJsFBWzRsTxW8Qe6x8Zzx9QYRptTm/e3q11M+IbD8n/V6mU1xpzrG75jbUVfXvkthQ378/BwNTEswjh4HxEZyIheAXXWbWmFlYN5xzm2exWjV8zBZC/4FfC1dSJvmK6me1R/zg9II7p4Kxn+o8j0HYrVBlatKa2wsCI5hz1HioyaOzqIC4aFc87g7nXPOB3dAz/82RjXC0bP2FWfQOzZzf7bHcw9zoqlP1CxZwk+ZVlcYF6HGxa+dz+PnLBJ/PHQ45hsFqzKhVd6vsD6yhiyi8rJLiqjrNLYN3i4mhjcw5+hPf0ZFuFPuL9nTQ+byUTPdU8QuP1/1YMGEsxDufH43RTiQ5C3G2f0C+HC4T2Y3K8bbi5NFBBVf7ewIca1GZv/Z7QJQy6FpC+qDx7Krvmanwt78W3CYVYkH8ViMz7rMd18GB4ZYHxF+BPo5Van57Jn0hsMTf4PJozfrVS78aLlCuZbz0K7eBAd7IW3uwuerma83Mx42P+ttGoS0vPZbx8j7WY2MaSnH/HRQcwcFMZIn2OYfv8H7FhoFHiWsvp7FpuhdO9a3D65uPpAxIzmkA7mFetsXEL6cKZHCns8hrPHdSAlFVZKK6yUVlo5VlJBel5p9XJCfNwY1MOfgeG+hPp64O/pSmTpbvrveo2AQ8urh6/ZMPF14B94rug8coqN/XSglyvnDwvn4riejOwV2PABy4ln1oL6wNFd0G2gsd+0VtQZkpVbXM4PSZn8kJTF5oPHqLAaN6cZFRXIpH4hjOsThK+HK5VWG1arDfdDa4la/QgeRUZHkw3Fh25X8VTRhVSVfwFernTzcSfUz51QXw+6+boT6uvO8XIriRn5JB4q4GiR8XvFm1OYFbCPsKEzmByh8Fz2NOQkG50WvcYaQ3Ta4CK10yly1wDTgdVa65FKqb7AAq11g79Fuy1ybTZI/gnW/hcOrqp53H50mxJ7K4uTjF6C1Ozi6psR1OZiUgyN8GdMdBCjo4OIjw4kwKueixWsFuNijl3f1TzW72y4/D1w9yWnuJx3V+7nw7UHKK20ct7QcO6eFlO3aLJUwO7v4denIf9AVViY8ojx1YBKq42vtxzijeV7jYHgId7cdmZfLh7Rs+GG8sRizCsEZj7DocgL+C05j7V7c9mwP49c+0V9YX7ujI4OoqC0ko0H8iirtOGhKngscCnXlnxU3RAy7k7jSNzFreWu2K2++Mfek4KmInwUzxRfwo5cC9eEpmHtNYmwwZMZHhFQfTFJUVklb6/Yx7sr91NptfHXwXn8cd/9qKoxST7d4ex/wuBLjQsyGsiaX1LB1BeWERvmy6e3jmv8wrcTh124eRvjo/ufD4MvNk7XN7E+znj+d2LDfHh3qs0oFtPWwbF9Ru/2jCeMHcPBVSctp9lFrj2v3r+SO5YrLghI4/yiL4zT2Mq+G3b0quD0DbBvuXGBU9JXRu9796FwNNl+dbGxAyvsNoJpLywnMsiTr26b0Lyeq/QN5Gz/jXfSe/DFPjf+4vUds20/o7CiUGizGzmXfckmaz8SMvLZuD+PLWn5XDAsnBeuGF7To1O1XYYPh4zNsO5142/U2LCEZlqVksOSnVms2ZtLSnYxEeoo/3J/n0lss/eMmfh7xRwW2KbTK8ibsb2DmBATzLT+Yfh71TMOG+DYQVj/Fmx8p2ZcnTJRNvlR3uVi3l99gLzjFYyODuSuaf04o1/IqV+k+dNfjfWC8Ynb59KXu4/fRK5vf247sy9Xj+nVZA8Z2buMIVYZNVMSFQ//I7/1/jMb9uex8UAeyUeK632pi0kxslcg5w3tzrlDw+s/OKmy8kXjALCqZ8zkYhykTLwHAno5/jtv+wy+vaN62FJe6Di+i3yYlbm+bMsooNfxJMaZdpHoOpRM36F1ioPYMF+GRvjTL9Sn8bsHVrcP9g4MbcPm7sfu6OtZXtKbyowtLCuLZZ/nYM4bGs6s4T0YHR108uek9gWRaMBkDF+b8gj4hGI5uI6Dm3/hu4I+vL0vhNJKKz38PbgwrgdTYkMZ0tMPX48GtrOTshrFmA4bgjq8mRKP7mwNOIvschcSXYeTpPpTUmGlrNJKSYXRiTQ0wp9RUYHERwUypKe/sa3s+RFW/BsOJxjjO8ffCRPuNg5UWmo/YV9OQVERLHkc/2PbsdnPp1TiykNe/+Cg1+DqgtzXw5X+YT4M7uHP4B5+NQdQ6RuMoQVZScaQRs9AGHwZJHxU58yDjhhNZkEZW9Py+WlHFkt2ZlVfwDwrrgez4nrSv3s9HVonDg3Y+S389Ej1dSna5Mrqsa/z7uFoVqbkYLVp+oX6MG1AKBNjQhgdHYSnW632bP9KcPEw6o/0dUbe8uI6Bw9F3Uaw43AhiRn5pOeVkl1URnZROUeLyskuKqfCYkMp6NvNh2H2g7RhkQEMCver+1m3WmDp08ZZS2j9sfx2p1PkzgQeAwYBvwATgT9orX9v6DVtVuQ2VETtWwHr34DMbcbYF/9I6H+eMRamkVNjWmtsGiw2GzZ7j4KrWTl+kVNVo2Apt4/vtxkzMYy43jjiyU2lMGwcb+8PYd6aAxSXW7ijby43BCYSpgpQe5cap7p9uhv/at3o0W25xcqXmzN4Y9leMo6VMqSnH3dMieHswd2bHgdcpwEzGUMhju03xncOugi0DR0znb2+Y1i3/xgb9udRtm8t4007COsWQpxLGuGZS1Dlta7adnRYwqmo+ltHjjOOIle8AIUZ2OyD4iu1mTsq7uU3PZKoYG8uCEzH49Ba1pdFMiPKhct9d+Cz/8ea3nGUcfr4zL849PYfrz/IY19v57WrR3DR8B6OZY2eDKGDjAvDVr0ElfYhESYXmPZ34+Iv75Ca50dN4rDFl5fem8c94bvolbOS6t60KY/AGX9p9KLBUypy7e7/LIHlyUfZdO8wTJ9dC4c21vwwYixMedi4Ej8rseZ36zES8vbBrm+NC2uqLnLsNhDOec64YOiE8dfPLNrJ+6v38+2dExkWEdDsnFU2HsjjXz/u5uxD/+Fmlx+qJwDPt3nziW06P+mJDAg2cXnIQUZPuQjVa6zRU5/8E3zxh5pTz2C0DWf82fi5E2ZEyC4sY83eXNzXvcLMI+9gpuaCxsqgWFxH/8EYfpG17eT3TltvXKCVmwwHVhmFePQZNReV1mofSiusfLYxjbdX7ONwQRnDI/y5e1o/pg8MbXaxazm4DvXhLLBfVGdRLnhQgTVqEuZ+M4x1deKY8/QNxkVO2mb0rKatsV9kah8jXM/BQ2mFFZvWmE1VZ88UJkXz8tZuy8wuxjCL1N+M9+wz1T6M4Syj08HsUvOaAyshOBbyUo0p1rJ31Cyz1pkHMPYNeccr8HZ3abq4dyRv1Xbm6ml8duwXC2oU2uTCR6EP8cKhQRRWmjjL9yBXdTuINXICYQFe9M5dge+uT1HHs+2vgaK4P7Gyz/0kHSpg+6ECEjPyKSyz4O9p9C42WCw3J2vkGOPvuvghyNltX09mY2zysCuh2wA4tLlu25exwbioLfkn++wv9tdc9Qn0P+f01mNTbDZYeLMxC0aVkP4w7nZjeyg8XPd3O55rbAO7f4QNb9YcNI28EWb+Azz8muy4KS63sGRnFt9sPcyqVKM4jQzyZFjPAIb0NHr4h/T0q9NRVlJhIS2vBPPKF4jZ8Vr1ECeLNrHaPJr8vhcR1z+GqNJaZ6u0hvJCY0q4b+8w6howZimZ8rCxb8lKcrg901pTWGrBbFaOja9d+SIs/acxlMuZ+/1GnHKRa39xMDAOox1ep7VudLb4Nily9/wIn15j3xAVeHczGv2K4ppeDhRM/StMerB6LsA1Oy8Hd18mTNnR2NJPXe0PgTIbvSE7vq51BTHgFYLVzYeiknL8KrIw2Xd6h/xG4jHtIUKGnVPds5hsi4LwYcTGxla/vKzSyqcb0nhrxT4yC8qIiwzg3un9mNK/W/N3DrWPJpN/hl+fNE6dVDG7GVORuXpDzp6aD76rl9EDGj4UljxZPSwhefLck/I6haXcOMWc/GOdh8vNPuSYQuhemVbdu6zA6KnuORL2LaszLCG5NACgybxWm2bWf1eRU1TBbw+eiXdzB9ov/YdRmHPC58+3JxRn1d0+AJvZA1PVNDS1GpHqi0vqyXs6Re7CLRk88Pk2Ft09iSG2PTW9REoZhYq1wihSbJU1nzmTS92ZPsB+8ebfjIuIoE7elCNFnPvqSq6Ij+C5S4c1O+OJtNZsWPkTw5fegAsWwMQx/4GEFO5EVU3ngzZ+B89g40LGE9YzY/4E5z1f/W1j6/e01SnGXGHcHUbRcKh226mMz5u2GcMoqg6MwBh/PeNJo2irGrNfT/tQYbHx1ZYMXl+WSnpeKYPC/bh7mnHw21SRs+NwAV9tPsS3CYeIKtnOTO9UesefzZRJk3Df9hGs+Y9xXUAVz0DjzIK2GkVD1fbt28MoJuKuNabSsrczjn7emu3E4qMgw7hopvZsOGDsJ9x8jTNlVW0ZGLPnRIyGTe9Vd4S0WlsGxkVWG9+p85BWZko9uuFRmg3aOJxXyih+knUk/UwZmNBU4MK15Y+yPtfbOPM4eABDevgzfWAYZ8Y6MOyhuVbYe86x1X28elaRWrO8YDPaBJ8wY/aPWmOak8MuBJz0WatS1eNdNV2hVwgcP1Irnzbyefgb7cOJHGx765NTXM7ixEzW7csl6VABGcdqhkVEBnkS4uNOel5p9XCHkSqZj92exVVZ0MpMUa+ZBOZuQhUfqVmoMoFfTyNr1VCwaiaj3rF33LReW3YawxFPQ0NFbpN7ZqXUb1rr6cDieh5rPzI21WqktDGWLHK0Ma1H1dROymTsiKuO3iPHQHo9V1W3pMgxdf/Yl79n7JRWv0p1r5x/BOaQWAKyktBHjdMTNkx8ktuPNz7TTNi0gctGRjCg7y0kbN/JsZ1HWHHEhdzjFeQUlbMs+ShHi8oZEx3E85cPY1LMKZ6WPDFr/3OM9Vc9KF5Bz1FGT3jGhlrr2wQT7zOOGMHo0avawdh3Yk7n4g6THzCKVmuFMWB/zK24W8rpmbIE8quyNjELhb0haIrZpHjqoiFc9sYa/vt7Kn85Z0Dz8vabaUzRUlXgnP2scSSe8AkU1RRe27wn8O+KK5h/3cC6V0JHO3eauqo7q61KzWHImWOMq5Or1lPYEKMXcfnztXp4NUSMMno5tM2YuqrqLEk9U+pprXny+x14uZn58wkzRpwqpRRjzzgXei+uztqtqkfm+7uNi5qMNzcu+Iq39+Cue6PmQGfo5S2SxSGRY4ydwYm9Kz/8BTa8TdVQnOoDsqO77XcfshcGoQONtqRqWQ1sv24uJq4e04vLR0XwbcJh/vt7Krd/vIV+oT7ERwcR4uNGsLcbIb7uBHu74+/pypq9OXy15RC7MgtxM5uYPjCUy0ddwxmx3WouMJp4j3HgUz3MSUFgb+Piv8zEmivGlQlG32Q8H8A7uOZ3dfDzdkrrtnZb5h8B4cOM07dVbVnvycb4x4NrarVlypj15ex/GN8Ovrj12zIwpnnb+lHNOM3JD6BsVrx2fQ+lWWC/oCon6nxWxT5KSrELpkOb6HFsI/mh47g8diJ/KD9K7xAvhgwa6NysvScb7W9V23TJG8Z2seFtoye3SvQk40KyiDHGtly7KIqeDKUNvkPLiTyhLYsYbQyP+OVvkLrEeI62GcNaJv8ZwgYZw+K+mHPabW+Ijzs3TojmxgnRgDHsbfuhwure9mMlFUwfEEqvYC96BXnRK2gilrIxeGSuQ/WeTFDVjRoW3QdbPqzJ6uYDAy4wpkyzlBoHHVVndfpMOd015piG2rJ2oMEiVynlAXgBIUqpQGqmYPYDmjg/2wZizzbG2lZtiOe/YC9iN5z8YWprA843xtJVZTrv39VZlT2r2ezGjVdch1tmd76y96oBVOYZOw7XoEJcTIpgHzcGhftx+9V9GdcnuOWz9p4MK2o1YGc9Xf967Tu15jW1dzDO2onVp6EP2olZh19dc9XqiTvDZhgVFcilI3vyzsp9XBEfSe8Q79PPGjWxOqs2u/Hv4+fRY8goVNTwVm1EQv086B/my8qUo9x2Zt+T11PsTPAMqLtez3qm5jkhsY1m/XF7FqtTc3l61mCCT3HqtwadmNU72DgIS11a6zP3Qs1zBlzQdo1zfdvf0MuNnVhV1gteapG2zNVs4vJREVwyoieLEg/zv9UHWLIzi7zjFfVefzA8wp+nZw3mwmE9Gr5JQp8zjVOVVZnO/b/6s/Y+o1lZnSJ6sn1ifnumaX+vP+ugi2pe097asn5nVWdVZjdCZtzHxZFD7C8aAFxXvYjk5LKTFtuqWYP61F2v0x+v+Vl9r2mt9XviZy50gNHbeWBV/e0DOKXtDfByY1K/ECb1a+zOnROh38Sab01mY7hj4hc1WS96rW6mPlPbpj07jX2pMzU4XEEpdS9wH0ZBe4iaIrcQeEdrPbfeF9IOx+Q2Mm5mzRpjOqcJE9a3ZtJmZbXZNFvSjnG0qJzjR9MJ9HIlftgQ/DxdWvRuXy2R9UROPUXSHA5e9NbcvNlFZUx7YTnx0YH8b87olvl72LPu8RzO2V+WNzru11nDFQCeWbST+esOkvjEzIbHHTbzYsLk5GTKKqzc9v1h/DxdWXT3pMYvzGlJp3DhY5ttv6f4mTuVvFabJr+kwjgzVFxO3vEK+of5Nj7jSwtkPdW8p6UjZW2Ik9oyp2jGZ67N855CWwZtlLcjtWWt5HQuPLtba/2f5rxZu51doR6pqUatXue2vu2YQ/cjb0e6Qt53V+7jH4t38e4N8cwY1HK3wv3Pbym8uCSZzX+b0WBvZ2N5T7fI/X1PNn/430Y+/OMYzojtdkrLOFFubi7//T2F9zfl8vmfxjOmd1DTL2pDXWH7bUsdKW9HygqS19kkb/tyymNytdb/UUpNAKJrP19r/WGLJmwjHaW4rdLRNtCukPfGCdF8ujGdpxftZFK/kNO/2tpuZWoOQ3r6NXo635nrd2zvINzMJlal5rRYkXscTz5KOMasuB7tvsCFrrH9tqWOlLcjZQXJ62ySt2No8jyhUmo+8AIwCRht/zqpWhaiq3I1m3jiwkGk5ZXw6Ya0FllmcbmFLQePMSmmZYrLU+Hl5sKoqEBWJB9tsWW+/GsyZqX467lOvhhGCCFEl+fIvEfxwCDtyFxjHZAMV3CurpJ3cr9ujIkO4s3l+7h6bC/H51JuwPp9uVhsmsmNXpTg/PU7qV8I//55D0eLyunme3oXiB3IOc7Ctbu4bmwU3f0bmcy/Hekq229b6Uh5O1JWkLzOJnk7Bkeu+NgOdHd2kLaSnT2f7Oz5bR3DYbm5udUba0fQlfLePT2GrMIyvtyccdo5Vqbk4O5i3KqxMc5ev1VF9urURqfGdsjry1IxlRdzQX8HL2hqB7rS9tsWOlLejpQVJK+zSd6OwZEiNwTYqZT6WSn1XdWXs4MJ0dFMigkhLjKAN5btpdJqa/oFjViVmsPYPsEtNr73VA3u4U+glysrU06vyE3PK2HhlkNcMKxHy08ZJoQQQtTDkeEKTzo7hBCdgVKKe6bH8Md5m/h66yFmx0ee0nIyC0pJzS7mylN8fUsymxQTYkJYmXIUrfUpT5H25vK9KAWzR7f97ySEEKJraLInV2u9vPYXYAFmOz+aEB3P1P6hDO7hx+u/p2Ktb4Z9B1T1mjY+SXjrmRwTQnZROSnZJ9420jFZBWV8sSmDy0dFEubXMcbiCiGE6Pgc6clFKRUHXINR3O4HvnJiplbV6jeBOE0dbSLnrpZXKcXd02K47aMtLEo8zKy4ns1exsqUHEJ83BnQvemxq62xfquK7RXJR4l19AYBtby1Yi9WrbljSl8ig7xaOp5TdbXtt7V1pLwdKStIXmeTvB1Dgz25SqlYpdTjSqldwFwgHePmEVMbu9uZEF3dzEHd6R/my9ylqdia2Zu772gxP23P5OzBYa1zNzsHRAR6MbSnP/9bfYDSCmuzXnu0qJxP1qdxyYieHa7AFUII0bE1NlxhNzAduFBrPcl+17Pm7eGE6IJMJsWd02JIyS7mpx1ZDr9Oa81T3+/Ew8XMfTPa11H3384fyKH8Ut5YvrdZr3t35T4qrTbunBrjpGRCCCFE/Rorci8DsoDflVLvKKWmA+2ja6kFrVkzljVrxrZ1DIclJydX34O6I+iqec8fGk6fbt78Z2kqjk4x/euubJYnH+X+s2IdnpO2tdbv2D7BzIrrwZvL95KWW+LQa/KOVzB/3UEuHN6D3iHeQNfdHlqL5HWejpQVJK+zSd6OocEiV2v9tdb6SmAAsAy4HwhTSr2hlJrZSvmE6JDMJsWdU2LYlVnIr7uym3x+WaWVpxftIDbMh+vHR7VCwub767kDcTEpnlm806Hnv79qPyUVVunFFUII0SYcmV3huNb6Y631BUAEkAA84uxgQnR0s+J60CvIi7lLU5rszX1r+T7S80p58qLBuJodmb669XX39+Ce6f1YsvMIv+9pvHAvKK3kgzUHOHdI91O6WE0IIYQ4Xc3am2qt87TWb2mtpzkrkBCdhYvZxB1T+rIto4CP1h1s8HnpeSW8viyV84eFM6Fv+5g2rCF/nNibPiHePP39Tsot9Q/Rr7TaeHbxLorKLdw1TXpxhRBCtA2HphDrzEJDr2/rCM3S0e473dXzXjoygkWJmfz92x0kpBfwzMWD8XKr+7H75+JdmJTisfMGNnv5rb1+3VxMPHHRYG58fwPvrzrA7VP61vn54fxS7l6wlc0Hj3HrGX0Y3MO/zs+7+vbgbJLXeTpSVpC8ziZ5Owbl6EUxzREfH683bdrU4ssVoiOy2jSv/ZbCa0tTiOnmw+vXjqSf/RT+iuSj3PD+Bh46u3+Lj13dunUKACNGLGvR5QLc+uEmVqXm8NuDZxLu7wnA77uzeeDzBCosNp67bBgXDe/R4u8rhBBCnEgptVlrHX/i4+1z8J8QnYjZpLj/rFg+umksx0oquGjuar7cnEGFxcaT3+8gOtiLmyf3buuYzfL3CwZhtWme/WE3lVYb//pxN3+Yt5Hu/p58f/ckKXCFEEK0uS4/XCE11bivRUzMXW2cxDG5ublAxzn1IHlrTIwJ4Yd7JnPvpwn8+YttvLtyH/uOHud/c0bj7mI+pWW21fqNDPLitjP78upvKaQcKWJ3VhHXjO3F4xcMwsO14d9FtgfnkrzO05GyguR1NsnbMXT5ntzs7PlkZ89v6xgOy83Nrd5YOwLJW1eonwcf3TyWe6b3Y8+RImYMDGXqgNBTXl5brt/bp/QlItCT9LwSXr0qjmcvGdpogQuyPTib5HWejpQVJK+zSd6Oocv35ArR2swmxQNnxXLR8B70CPBo6zinzMPVzMLbJ6CBML+O+3sIIYTonKTIFaKNxIT6tHWE0xYqxa0QQoh2qssPVxBCCCGEEJ2PU6YQCwkJ0dHR0S2+3I5u19FdAAzs1vz5UFtbWVkZAB4eHaOnTvI6l+R1LsnrXJLXuSRvXXty9wDQP7h/iyyvI63ftsq6efNmrbU+qePWKcMVoqOjkXlyTzb2jbEArL99fRsnaVpycjIAsbGxbZzEMZLXuSSvc0le55K8ziV565oybwoAy+Ysa5HldaT121ZZlVJb6ntcxuQKIYQQQrSQo0XlTc40I1qHFLlCCCGEEC1gzd4c9h4txtVsIu94BUHebm0dqUuTIrcVXT/0+raO4LCONmG05HUuyetckte5JK9zdda8d911F99//z0HDx506PlllVYe+3o7bi4mKq2afy7exYuzh59OVKBjrd/2ltUpF57Fx8drGZMrhBBCiI5o//79XHjhheTm5pKcnIyvr2+Tr3nh5z3M/T2VwKhnKSytxJr9BB/dNJZJ/UJaIXHXppTarLWOP/FxmUJMCCGEEKKWJ554gr/97W8MGjSIHTt2NPn8PVlFvLl8L5eO7Im/pys9Az3pHeLNo18nUVphbYXEoj5S5LaiuavmMnfV3LaO4ZCOdgtAyetckte5JK9zSV7n6mx5d+zYwfbt27nyyisZOHBgk0WuzaZ5ZGEifp6u/O38QQCYlOLZS4aSllfCa0tTnJq3PWlvWaXIbUXzk+YzP2l+W8dwSHvbUJsieZ1L8jqX5HUuyetcnS3vY489xjPPPINSioEDB7J9+3YAvvnmG2655RZmzZrFL7/8Uv38j9YfZGtaPn+/YGCdC83G9w1mdnwEb6/Yx87DhU7L2560t6xS5AohhBBCAOvXr+fnn3/mzjvvJDo6mmeeeaa6J/fiiy/mnXfeYd68eXz22WcAZBaU8vxPe5jcL4SL43qetLxHzxtIoJcrf12YiNXW8tdAicZJkSuEEEIIATz66KMsWrSIAwcOcODAAbZt21bdk1vlH//4B3feeScAT3y7A4vNxj8vHopS6qTlBXi58fiFg9mWUcCHaw+0xq8gapEiVwghhBBd3pIlSygvL2f69OnVj4WFhXH8+HHy8vLQWvPwww9z7rnnMnLkSH7anskvO49w/4xYegV7NbjcC4eFM6V/N/798x4O5Ze2xq8i7GQKMSGEEEJ0WeXl5SxcuJALLrig0anCXnvtNT744ANGjx7N0GHD+DA/Fg7v5K1bphA3fFj18+q7rW/GsRLOemkF0waG8t9rRjrrV+mymj2FmFLKrJT6k1LqGaXUxBN+9jdnhBRCCCGEaA3l5eW88cYb9OvXj/nz52O1Nj7V1z333MPmzZt58803GXf+VRwpLOfMSBfOOXsms2fPPmlYQ20RgV5cER/B0l3ZVFhsLf2riAY0dseztwAvYAPwmlJqudb6AfvPLgX+4exwQgghhBAt7cknn+SVV14hLCyM888/n8jISF5//XWHX786NYeCvbl4TIvhtttuY/369YwfP57evXvj9QcvPAI9TnrNpJgQPlx7kC1pxxjXp33dGayzaqzIHaO1HgaglJoLvK6UWghcDZw8ulo0aewbYwFYf/v6Nk7StOTkZABiY2PbOIljJK9zSV7nkrzOJXmdqyPmTUtLo7KyErPZjMViobi4uFnL2Hs4h27uGkt5KRaLBa01JpOJkpISPC2e9b5mXN9gTMookJtT5Hak9dvesjZW5FZP9qa1tgC3KqUeB5YCPs4OJoQQLe2tt97iySefJCwsjOLiYoYMGcLnn3+Om5tb0y8+Re+88w7//e9/AUhMTGTYMGPs3rRp03jppZec9r5CiIY98sgjvPbaa7zxxhu88MILTJkyhXfffdeh2/cWl1v4/KlfuPWMPsSW7eaee+5hyJAh/PLLL4wdO7Z6TO6J/DxcGR4ZwKrUHB6c2b+FfyNRn8ZmV9iklDqn9gNa66eB/wHRzgwlhBDOkJiYyLPPPktCQgLJycls376dxMREp77nLbfcQkJCAosXLyYyMpKEhAQSEhKkwBWijfn4+PDQQw+xd+9epk+f3uSY3Cob9udisWkmxYTg5ubGF198wQ8//MDYsWObfO2kmBC2pedTWFZ5uvGFAxoscrXW12mtf6rn8Xe11q7OjSWEEC0vKSmJESNGAJCamorWusVOq11yySX87W9/Y/LkyXTv3p1ff/21zs+3b9/O0KFDW+S9hBAtx8fHh1tvvZWAgACHnr8qJRd3FxMjowI577zzHCpuq0yMCcGmYd3e9nNXsM6sseEKooVdP/T6to7gsODgjjUoXvI6V2fJu2PHDm644QYqKyvJyMhg8eLF+Pn5NbqsyZMnU1RUdNLjL7zwAjNmzKj+fvv27UycOJGVK1eycOFCPv744zo/T0pKYsiQIc3K215JXueSvM51unlXpR5lTO8gPFzNzX7tyF6BeLqaWZWaw8zB3R16TUdav+0tqxS5reiuSXe1dQSHtbcNtSmS17k6Q9709HRCQ0Orhyd8+OGHPPPMM9x5550sXryY7Oxs7rzzTmbOnFnndStXrmzy/UpKSigoKOD+++8HwGKxnNQrtH37ds466yyH87Znkte5JK9znU7e7MIyko8Uc9nIiFN6vZuLibF9gliVmuPwazrS+m1vWeWOZ0KILiExMZFBgwZVfz98+HCys7PrvR99bZMnTyYuLu6kr9rDEXbs2MGoUaMwm83V73Vir21jPblCiI5h9V6jOJ0YE3LKy5gUE8K+o8c5LHc/czqHenKVUoFAP6B64jet9Qpnheqs5q6aC3SMHt3cXGO8UHs7KmuI5HWuzpA3KSmJgQMHAqC15oMPPqgznKD2/ehrc6Qnd/v27cTFxVV/n5iYyKxZs6q/t9lspKSkMGDAAIfztmeS17kkr3OdTt5VKbkEerkyKLzxYU6NqSqQV6fmcEV8ZJPP70jrt71lbbInVyl1M7AC+Bl4yv7vk86N1TnNT5rP/KT5bR3DIbm5udUba0cgeZ2rM+RNSkpi3rx5jBgxglGjRlFWVsYzzzxz0v3oT0VSUlKdInf79u11em1TU1OJiIjA3d3d4bztmeR1LsnrXKeaV2vN6tQcJsSEYDKd+u0C+of5EuLjxmoHhyx0pPXb3rI60pN7LzAaWKe1nqqUGoBR7IrTlJGRwfz583nggQca3PkJIVrGxx9/XO/jr732Gr/++isFBQWkpqZy2223NXvZJ04Htm/fvjrfx8bGsnPnzmYvVwhxel5++WXOPvvsOkOVTtXeo8fJKixj0mkMVQAwmRQTY0JYlZqL1hql5P5azuLImNwyrXUZgFLKXWu9G5BZjE9DRkYGd911F8OHD6egoABXV5mRTYi2Uvt+9KdS4Aoh2i+z2cyUKVO4+uqrT/tAc1XKUYDTLnLBGLKQU1zOniMnz9wiWo4jPbkZSqkA4BtgiVLqGHDYmaE6sz2v76HvfX0ZNGgQF154IYWFhdx1V/sbo5ufnw/g8LyBbU3yOpfkdS7J61yS17nae96LLrqIHTt2MHLkSAYOHMinn356Sr2nq1Jz6RXkRWSQ12lnqhqXuyolhwHdT318r2hck0Wu1voS+3+fVEr9DvgDJ90kQjRt/e3reeTgI7x96G0qKiro1q0bvXv3butYQgghRKd15MgREhMTcXV1ZejQofTv3/yT0RarjXX7crkorkeLZOoZ4EmfEG9Wp+Zw8+Q+jT63pW5Y0xraW1ZHZ1cwA2HAfvtD3YE0Z4XqzP71r3/x1FNP8b///Y9nn32WYcOG8dVXX8mYXCGEEKKF3XbbbXz11Vfcd999/Prrr03e/KUh2zIKKC63tMhQhSoTY0L4aksGFRYbbi4yo6szODK7wt3AEWAJsNj+tcjJuTo1d3d3brvtNlJSUrj11ltlTK4QQgjhBBdffDF79+7lscceO+UCF4zpvpSC8X1abmqsSf1CKKmwkpCe32LLFHU5OrtCf611+5kTooMa+4Zxf+v1t68HjGL3oosuastIDUpOTgba36mHhkhe55K8ziV5nUvyOld7znvOOeec9Nip5F2VksOQHv4Eeru1WLZxfYIxKeOCtjG9gxp8Xntevydqb1kd6R9PBwqcHUQIIYQQor05Xm5hS9qx07rLWX38PV0ZFhHQrFv8iuZxpCd3H7BMKbUYKK96UGv9UsMvEUIIIYTo+Dbsz8Ni0y06HrfKpJgQ3li+l8KySvw8ZOhiS3OkJzcNYzyuG+Bb66tTsNk05RYrx8stFJRUklNcTlZBGWWV1raOJoQQQjjN8XILRwrLyC0up6C0kpIKCxUWG1rrto7WrqxKzcHdxUR8dGCLL3tiTAhWm2b9vrwWX7ZwbAqxTnl3s5QjRdz3WQI7DhfW+/NgbzeevGgwFwwLb7G7kVw/9PoWWU5raC/3nXaU5HUuyetckte5JG9dNpvmw7UHeP7nPZRU1N+hM6FvMC/OHk64v2eTy+vs63d1ag6jo4PwcDW3eJaRUQF4uppZnZrDWYPC6n1OR1q/7S1rk0WuUioW+DMQXfv5WutpzovlPFprFmxI5+lFO/Bxd+HuaTF4uJpxMSlczCZczQqTUnyxKZ27F2zl24RDPHPxEIc+6E25a1L7u+lDQ9rbhtoUyetckte5JK9zSd4aqdlFPPxVEpsPHuOM2G6cPTgMi1VTabVhsWksVhtF5Rbmrz3Iua+u5N+XD2+w+GqNvM7QnLzZRWXsziri4XN6OiWLu4uZMb2DWGm/m1p9OtL6bW9ZHRmT+wXwJvAu0KHP4ReUVvLowiQWJ2UyuV8IL84eTqivR73PvXpML/63ej8v/LKHmS+t4JHzBnD16F6YTHKPaSGEEB1LhcXGW8v38p+lqXi5m3lp9nAuGdGzwTOVV8ZHcveCrdzy4SZuHB/FX88b6JSezPZutf2iMGeMx60yKSaEf/6wi8yC0hbpUBM1HClyLVrrN5yexJnSN3Ao4ReeSgpiaXE0j5w7gFsn92m0YDWbFDdP7sNZg8L468IkHvt6O98lHOa5S4fSp5vPKcWYu2ou0ESPbvoGOLASoidD5JhTep+WkJtrzBjX6FFZQ1nb4HfIycmhoKSSSjdvegR4njyAvx1lBQfX74nacNtodt423o6blbcdfOYcztsOskLdvLnF5eQer6C7v0fdz107yQoOrN+O1D6cQtZt6fk8/FUiu7OKuGBYOE9eNJgQn8ZvQNSnmw8L75jA8z/t4b1V+9lw4Bj/uXoEMaEn7/86c3u2MiWHMz33MXjfbtDOyTqpX0j1e82Ojzzp5x2pPTulbcGJHClyv1dK3QF8Td3ZFdr3KOmKEjiwEr1lPuxeRA+teUOZyBt+Hd16ukGxF+SnwcFVjW4MUcHefHzzWD7flM4/Fu/ivNdW8sSFg7lqdGSzx+rOT5oPNFDkFmfD6ldh3eugbaDMMPhi6BkP/j2hNB8KD0PM9FbZcBvdULWGrR/B9/eCthpZB5wPgdFQegy2LQCbDVzc4cbvWjzvgZzjLEo8zIHcEjILSsnML+PAvhTKLRrXoJ6YFAyLCGBC32AmxoQQz07cF1wKVguYzDBwFngFQkEGpCwx1reLG9y4qNUahUbX756fYNd34BsObt5QfASyd8KBVUZWsytc8yX0ndIqWRvNm74B9i2DwN5GrpxkOLga9i0HNJhc4NznYdQcY93XYrNpDuWXknq0mL3ZxWQVlBER6ElMqC8xoT6E+bmf8nj4evNWNf5Rk8A3zPh+13ewa5GRVZlh/B0w/BroNgAObWq1nUWTn7eju2Hju7DpfXv7YIIhl0O/syB0EJQVQPq6VslaVFbJog172JKWz55SH3ZnFVX/zMfdhZ5+rlxn/oVr8t/ChJFVxZ4LPUaAXw8oLzTasoEXto/PW+qv8MlVYKs0toHYs43tufQYJH0ONqu9Lfu+7fOmb4B5F4C1wvg8Db4EPIOgIB2SfzbaY7Mb3PAdRI3HatP89/dUXvk1mW6+7rxzQ3yTQw9qc3cx8/cLBjEpJoQHv9jGhf9ZxTMXD+HyURGO5T24FhI/M/Zh7n5QlGW0Z0f3wOEtxrZtb3t1xGh+2XmE91bup2+oD9eN68XgHv7NX3kOaLB92L8Sug8BV084ugedvZtbdv7GAPajlgImV7hqAcSe1aJ5BnT3JcTHnVWOFrm1C9nQQXBos/FY8s9waKPxHJMLnPU0jLwB3H0dLn6tNs3y5Gw+WZ+OUvDAWbEMDHf8JhrtrchVTV1FqZTaX8/DWmvd4M2W4+Pj9aZNm043W/NtXwjbPoOSHMhKAms5FlwwaQsmBRqod5fp4u5QgXOksIwHP9/GqtQczh8azrOXDsXf0/EpP+rcDCJ9A6T8YjSgh7fA/hXGzqs2kwvYLCc/dvVn0G+Gw+97KupM6Fz14egxAnL3wpYPjPVbm4snoMFSVvfxARfAZe+Ba/3DQhxVVmnl5x1ZfLohnbX7clEKQn3dCff3pEeAB67FR+jm686wwQNJOVLEmr25pKcf5Cr1K7e6fI+PMo7PNKDMbuDmA9ZKqKjZQRPU12gUYs8Bs0N3vD5l9U6YnbsXfn4Ukn+q+2Q3X3BxhZJax5UmVxg0C4bNNhqwtLVOLXDqzbvhXfjxoZO3Ww9/o+iqzTOIij4zSLaEkZFTwJKKofyQ34vSWrOYuLmYqLDULMvX3YU+oT7EhvowdUAoU/uH4unm2OnSk/IeXAsfXmj8zWszuxkFw4ncfKHyuH0n7PwC56S8+1caB5IVxZC5zShiTqRMJ697syvc8D1EjW/RfFkFZXy5OZ3fdmeTmFFAWU4GrmbFhJFDubTbYQaVJ5Bj9cLjWDID8n7Dz5pf3d5qDRUmd9x1ed2FKhOc/yLE/7FFs9anev165tcc6GgrbJ4H27+q2866ehvZKooxWgy7nvFw6dsQ3Lf18lZtDzabsb/46WE4dqDmiSYX40DYajG21yrufhSN/BMP7R3OT2kmLhreg2cuHtKs/dWJjhSWcd+nCazdl8vNk3rz1/MGYrafDT0pr6Ucfv8nrH6NOuvQ5ALeocZjRZnVD1d6hfGZy0W8lh3HSP9C+pVsY7VlADpyDNeNjeL8YeEtOlTipLwpv8KCK0/a31rdfMkqc6WHKa9W7aAgciz0Pwf8ekJ+OvSu2/ZOmTcFgGVzljmc6f7PEliRfJSNj8046SzzSfvjDy4AS1W7pQB7O+DdDY6fMLZXmYx927H99k6S+jufcorL+WxjOgs2pJFxrJQQH3csNhuFpZXMjo/kgZmxDQ7vbDBrK1JKbdZax5/0uDOmCmmTIjfpC/jqZvs3irLYi3g2azR7csr5yON5XLTFKG6u/MgouNbMheQfa14fHgezP4TAqEbfxmbTvLViHy/+socwPw9euzqOUVEN36mktuoid/x98O0dNTso33AYcR15nlH4LfkzJlslNpMrGye/jzk0lr475xK04wNUVWNhdoNxt8P4u8An1PF11Ax1dgrzLgBrrR1U96GU9zoDl83vYrJZ7DvW71C9xhrFxPyL7R9AbXx5hcCYW6DHSDiS1KxibE9WEZ9uTOPrrYfIL6kkMsiTK+MjuXxUJN39az5wdfJu/wqO7UfvXYaylpPhNYTQkt2YtI1KXHgr+mXGnXkuY11SUR/OMoocpcAjwDhA8g2HvtPBO8TooXZCcZOcnAyZicSaDoJvT0j9BXZ8bTRINivVPYtn/gWmPGJv2C6y9+C4QMwMSFtj9DYBoJxajNVpuNLWGzuw/ctrPcMEo2+Cs56CIzuqs2qzK7v63UJ++m6GFK3GT5WgAStmPun3Mi4xU4kJ9SEm1IdAL1eOFpWTml1M6tFiUrOLSTlSzO6sQo6VVOLlZmbGwDAuGBbOmf274e7S8E6vOm+/frDnR+Osw/HsmnXV/1yY+iiUF8P8S4z1anaDS94wzgJteBsyE2oW2P88o30wO2cey+q8ffvA0qeNszpVoiYaBzNeIUYbV5X1+oXGNrvi38a2U9U+eHeD816AgReByZFZIutXu0dn6e4j2DTERQYwKSaECFM+g3v4MdQzGz66tKY4MLsZ66r7MFjxPNpaiUW5cKt6gjXHe/B3r4VcY/seU+3CJ3oynPFn6H2m8Tk8DTabJquwjAM5x3F1MTG0pz8eruaaz9vKO40CDABt9C72OROSfzF+B7NbTQGQth4+tH/mUEY2m9XYdsbfZXwOmzgTWFtZpZUjhWUUlFZSWGox/i2rpLC0kkAvN6YNDK0eQlCd15ZiFNt7foS8vcY2UJZvHDnUzlqnfTCT7zeAgGOJWLSJI+HT6DFsGspSCr3POK32wWK18Y/Fu5i35gBT+3fjtatH4OvhSvLyL+HQJmLHngNHtsPauXWKWJQJJj0AUx8ztkl7Xm2twKYV+2yh9DMdNrYKZQINVpMr93k8zaK8SAK8XLl8ZAR/OrMv3XwbH2bhiOrPW2Q3WPtf4/NmrVU0xl0L0x7j3YRSfvjxO770/hcma6XxNx96BWQlGl9VzO4wp6aj7FSK3K82Z/DgF9tYdPckhvSs24NdnTfMGz67zugYqxI9GSbeCxHxkJNSsx2YXWHGE1ByzOhNzz9Y85rxd8HZ/wRgx+EC3ly+j5+2Z1Jp1YzvE8x146KYOTiMknIrr/6WwodrD+DuYuKOqTHcNKl3owccHa7IVUp5AQ8AvbTWtyql+mHc5ndRQ69pkyJ3xYuw9BlAo5WZN01X8Z/Ki3jlyjhm+qWd3E1fu1FQiuo+3pHXQ98ZkLO70cZra9ox7vl0K4fzy7h/Rj9unxJTfVTbkLH/GQGFh1hfWVMwakysjbqNZ4vPY/uhQkaqZMaZdrHONpAt2thIRqpkPnZ7FldlAeUCURNwObjCaORizzGGCbRwMZacnAy5e4nd/LhxChpjF7o26BKetMwh5ehxRlCTNdltEFHBXvQO8WaC+15G2nYQOmQ6QR7aOKBI+dm+5KaLsX1Hi/khKZNFiZnszirC1ayYObg7V4/uxYS+wfWOpU5OToYd3xCb+FzNwcOAC2D649CtP6Rv4Ejir3xX0IfX9gRSVG6hTzdv7o09xjTPZHz7TzWK8JRfYNXLkLHBWIbJBa76tN7TUzabZl9OMYkZBSRmFLAnq4hyi9V+hbLGYrNhsWpsWjOohx8TY0KYFBNCVLC3sVNYeCuxgfaeTBcvGHsrRE2Az2+sKWRqH3GfeLrJUgHf3Q2Jn9aE6n0mXPUJuNcdN5ddVMa29AK2peezLSOfPVlFuLmY8Pd0rf7y83AlwMuVPt28GdzDn35hPtWFZPLyL2H3YmJNacZpfO9uMOQyoyfMWlmdVUeMZn/OcfYn/E7x7mV8cqQX6y0xdPfz4NmQn5l6+B1UVa+Dq5fRcz5qTqPFozGHZC7fJ2by4/ZM8ksq8fVwYeag7pwRG8KoqEB6BnjWDG1I30DyyoXg5kNs/nLjb+nbE0qOGkWKPWtJ2Eh2ZRaRvXMF7hlr2Ok2jETVn8KySsKLkniu6DFcqUQBJjSlPr2wTXkM75GzT6t4rE/ynj2wbxmxe9+t/rwBoMzoqY+R0v9WVqXkkLV9BSG5G0h0HUqK6yDMJsUQ226eKXgUFyxoZabcoxvepYfRYUNQ0/5mnM52sBjTWpOWV8LCLYf4fFM6mQVlhPi4c0V8BFeNjiQq2NvIu3sX7Pqe2F2v1TobYjIOyqb+tfrvULW9VvaI57dd2Wxc9RN/znwIVyxYlQspkZczMG8p5uNZEDHaGEpkrTipZ6y+nBnHStl0MI89WcUcyDnOgVzjq6yypnfbxaQYGO5HtMrmqqOvMkEl1PTIDbwILnnT6Al1ZJxrYDRseMcYNlKah7HPUE0Oy8otLud/qw/w4doDFJZZ6n0OGLuh+KhAzh7cnUG5SwlZ+mdig+z755D+xrodNAsOb20wa+XeFcw7HME/E32ZHnacF/smELDjIyi3n1kxu8Gcxae9r/ho3UGe+G4Hfbt5M3+mouAd40AxNtj+uYiebOyTfn2q3rastMLK4h++IX3LL6yxDSRu/EzuiVP4/vpwnYNnPfoW1g54hI/XpfHzjixG9Arg8z+NP71pPdM3kPz7Aig+SmzBCmPdRJ8BGeuNHvFaWef8bwNpeSUsne118jr/9UlY9QrVB5ehg+GqjyCozykVuUcKyxj77G88cu4Abjuzb3VWDqwkuTQYMtYTe8h+1kHZ3/bEfUSt15xc71xoP8Czd6DE/5G8+HuY8sYuNHD5qAiuHRtV75jrfUeLefaH3fy66wg9Azx5+NwBXNjA9Kodscj9DNgM3KC1HqKU8gTWaq3jGnpNmxS59qLVZqmgXJu51+0p7vvDdQzq0chYktobg19PWPmisdPWVhwpxgrLKvnb19v5btthRkcHcunICCb2DaFXsFfd90hdAscOws5v0VqT1XMmIem/oHQlldqFaysfhYgxnD24O2cNCiPUz8N+tF9Jgf3LfGgDuduX8tnRKFLdB3HfCMW1BW/jvm+J8T4mM8z+CAacd/rrsjATlj2L3voRlcoNZatEaU0lLtyqHsccNZYRkYEMj/RHKcX+o8UcyC0xipuc42QcK8Fm36yigr0YHR3ELcffIfbA/JodTNQE9JUfY3UPwGLTHM4v5cftWSxKzGRXpjF3cXxUIOcPC2dWXE+CGrtfeE4K/Pa0Mb6yijLDtMdg8oMnPb20wsripEwWbEhj80GjJ7S7nwfDIvwZFuHP+QULiE58GaVtRl+02Y3MuHvZHnENWaUmMo6VkJhRwPZDBRy3zzHp5Wamf3dffNxdcDEpzCZjOjqzSaE1bEk7RmaBMZRjesBh/mV7lW4VVaegldGTNe1vxrfNuXCg9sEa2ijwfcIom/QwP7pM55fduWxLz+ew/b3NJkX/MF8G9fDDatPV21fV9pZfUkmF1SgSXEyKfmG+/MFjOZdnvogJY30cib2enPGP4eHtg39OAuWpy9nIIBYf68WWtGPkHTd6REJ83DlvaHcuGNaD+KhATIc21u2N7tbf6A0J6mP0nKCaLG4qrTZWp+awKDGTn3dkUWQvGrr7eTAqOpBz/NI4f8stKFsFCrC4B5I24iHSel2MW/Y2XNJWs9o6kMXHItl3tLh6O/VwNRHg6Yafp0t10T9U76Hv8QR+OR5DUUEOfzF/xkBTGukqnMO+w9EjbyBu4jmndxo1fQMkfGL8m70DgvvBiGvRy/6Fthi9oLeZnmDp8WgAeod4M9jephkHUsbBVO/SHfQu3sqiwr5ssvRhlmk197stpBdHsNk/ddrsTuq5H+MTM5EQHzfcXcxkF5WRmF5A4qECEjPyScooIPd4BUrB5H7duGZMJNMHhuFqNtWMWTS7QcLHcHQXdBsIeftO7gVtxNGdK0nd+CNf5ESz8GhP3KjkgW6buL58Ad4VOUbJYHaDG75HRY0DjAPKlOxiNhzIY+P+PDYeyKv+PLmaFZFBXvQO9qZ3iDfRIca/JRVWEtJy8d6zkIvz/kcPlYNVK1CgTe7YbvgGt+hTGNZRUQILb4bdi2seGzUHLny1ztMyjpXwzop9fLYpnXKLjXMGd2f6wDACPF3xqzqw9HTBz8OVg7kl/Lwji993ZBB/dCEPunyGtzI+RxoTlVMexW3KQ/XG0dpYN2tSc/h0Yzq7s4q4aVJv/nJOf+Mgdfnz8PuzVBdjQTFw5YcQNrj5v3stq1NzePCjVbzMi4wjsaZtj/8jXPCy8f8T2jKL1caXmzN4+ddkjhSWc87g7jxy7gCiQ7xrnl+7GAMYdiVM+xufJsMjC5N45co4Lh5xitN5pf4Gn8yuOfMQNdG4ZqD7kJOyllusxD21hNnxETw1a8jJyzqxo0yZjfZ39E1MOfATVBSz7NIFzTqgOPvlFXTzdeejm8fWvy6GX2Oc2Ss+0vzrBap+v9BBxrUoWz6gQrvwnWUM08aOJGh40x1la1JzeGbxLnZlFjIswp9HzhnAhKpZJ6rahybacGc5nSJ3k9Y6Xim1VWs9wv7YNq318IZe0xZFrtaar75dyL6NP5MXOoYH/nidQ+NHTvLL32HNazXfh8fB5e83OA5La80XmzN48Zc9HCk0emgjAj2Z0DeYWX7JTFh3G9gsKGCTy0juO34jGbobY1xSuSL4AP4DpxI3YSahfo5l3ZaezxvL9vLzzizudv2O+0yfGxd3gFE4jLkVJt1/asMY9v4OK19Ep6/HZrOxQJ/Ni2UXcklUOZcG7Sdo0DTCh5zR5FF0hcXGzsxCNu7PY8OBPDYdyKN36Q6jNxqjcTFhoxgv3rRcwFZbDCNMe1lnG4jqNZbzhoZz3tDujU+lkr4B9vwA2buN3ldXT+MijKQv6vQsNvVhSz5SxMqUHBIz8knMKGB/zvGannMsWDCTaOvDGPMeMnUQX1knU6E8OBI8Bvfe4xgWEcCwCH/6dvNptCdfa03Gnk3opf+kV/bvFOOBu65EobGZXNl85jxGTDz71Aome+NVGTmRrWn5BK95mr5lO0i3hbDdZTC7e16GX/8ziIv0Z1C4f6PjWm02zcG8EnYcyqdw9zKG73uHweVb0dpoxy3axEuWK3jdOuuk1/YO8WZUVCCjogKJjwqkbzefk3vda+9IIkYbf7sfHqo5lWZ2heu+NhrKJlisNnZnFbH54DE2H8jFbf9v3F3+DlEmY1iCVStesVzGf6yX1nldD38PBvXwZ3APPwb18GNwD7+6PcH1KCqrJCnjGK4rXyD+4FvGKDiteFtdwsFBd3DhyN6M7RPc5NmcajYrrH0dfn28+sxD+di7WRRyM98kHqFk7xrGql3sdB+GX7+JTIoJYUJMMBGBXo0utsJiI/lIkXEQlp7D+XseZULFWpQyznB/bx3HfZa7sGHCx92F4nL751FBv1Df6gO9Kf1DiQyq9V5p640dbtWwJd9wOOdfRs9ixsZTvkCv6qzN4qQspmd/wP0uX2JWxj7pkC2IRyx/Yi1DUUpRaTUeD/NzZ3R0EGN6BzE6Ooh+oT64mE/oWU/fYHRYHFwLx/ahe4wgfdQj7M6pIDvxVxbm9SbTbxi3T+nL7PjI5n/uqguQCqrHQ8acBdMfJ+NoHttWLWLeoQi26lguGdGTP53Zt94esupl7V9hXM+w7VMoSOeo7yD8i1IwaSuVuHCD5TEsPUcztncwY3sH0SvYi80HjrF6bw5r9uZytMj4u0QHe/HEhYOZOiC07vJrF2Mu7kahHneNMbQkZ0/z/3YVJbDxHawrX8ZcdgyrVsbnx8UNVTV0rRatNUt2HuH5n/eQml3MyF4BPHLuQMb0rmeoX+1rQPavgHVvgNbogRfxxV7FzxVxvPqXP+Hj3ozrJo7nGBd1r5lbsw0rk9GxUE9HCMDavblc/c66xi/Wq92e+UfCsudgy4dMoRiAZS5Bzbqg+ZlFO5m/7iCJ9w3C47tbIW1dzQ/H3gbn/p/Dv3JTdu1IIOfTO5ls3m48YHKBy9419qONsNo0X289xEu/7OFwQRlnxHbjn/33E/nbHcbBg4tHq16kWeV0itw1wHRgtdZ6pFKqL7BAa93gb9AWRe6uzEIu+M8qLhwWzr8uG3bqvSt1GgSMozObBQZdDP1mQtHhehsErTV7jx5nXcphCpN+ICbrR6bpDbgoowG0aMWX/nM4MuxOxvYJIi4y4LR6gFKzi/jxx++4ed99uGJBm1yo7HUGXmm/GwXewAsgIMq4Urixja282Lg6fuuH6OSfUYAVE3dW3E1l7IXcM70fwyMDTjknGIXT3qPF7Nv6O+4Za8jwH4XNxYuJ6W/SN2+F/RhVgdloILH33tSrshS2zIef/1pzND7oEjjv3+DT7bSnTykorWT7oQKydqzA/8h68kPHYosYTb/SRAZueRKPY8nGBTUmF+M9R9zQ+EVqWkPi58aYr+wdxhjA8XdiGf0nUndu5tDWJXx8pBdLj0fj4+7C2YO7MyuuB+P7Bhu9Z42oOmWbdKiAlSk5/JCUSUFpJUFervwr9DfOynqrZhz3wFkw/k5jnTR2kJK2HjZ/YIxHzd5hXCQy+GL0lg/BWok2ubJ9xnyO+A+ntNJKaYWFQC83RkUFEtzElEQNWvECLP0H1b0VLh5Gb9DIGyF0QOOnkvf+blxws+dHyEnG6hmCKssHbUOb3dgy5QMqw+PxdDPj6WYm1Nej8bMCTVn5Iiz9J2hr9YVVOdqfDy1n8YvXeczua2Gy626CBk0jaMCkOkMojF6Uwca49M0fQkFa9TKsmHjFOpv/VF5EZJAns4b35Nyh3RnY3e/05uZO34CuLsY0Ck2RVy/W97yBNMIZatuFd/+pRMdNwcutnu34aLIxw8CGd4yxoGAknvqocfq8BWUkLaP717Mx2SxopShz8cO7Mo903+HsCppBuKeFbkNmEDZ4cv0HJFob40E3vmtsw1Vrd8ojcMZfqoeYaK1ZnZrLq78ls/HAMcL83LntzL5cPaZX89rkqr9pxBg4vAXrihcxlxdg1SZAYzO5kX/FV3Qb1MABm9bGWOqFtxozO4DRk3/ev6HvVEjfQHnqcna6DWNJURTr9+eRmJFfXewDdPN1N2aR6RvC+L7BdQ9M6ssaPRmCY2DVS7DuzZr3NbvClQ7MGrB3mVEspm+AsmPQdzrFEx7m3z/twPvwOtbZBpLuM5ThEQHERfozPDIAs1K8uCSZzQeP0bebN385ZwAzB4U5PuSgIAO+vw9Sl6AxDi7X9riRSTc8BZ4BDb+uqiMkP81oHypLjYPntPUOnXl4/qfdvL1iH1sfPwvfE6ekbMyPjzBl/QsALMPbmKlj+uPG8I3MbY0Oi9lZ7EnKmu+5yGU9qqpnAd3gxWKnymbTXPLGGmbmfswdegGq9gWsAy4wrvkxudY/zMmetbzHOJZtS8Yz8QMm6a1GZzY0ehbVmU6nyJ0JPAYMAn4BJgJ/0Fr/3tBr2mp2haSMAob09Dv92/CeOA5r7X9h/dtgKTF+rszGeMQeI4we09JjcDgBSnKNi4HKCtBeIRSEjsE37VdM9mldxvkEg7uPMbtCCzm6cyXbVn7P2+k92Wzrx80DbdxT+Q7eacvsz1BGj1mvsca4LpvNOHJXCo7uRu9fibKWU6ncMNsqMCljh7uuxxy6Tbnd+eNqvr8PNv+v5nsXd/uHahx4+BkXL3gGGxeEHVxjjEerapih+gOVHHYh4ORxQCtetBdjtRoEjwBjWreYs4yxfXt/M2Y7qCgxpv3KSoQK+1XPtWbGqD1uyWrTrNuXy7cJh/gxKYuicgtmk6JHgAe9grzoFeRNVLAXvYK8sGlN0iFjqMT2Q4UUlBrrwsvNzMxBYcyK68mkfiG4rnm5uhirXk/aCv69YMglENjHuHjBt4dxIWbhYaNAOLiG6uJg/J1GT4erZ82FJZMvbfkj9BMumqHXOKMHzlZpnFrLSbGPpTXDuDvAJ8wovhI+qjnQCY6BMx8xpt07vNUYk9szntgzL3deVrMbzHgca8pSzHuXYMEMWmPChhUzC0wXUBkUw0DPAsYd/gBl324VkOQWx2rrIG60fIkrFnblKb6N/jvnXTGHEZEBLXYr8erMB1ZCr4nGxXcrX6x7UZ0yG9ci9BwFPt2NaZ52fWdcjZ2bavR4hccZM6poG5jdSJ48F8KHtfznrXbbGz4cts6H358zPv9gtFv9ZhqzI3QbYBzgJP9iTEt2OAEKM+our5H2QWvN2n25vPprCuv35xHs7cYlI3py2aiIZk2ZlJiRz2u/pbJh1z7edX+Z0Wpnzal7nzCjaIgca0yVdXCNUTwUZhjbePXFkAD2nsUzHmxwXGNphZWtacdIP1bCyF6BxIT6nPq28svjsKbuEAt6xhvr16+H0X55BRkHSNk7jWmqqi4mUybj4sbRNwGwe/ce9hwpIt81pHrc/96jNbM9hPq6c/9ZsVwxKuLkXndHrLS3vfYhZArQJjdUv7MgfJjRU+sfYbTBhYchMxH2La25PqPvDDjnOegWWzNmv4n24aK5q3B3MfHFbROalzV9A1PenwRolik/Y/91/IjRwVFZYuyDzWYYfzf4djemU9vyQXVbVqLdSAy/nHFXPWqs7wMrSbZFtejn7fNN6fzly0TmzdBMWXdzzYVqgy81ZvepHnNOzRnibv2NA47Vr9SapUZj8wlju8doYo/+jAtWUvNNmC59q+Xb3iac1uwKSqlgYBzGb71Oa53T2PPbbAoxZ1r6D6PHqaq3qapoOFHf6caOuM8Uo4evVqM9dtHdAC1a5FY5UljG2yv28fH6g9ykv+ZBly+qx1DiE4Yqza87QwJQ5BbKT3ocC48PxWx25X2X53DFmIXCaTuxE9XpOTcZswYcO2CM96tNmY2dcNQE4wrj3/9RZ1hCcmkA4OQit06B42qMo83bb4xvqrOzwrioqvswo1A7tIXqwf72I9yGdmJllVaWJx9l+6ECDuaWkJZnfFWNcwVjDOKA7n4M6enHkJ7+DO3pT2yYb91eqBOLsasXGOO4tn9ljEs7cdt19zMOMKqmnznhaNzpFxOc2Ft7PMcYq7r65bpTp9VHmWCqURxUcWre+nqWjybDN7ehD22uf5pCO5uGBeYL+brbHfQK9mKsSyqj1U7KAgbg0jOudS7W0Bq+vdMYV9soBWP/ZAx/8u1e5/dulc9blWX/Z5wGrmp7Xb3rTpdVpdcEiLvaOPvwxZw6Fzw1lXfdvlz+t3o/S3dnU2nVDO7hx2UjI5gV1+OkMxQWq428kgpSs4t5e8U+lu05ip+HC3+c1Jubo3Lw+eySmvas+zDjIK32VIVgZOw71Viv69886YKnVrl458QZW4bNrilm61DGQaTZxRgedkJbBvV/3qrOimUXlXHO4HCHp/9rKqs2u/KEZQ7jfbI5x7YcVZJb97kmF2MbqbrYrp6exabW77HjFYz8xxLumx7LvTP6NTvulLdGQVm+MSa35yjY9zv8/Jgx33WjFF/6XMN7rlfz4701ZwBacnsoKK1k2gvLiA7x5svbxqNOHG5UUQILb4HdDc4tUGPobLj4dTC7krNrJSkbfiQoagSqx/B2c+FZk4NalFK/aa2nA4vreazr6DfTPp7H3nDe8C2E9DMG9a9/C7DfwCF6Yt05bCPHtMrYlDA/D/5+wSBuO7MvP/5YRPmOr3HFQiUuXJd3O+meA/mL2wIurfgWExqLVrxxfAqbe/2Ry8+O4Nyh4bhlT6zZ2O07BaeLHGM07CcWDUv/YfSc2ieTr55Kq0qvsXVfY28E2iSrzQY//sU4TVq1A5j8Z6PoOrHYjG58rKmHq5mzB3fn7MHd6zxeVFZJWl4JWkNsmC9uLk30hjSUdfhVJ6xbs1GsT3202Vlb1ImfE+8QmHiP0QNWNb+t2RUun2cc6GTvhPmX1mR1YAyv07KC0UN0zr9QtQ+CrvgAwgZRvn89rovuRNksKBc3rr3xHq6tfn0cULMTaxVKGRdKbV9Ys/6u/QICehm9NJvmUf258wk1CjGo+3u3Zt6+U40ZT6rb3m+Mouu3p41xt1WfuX4zjInv4eRtv4m84/oEM65PMHnHK/gu4RBfbTnE04t28uwPuxjbJwirTZNbXEFOcTn5pZVU9Q0Ferny0Nn9uWF8lP2UdqwxHrH2e9us8NNfjWnpqrKOu62m6BpwQdvcoaqhNuK3Z4yeU7S97X0Epjzc7PbB39OViS11K9xaWVX0ZKIPduP2RTv5JT6K2B2v1twgZeJ9Rm/4oc2n1Zat2ZuL1jV3Ims2d1/jq2qdxswwOhI+uLCmfbj0XePCtyM7jIvhqrLGzGDXukKOFpW3yHRpJ3rl12TySir44KIxxlmAE9szNy9jSrLU32qyzp5vXKiYsQG+/lPNQdmYW6pnxgkZOJmQgZNbty1zQINFrlLKA/ACQpRSgdTcR8EP6NEK2dqXhhqEIZfap1Fqg8KgHt183blh9mwKk3tyYNsS9nuPYKLLAHKOV5B6dBqVh3/ETCXa7MqNs6/nL4NrXV3cVjux+oqGEw8q+k5r+jWtob73NZmMXpCtH51cdDW03TSTr4dr8+/+09A6OnHdxsxo0awtqtdY48KNEzNFTWh/WRtYf+4jekFIVIfIyvCrIWFBu2nPgIazxl1jXKhVX9ZTbB+CvN2YM7E3cyb2Zk9WEV9tyWBlSg6+7i7EhPowtk8Qwd7uhPi6083Hncn9QvA+8QKoE9/bZIahl8OWD1s0a4uo771jzzaG6FW3vVNrntuWn7laWW/oYeOzjem8mBzKm2Z3VFXW/uca6/s0s65MOYqvhwvDI5rZ5jaV/8QDIIA+Z9TJGqtiYd1qVqfmnPosEg3Yk1XEh2sPcs2YXifNxXty1nrWn/8lxkxU7akta0KDwxWUUvcC92EUtIeoKXILgXe01nMbWminHK7QGAcvdpq7ylhl9d7Wt7U4mLVd3JqvGReRSd5mauYFem2et5kk72lwYNtoN3mlPXOODtA+VM1+8H9jSrmy28FmFV2N5dVaM+n/fmdITz/euv6ks98OOZV5cqtYbZpR/1jC9AFhvDh7eJN5HaW15up31rE7q4jfH5xC4OlcgNuIttp2T+fCs7u11v9pzpt1uSJXCCGEEK3qrk+2sGTnEX594MyGZ5Zopv05x5n6wjKeuXgI149r/A6oDTmdIhfgzk+2sOlAHuv+Or3FLkJdlHiYuz7Zyj8uHsJ1p/h7tWcNFblNXuaotf6PUmqCUuoapdQNVV/OiSmEEEII0bTHzh+ISSn+9WNTF3Q5blWKcfHtGac6HrcFTI4J4UihcYvzllBWaeXZxbsY3MOPq8f0apFldhRNFrlKqfnAC8AkYLT969T68Lu4uavmVg9ZaO9yc3OrTzt0BJLXuSSvc0le55K8ztVWecP9Pbl5cm8WJ2WSfKSo6RfYNZZ3RUoOkUGe1bewbgtVF7ytSDEmsjrd9fvF5gwOF5Tx6HkDHb9hzSlqb9uuIxPWxQMTtdZ3aK3vtn/d4+xgndH8pPnMT5rf1jEc0t421KZIXueSvM4leZ1L8jpXW+b948TeeLuZmbs01eHXNJTXYrWxbm8uk2K6tWTEZosI9KJ3iHd1r/LprN8Ki403l+1lZK8AJvR1/jjZ9rbtOlLkbge6N/ksIYQQQohWFOjtxnXjo1iUeJh9R0/v9P62jHyKyi1MbsOhClUm9wth/f48Kiy2pp/ciK+3ZnAov5S7p/dr2ZvMdBCOFLkhwE6l1M9Kqe+qvpwdTAghhBCiKbdM7oObi4n//r73tJazMiUHk6JVejybMikmhJIKK1vSjp3yMixWG//9fS/DIvyZEtu2vdNtpcmbQQBPOjuEEEIIIcSpCPFx55oxUXyw9gD3zeh3yjMtrEzJYWhEAAFezpleqznG9Q3GbFKsTDnKrN6ncCtk4Ltth0nLK+Fv54/qkr244OBtfeu8QKmJwDVa6zsbeo5MISaEEEKI1pJVUMYZz//OZaMieO7Soc1+fWFZJSOeXsLtZ/blz2f3P60spzuFWJXL3liDxWrj27smNfu1VpvmrJeX42Y28eO9kzt9kXvKU4jZXxynlHpeKXUA+Aewq4XzCSGEEEKcku7+HsweHcGXm9M5nF/a7Nf/vD0Lq023i/G4VSb3CyHxUAEHco43+7U/JGWy7+hx7p7WNcfiVmmwyFVKxSqlHldK7QLmAukYPb9TG7vbmRBCCCFEa7vtzL5oDW8tb97Y3KKySp7/eQ/DI/wZHR3kpHTNd/WYXni5mnlm0c5mvc5m08xdmkpMqA/nDuna8wY01pO7G5gOXKi1nmS/65m1dWJ1TmPfGMvYN8a2dQyHJCcnk5yc3NYxHCZ5nUvyOpfkdS7J61ztJW9EoBeXjYxgwcZ0sgvLGnzeiXn/szSVnOJynp41BJOT55FtjjA/D+6d0Y+f1mzlgx/XOPy6JbuOsOdIEXdO7dvqv0972RaqNFbkXgZkAb8rpd5RSk0H2s9fXwghhBCiljum9sVitfH2in0OPT81u5j3V+1n9qhIhkcGODfcKZgzoTeRQZ7M/T2Vssqm+xm11vxnaQpRwV5cOKxHKyRs3xoscrXWX2utrwQGAMuA+4EwpdQbSqmZrZRPCCGEEMIhUcHezIrrycfr08gtLm/0uVprnvxuB15uZv5yzuldbOYsbi4m7p7aj8P5Zby3an+Tz1+25yjbDxVy55QYXMynNitDZ9LkGtBaH9daf6y1vgCIABKAR5wdTAghhBCiue6cGkOZxcq7TRSFP+/IYlVqDg/O7E+wj3srpWu+0b2DmBwTwtylqY1eVKe15rWlKfQM8OSSkT1bMWH75cg8udW01nnAW/Yv0UzXD72+rSM4LDi47SfDbg7J61yS17kkr3NJXudqb3ljQn24cFgP3ly+F1eT4t4ZsZhrjU0NDg6mtMLKMx9sZ0B3X64d26sN0zYtODiYRy8dzRXztvPPH3bx32tGnvSc/JIK/vzFNram5fPcpUNxbaNe3Pa2LTSryBWn565Jd7V1BIe1tw21KZLXuSSvc0le55K8ztUe8/7fZcNwdzHx2tJUNhzI47WrRhDq5wEYeV9aksyh/FI+u3Vcuz+tHxwcTHBwMHdMKePlX5O5dkwOE2JqpjrbmnaMuz7ZSnZRGU9cOIirRke2adb2pH3/ZYUQQgghmsnTzcy/rxjOC1cMJyE9n/NeW8Xq1BwA0nJLeHP5XmbF9WBsn/ZVlDXmT2f2ITLIkye+20Gl1YbWmndX7uOKN9eiFHxx2wT+MLF3l54X90TSk9uK5q4yphfuCD26ubm5QPs7KmuI5HUuyetckte5JK9ztee8l4+KYFiEP3d+vIXr3lvPPdP6sTn5IJQV8ddzp7Z1PIfUXr9/P38Qt87fzNylqezMLGTJziPMHBTGvy8fjr+XaxsnbX/bghS5rWh+0nxAilxnkLzOJXmdS/I6l+R1rvaeNzbMl2/vmsjfv9nBq7+lUJl3iFvP6EN3f4+2juaQ2uv3rEFhnBnbjVd/S8HVrHj8gkH8YWJ0u+m9bW/bghS5QgghhOjUvNxceHH2cMb3DeaHVVYuGxnR1pFOiVKKZ2YN4bkfd/GnM/sS1w7n9m1PpMgVQgghRJdw+agIhvmWtHWM09Ir2Is3rhvV1jE6BLnwTAghhBBCdDpKa93iCw0JCdHR0dEtvlwhhONKSvYA4OXVPu/kI4QQndGeXKPt7R8sbW9r2bx5s9Zan9Rx65ThCtHR0WzatMkZi25xW7dOAWDEiGVOf68p84z3WjbH+e8lRGtu20IIIQyyr299Sqkt9T0uwxWEEEIIIUSnI0WuEEIIIYTodKTIFUIIIYQQnU6Xn0Kse/c5rfZec+Ja772EEEIIIbqyLl/khofPabX3kiJXCCGEEKJ1yHAFIYQQQgjR6XT5Ijczcx6ZmfNa5b3mJcxjXkLrvJcQQgghRFfW5YvcrKx5ZGXNa5X3kiJXCCGEEKJ1dPkiVwghhBBCdD5S5AohhBBCiE5HilwhhBBCCNHpdPkpxEaMWNZq7yX3sRZCCCGEaB3SkyuEEEIIITodKXKFEEIIIUSn0+WL3K1bp7B165RWea8p86YwZV7rvJcQQgghRFfW5YtcIYQQQgjR+UiRK4QQQgghOh0pcoUQQgghRKfT5acQ6959Tqu915y41nsvIYQQQoiurMsXueHhc1rtvaTIFUIIIYRoHTJcQQghhBBCdDpdvsjNzJxHZua8VnmveQnzmJfQOu8lhBBCCNGVdfkiNytrHllZ81rlvaTIFUIIIYRoHV2+yBVCCCGEEJ2PFLlCCCGEEKLTkSJXCCGEEEJ0Ol1+CrERI5a12nstm9N67yWEEEII0ZVJT64QQgghhOh0pMgVQgghhBCdTpcvcrduncLWrVNa5b2mzJvClHmt815CCCGEEF1Zly9yHfH111+jlGL37t3Vj2VkZPDZZ5+1YSohhBBCCNEQKXIdsGDBAuLj4/n000+rH/vtt9/YsmVLG6YSQgghhBANkSK3CcXFxSxfvpz33nuPBQsWALBq1SoeeOABvvzyS+Li4ti/f38bpxRCCCGEELV1+SK3e/c5dO8+p8Gff/PNN8yYMYNhw4bh7e3Nli1bmDRpEqNHj+bbb78lISGB3r17O/Rec+LmMCeu4fcSQoiuTIaGCSFaUpcvcsPD5xAePqfBny9YsIDZs2cDMHv27Ore3D179tC/f/9mvZcUuUII0TAZGiaEaEldvshtTG5uLhs2bOCcc84B4Morr+Szzz4jNzcXf39/XF1dAbDZbNx3333cf//9nH/++ezZs6ctYwshRIcjQ8OEEC2tyxe5mZnzyMycV+/PvvzyS8477zzc3d0B6N27N927d2fnzp306NGj+nlff/01/fv359ixY9xxxx2sXbu23uXNS5jHvIT630sIIbqylhwaJoQQIEUuWVnzyMqaV+/PFixYwPfff090dHT1165du3j//ffJyclhyJAhrFmzhqSkJCZMmICLiwtbtmxh5MiR9S5PilwhhKhfSw4NE0IIAJe2DtCeLVu2zKHnubi48NBDD1FQUMDAgQMZNmyYc4MJIUQnUjU0bOHChYAxNOzMM8/kkUceqTM0TAghmqPL9+SeyGKxMH/+fF577TWHXzNmzBguv/xyXnnlFR588EEqKyu588472bhxoxOTCtF8y5cv54EHHkBr3dZRhKjm6NAwIdqbt956i/fff5/Kysq2jiLqIUWuXVVxO2jQIN555x3Gjh3brNffeuutjB8/HgBXV1eGDh3KJZdcwgUXXCDFrmhzy5cvZ+rUqdx0002MHj0apVRbRxKimqNDw4Rob0aPHs0nn3xC//79pdhth5QzenTi4+P1pk2bWny5zpKamsqIESNQSjF06FCCg4NbpAiwWq2kpaWxc+dOhg4dytatW1sgrRCO2bp1CgCXXZZGRkYGgwcPJiIiApNJjm2FEKIl5ebmkpSUhMViYcDDA/Dt5cuyOcvaOlaXoZTarLWOP/FxGZMLREZGctlll/HNN9/g6urK2WefTURExGktU2vNxo0b2bVrF5GRkdx0000tlFaI5rnpppt4/fXXqaioYMyYMQwdOlR6coUQooVkZmby+eefo7Xm4osvJi0sra0jCTspcgF3d3fmzZtHUVERc+fO5amnnuLOO+/kiSeeOKXlVVZWMnHiRCoqKnjxxRe56KKLpPdMtJnHHnuMRx55hE8//ZSnn36a3r178+OPP0qhK4QQp+n555/n+eef55577mHhwoUEBAQwZd6Uto4l7Lr8cIWqU7ojRiyrfqyoqIjMzExiY2NPeblbtmwhLi6uTnFbteHLKQzRGurbtq1WK0lJScTFxbVJJiGE6ExSU1MJCQkhICCg+jHZ17c+Ga7QDL6+vvj6+p7WMhqaK1eItmQ2m6XAFUKIFhITE9PWEUQj5By6EEIIIYTodKTIFUIIIYQQnU6XH67QvfucVnuvOXGt915CCCGEEF1Zly9yw8PntNp7SZErhBBCCNE6ZLiCEEIIIYTodLp8kZuZOY/MzHmt8l7zEuYxL6F13ksIIYQQoivr8kVuVtY8srLmtcp7SZErhBBCCNE6unyRK4QQQgghOh8pcoUQQgghRKcjRa4QQgghhOh0uvwUYiNGLGu195L7WAshhBBCtA7pyRVCCCGEEJ2OFLlCCCGEEKLT6fJF7tatU9i6dUqrvNeUeVOYMq913ksIIYQQoivr8kWuEEIIIYTofKTIFUIIIYQQnY4UuUIIIYQQotPp8lOIde8+p9Xea05c672XEEIIIURX1uWL3PDwOa32XlLkCiGEEEK0DhmuIIQQQgghOp0uX+RmZs4jM3Neq7zXvIR5zEtonfcSQgghhOjKunyRm5U1j6ysea3yXlLkCiGEEEK0ji5f5AohhBBCiM5HilwhhBBCCNHpSJErhBBCCCE6HaW1bvmFKnUUONjiC3ZMCJDTRu/dEcn6aj5ZZ80n66z5ZJ01n6yz5pN11nyyzprP2essSmvd7cQHnVLktiWl1CatdXxb5+goZH01n6yz5pN11nyyzppP1lnzyTprPllnzddW60yGKwghhBBCiE5HilwhhBBCCNHpdMYi9+22DtDByPpqPllnzSfrrPlknTWfrLPmk3XWfLLOmq9N1lmnG5MrhBBCCCFEZ+zJFUIIIYQQXZwUuUIIIYQQotPpNEWuUuocpdQepVSqUuqRts7THimlIpVSvyuldimldiil7rU//qRS6pBSKsH+dV5bZ21PlFIHlFJJ9nWzyf5YkFJqiVIqxf5vYFvnbC+UUv1rbUsJSqlCpdR9sp3VpZR6XymVrZTaXuuxBrcrpdRf7e3bHqXU2W2Tuu00sL7+rZTarZRKVEp9rZQKsD8erZQqrbWtvdlmwdtQA+uswc9hV9/GoMF19lmt9XVAKZVgf1y2MxqtLdq8PesUY3KVUmYgGTgLyAA2AldrrXe2abB2RikVDoRrrbcopXyBzcDFwGygWGv9Qlvma6+UUgeAeK11Tq3HngfytNb/sh9UBWqtH26rjO2V/bN5CBgL/AHZzqoppc4AioEPtdZD7I/Vu10ppQYBC4AxQA/gVyBWa21to/itroH1NRNYqrW2KKX+D8C+vqKBRVXP66oaWGdPUs/nULYxQ33r7ISfvwgUaK2flu3M0EhtMYc2bs86S0/uGCBVa71Pa10BfArMauNM7Y7WOlNrvcX+/yJgF9CzbVN1WLOAD+z//wDjAy1ONh3Yq7Vuqzsgtlta6xVA3gkPN7RdzQI+1VqXa633A6kY7V6XUd/60lr/orW22L9dB0S0erB2rIFtrCFdfhuDxteZUkphdAotaNVQ7VwjtUWbt2edpcjtCaTX+j4DKd4aZT8CHQGstz90l/2U3/ty6v0kGvhFKbVZKXWr/bEwrXUmGB9wILTN0rVvV1F3hyDbWeMa2q6kjWvaH4Efa33fWym1VSm1XCk1ua1CtVP1fQ5lG2vaZOCI1jql1mOyndVyQm3R5u1ZZylyVT2PdfxxGE6ilPIBvgLu01oXAm8AfYE4IBN4se3StUsTtdYjgXOBO+2ns0QTlFJuwEXAF/aHZDs7ddLGNUIp9RhgAT62P5QJ9NJajwAeAD5RSvm1Vb52pqHPoWxjTbuaugftsp3VUk9t0eBT63nMKdtaZylyM4DIWt9HAIfbKEu7ppRyxdgIP9ZaLwTQWh/RWlu11jbgHbrgKarGaK0P2//NBr7GWD9H7OOQqsYjZbddwnbrXGCL1voIyHbmoIa2K2njGqCUuhG4ALhW2y8ysZ8GzbX/fzOwF4htu5TtRyOfQ9nGGqGUcgEuBT6reky2sxr11Ra0g/assxS5G4F+Sqne9t6jq4Dv2jhTu2MfT/QesEtr/VKtx8NrPe0SYPuJr+2qlFLe9oH0KKW8gZkY6+c74Eb7024Evm2bhO1anV4P2c4c0tB29R1wlVLKXSnVG+gHbGiDfO2KUuoc4GHgIq11Sa3Hu9kvekQp1Qdjfe1rm5TtSyOfQ9nGGjcD2K21zqh6QLYzQ0O1Be2gPXNxxkJbm/3K2ruAnwEz8L7Wekcbx/r/9u4nRKsqjOP490dG0KaFhrgqauGipCHbRCXTpo2BELZIsE2LBtrmojZJEYS0CAM3okwUChLkQmjMhX8WEVgwMI3QpiSSxF0wEDXl0+I9ptQMjK93Zt73+v3AhZfDe88953Lu5eHc82cUPQPsBeZuLIECvA28kmSCweeCy8Dr61G4EbUZ+GLwDLMBOFZVM0kuAieSvAb8DLy8jmUcOUnuZ7Daya1t6YDt7KYkx4FJYFOSX4B3gA9Yol1V1XySE8AlBp/l37gLZ70vdb/eAu4DzrRn9JuqmgJ2AO8m+Qv4G5iqqpVOwOqNZe7Z5FLPoW1sYKl7VlVH+P/8ArCd3bBcbLHu77NeLCEmSZIk3aovwxUkSZKkfxnkSpIkqXcMciVJktQ7BrmSJEnqHYNcSZIk9Y5BriRJknrHIFeSVijJxiSz7bia5Er7vZDk0CpcbzrJT0mmhjz/bCvbU12XTZJGXS82g5CktdC28JwASLIfWKiqD1f5svuq6vNhTqyq55Oc67g8kjQW7MmVpDuUZDLJqfZ7f5JPknyV5HKSl5IcSDKXZKbt8U6S7UnOJ/kuyen/bLe63HWmkxxM8nWSH5PsbulbklxovcrfJ3ludWssSaPPIFeSuvcosBPYBXwGnK2qbcDvwM4W6H4M7K6q7cBR4P0V5r0FeBZ4kcG2mQB7gNNVNQE8Acx2Uw1JGl8OV5Ck7n1ZVYtJ5oB7gJmWPgc8DGwFHgfOJKH959cV5n2yqq4Dl5JsbmkXgaMteD5ZVbOd1EKSxpg9uZLUvT8AWjC6WFXV0q8z6FwIMF9VE+3YVlUv3E7eTdp1LgA7gCvAp0le7aISkjTODHIlae39ADyY5GmAJPcmeWzYzJI8BFyrqsPAEeDJboopSePL4QqStMaq6s82aexgkgcYvIs/AuaHzHIS2JdkEVgA7MmVdNfLza9okqRRkmQaODXsEmItj3PAm1X1bVflkqRx4HAFSRpdvwHv3clmEMAjwGKnpZKkMWBPriRJknrHnlxJkiT1jkGuJEmSescgV5IkSb1jkCtJkqTe+QdjxY7/d9HNZQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 864x288 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Make a figure showing two signals with a beacon per signal\n",
|
|
"colors = ['y','g']\n",
|
|
"multiplier_name = ['m','n']\n",
|
|
"\n",
|
|
"\n",
|
|
"fig, axes = plt.subplots(3,1, sharex=True, figsize=(12,4), gridspec_kw=dict(hspace=0))\n",
|
|
"for i, ax in enumerate(axes):\n",
|
|
" #if i != 0:\n",
|
|
" # ax.spines['top'].set_visible(False)\n",
|
|
" #ax.spines['right'].set_visible(False)\n",
|
|
" #if i != len(axes)-1:\n",
|
|
" # ax.spines['bottom'].set_visible(False)\n",
|
|
" #ax.spines['left'].set_visible(False)\n",
|
|
" #ax.tick_params(left=False, bottom=False, labelleft=False, labelbottom=False)\n",
|
|
" pass\n",
|
|
"\n",
|
|
"axes[-1].set_xlabel(\"Time [ns]\")\n",
|
|
"axes[-1].set_yticks([],[])\n",
|
|
"for i in range(0, 2):\n",
|
|
" axes[i].set_yticks([],[])\n",
|
|
" axes[i].set_ylabel(\"Antenna {:d}\".format(i+1))\n",
|
|
" axes[i].plot(time/ns, impulses[i])\n",
|
|
" axes[i].plot(time/ns, beacons[i], marker='.')\n",
|
|
" if not True:\n",
|
|
" axes[i].plot(time/ns, full_signals[i])\n",
|
|
"\n",
|
|
"\n",
|
|
"# indicate timing of pulses\n",
|
|
"for i, impulse_offset in enumerate(impulses_offsets):\n",
|
|
" kwargs = dict(color=colors[i])\n",
|
|
" [ax.axvline(impulse_offset/ns, **kwargs) for ax in (axes[i], axes[-1])]\n",
|
|
"\n",
|
|
"\n",
|
|
"# indicate timing of the beacons\n",
|
|
"# and annotate ticks and impulse widths\n",
|
|
"tmp_beacon_phases = beacon_init_phase + np.arange(0,2)*beacon_phase_offset\n",
|
|
"if True: # mod phases\n",
|
|
" tmp_beacon_phases %= 2*np.pi\n",
|
|
"tmp_beacon_offsets = phase2time(tmp_beacon_phases, f_beacon)\n",
|
|
"\n",
|
|
"\n",
|
|
"A = np.empty(2)\n",
|
|
"B = np.empty(2)\n",
|
|
"for i in range(0,2):\n",
|
|
" kwargs = dict(color=colors[i], ls=(0, (3,2)))\n",
|
|
" tick_kwargs = dict(color='k', alpha=0.2)\n",
|
|
"\n",
|
|
" # indicate every period of the beacon\n",
|
|
" beacon_ticks = tmp_beacon_offsets[i] + [(n)*1/f_beacon for n in range(1+int((time[-1] - time[0]) * f_beacon))]\n",
|
|
"\n",
|
|
" [axes[i].axvline(tick/ns, **{**kwargs, **tick_kwargs}) for tick in beacon_ticks]\n",
|
|
"\n",
|
|
" # reference period in beacon\n",
|
|
" [ax.axvline(tmp_beacon_offsets[i]/ns, **kwargs) for ax in (axes[i], axes[-1])]\n",
|
|
"\n",
|
|
" # annotate width between impulse and closest beacon tick\n",
|
|
" # and closest beacon tick and reference tick\n",
|
|
" closest_beacon_tick_id = np.argmin(np.abs(beacon_ticks-impulses_offsets[i]))\n",
|
|
" if closest_beacon_tick_id != 0 and beacon_ticks[closest_beacon_tick_id] > impulses_offsets[i]:\n",
|
|
" closest_beacon_tick_id -= 1\n",
|
|
" closest_beacon_tick = beacon_ticks[closest_beacon_tick_id]\n",
|
|
"\n",
|
|
" annotate_width(axes[i], f\"$A_{i+1}$\", closest_beacon_tick/ns, impulses_offsets[i]/ns, 0.7)\n",
|
|
" annotate_width(axes[i], f\"$B_{i+1}={multiplier_name[i]}T$\", closest_beacon_tick/ns, tmp_beacon_offsets[i]/ns, 0.4)\n",
|
|
"\n",
|
|
" A[i] = closest_beacon_tick - impulses_offsets[i]\n",
|
|
" B[i] = closest_beacon_tick - tmp_beacon_offsets[i]\n",
|
|
"\n",
|
|
"# annotate width between beacon reference periods\n",
|
|
"annotate_width(axes[-1], \"$\\Delta t_\\\\varphi$\", tmp_beacon_offsets[0]/ns, tmp_beacon_offsets[-1]/ns, 0.4)\n",
|
|
"\n",
|
|
"# annotate width between pulses\n",
|
|
"annotate_width(axes[-1], \"$\\Delta t$\", impulses_offsets[0]/ns, impulses_offsets[-1]/ns, 0.4)\n",
|
|
"\n",
|
|
"\n",
|
|
"fig.show()\n",
|
|
"if True:\n",
|
|
" fname = 'figures/08_beacon_sync_timing_outline'\n",
|
|
"\n",
|
|
" # Dump figure\n",
|
|
" fig.savefig(fname +'.pdf')\n",
|
|
" \n",
|
|
" # Dump information into accompanying file\n",
|
|
" with open(fname + '.dat', 'w+') as fp:\n",
|
|
" fp.write(\"f_beacon = {}MHz\\n\".format(f_beacon))\n",
|
|
" fp.write(\"samplerate = {}\\n\".format(samplerate))\n",
|
|
" fp.write(\"band = {}MHz\\n\".format(band))\n",
|
|
" fp.write(\"timelength = {}us\\n\".format(timelength))\n",
|
|
" \n",
|
|
" fp.write(\"-\"*8 + \"\\n\")\n",
|
|
" fp.write(\"\\Delta t = {}ns\\n\".format( (impulses_offsets[1][0] - impulses_offsets[0][0])/ns ))\n",
|
|
" fp.write(\"t_phi = {}ns\\n\".format( (tmp_beacon_offsets[1]-tmp_beacon_offsets[0])/ns ))\n",
|
|
" fp.write(\"\\Delta A = {}ns\\n\".format( (A[1] - A[0])/ns ))\n",
|
|
" fp.write(\"kT = {}ns = {}T\\n\".format( (B[1]-B[0])/ns, (B[1]-B[0])*f_beacon ))\n",
|
|
" \n",
|
|
" fp.write(\"-\"*8 + \"\\n\")\n",
|
|
" fp.write(\"A_1 = {}ns\\n\".format( (A[0])/ns ))\n",
|
|
" fp.write(\"A_2 = {}ns\\n\".format( (A[1])/ns ))\n",
|
|
" fp.write(\"B_1 = {}ns = {}T\\n\".format( (B[0])/ns, (B[0]*f_beacon) ))\n",
|
|
" fp.write(\"B_2 = {}ns = {}T\\n\".format( (B[1])/ns, (B[1]*f_beacon) ))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\\Delta t = 113.99999999999999ns\n",
|
|
"\\Delta A = -5.428571428571415ns\n",
|
|
"t_phi = 8.571428571428573ns\n",
|
|
"B_1 = 57.14285714285714ns = 4.0T\n",
|
|
"B_2 = 157.14285714285714ns = 11.0T\n",
|
|
"kT = 100.0ns = 7.0T\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"t_phi = (tmp_beacon_offsets[1]-tmp_beacon_offsets[0])\n",
|
|
"Delta_A = (A[1] - A[0])\n",
|
|
"\n",
|
|
"print(\"\\Delta t = {}ns\".format( (impulses_offsets[1][0] - impulses_offsets[0][0])/ns ))\n",
|
|
"print(\"\\Delta A = {}ns\".format( Delta_A/ns ))\n",
|
|
"print(\"t_phi = {}ns\".format( t_phi/ns ))\n",
|
|
"print(\"B_1 = {}ns = {}T\".format( (B[0])/ns, (B[0]*f_beacon) ))\n",
|
|
"print(\"B_2 = {}ns = {}T\".format( (B[1])/ns, (B[1]*f_beacon) ))\n",
|
|
"print(\"kT = {}ns = {}T\".format( (B[1]-B[0])/ns, (B[1]-B[0])*f_beacon ))\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"$\n",
|
|
"\\Delta t = (A_2 + B_2) - (A_1 + B_1) + t_\\phi\\\\\n",
|
|
"\\quad = (A_2 - A_1) + (B_2 - B_1) + t_\\phi\\\\\n",
|
|
"\\quad = (A_2 - A_1) + (nT - mT) + t_\\phi\\\\\n",
|
|
"\\quad = \\Delta A + t_\\phi + (kT) \n",
|
|
"$\n",
|
|
"\n",
|
|
", where $\\Delta A < T$ and $k \\in \\mathbb{Z}$ and $t_\\phi$ is minimisable by synchronising the beacons.\n",
|
|
"\n",
|
|
"Then $\\Delta t$ can be determined by iteratively summing the signals, changing $k$, and finding the $k$ belonging to the maximum of the sums."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Best k: 7\n",
|
|
"Maximum: 2.0\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAErCAYAAAAL/58RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXhb53nnjX+ec7ADBMCdFCmJkiVZlmRZsmxH3hI7jeM4baK2bieOO03ambfpOp38Op12lnba6UznnXbmTWY6mWl+edu4TdLGSerUTpw4ThxbsS0vkmzJ2qmFIiVS3AmA2HGW5/3jABRFcQFJAKSV53NduCQAZ3lwcHjwPfdz399bSClRKBQKhUKhUCgUlUNb6QEoFAqFQqFQKBQ3GkpkKxQKhUKhUCgUFUaJbIVCoVAoFAqFosIoka1QKBQKhUKhUFQYJbIVCoVCoVAoFIoKo0S2QqFQKBQKhUJRYZTIVigUCoVCoVAoKowS2QqFQqFQKBQKRYVRIluhUFQcIUSvEOIDKz2OdytCiJuFEEeEEEkhxG/P8v5JIcQDtR/Z6vtuyzkWix2zEOKyEGL3csc2z/av+34X+s4VCsW7DyWyFQrFnAghHhdCHBZCpIQQg0KI54QQ9630uBbDahOFZfJ7wH4pZZ2U8i9mviml3C6l3F/7Ya0+Zh6L5X7fQoh6oB04PeP1Txb/DlJCiJwQwpr2PC6E8C5iN7N9v/N+52WO/d14risUNyxKZCsUilkRQvwO8D+A/wK0AuuA/wPsq+EYXLXa1ypjPXBypQfxY8qtwHkpZW76i1LKv5VShqSUIZy/iWdLz6WUUSllfhH7mO37Vd+5QnGDoUS2QqG4DiFEBPgT4DellN+UUqallIaU8ttSyn9dXOYWIcT+YhTvpBDiozM2s0sIcUwIkRBCfE0I4Zu2/TVCiKeEEKNCiIvTp8eL0bjfF0IcA9JCCNd8y09b53dn7k8I8WWcm4NvFyOOvzfH5/19IcRAcaq+WwjxE8XXpRBi07Tl/kYI8Z9n7PdfF/ebFkL8tRCitRjxTwohXihGRmfb56zHTwjxIvAg8LnimLfMsu41EcvFjKO47L8VQpwSQsSEEE/M+G7m/cxlHreFvq9Z15uxzC8LIb497fl5IcTXpz2/LITYNf1YLPB9z3k+zmAncKK4vYAQ4u+FEN8UQoSmbwt4Z471S+Mr+/ud47VFHdu5Pns5x1qhUFQJKaV6qId6qMc1D+BDgAm45njfDZwH/h3gAd4PJIGbi+/3AgeBNUADztT7rxXf04C3gP9QXHcj0AM8PG3do8BawL/Q8mXsrxf4wDyf9WbgMrCm+LwLuKn4fwlsmrbs3wD/ecZ+38CJ9HcAI8DbwG7AC7wI/NESjt9+4P+aZ8zXfKbFjKO47Ini8W0ADsz4TOV85g/MddzK+H7nPN4zPuNGIF7cXjvQBwxMey9WfG+2Y/GBWY7XrOfHLPv9AvBHwIbiMfwjQMxYpgf42Xm+n0V/v9NfW8axnXksyjrW6qEe6lGdh4pkKxSK2WgExqSU5hzv7wVCwH+VUhaklC8CzwIfn7bMX0gpr0gpJ4Bv40T/AO4EmqWUf1Jctwf4f4HHZqx7WUqZLXP5+fa3EBaOEN0mhHBLKXullBfKXBfgf0kph6WUA8ArwJtSyiPSSR/4RxyhO5Nyjt9iWcw4Plc8vhPAny5xv3Mdt4W+r7KOd3G9JM73+D7geWBACLG1+PwVKaW9iPGWe37ciiPqXwT+o5TyP0opZelNIUQYR6wenWdfy/1+l3psy92OQqGoAUpkKxSK2RgHmsTcOdFrgMszRE4fThS1xNC0/2dwRAc4uadritPocSFEHCfi1zpt+cvT/l/O8vPtb16klOeBTwN/DIwIIZ4UQqwpZ90iw9P+n53l+WzjKOf4LZbFjGP68e0rjmdRzHPc5v2+Fnm8fwQ8ALy3+P/9OAL7fcXni2HB80MIIYAdwM8An5dSPjPLdm7DEf8X59nXsr7fpR7bRWxHoVDUACWyFQrFbLwO5ICfnuP9K8BaIcT0a8g6YKCMbV8GLkqnWKz0qJNSfnjaMnKRy8+HXHABKf9eSnkfjoiRwJ8V38oAgWmLtpW5z4VYzvGrBGtn7PfKtOdlf+Y5jtuC39c8x3smJZF9f/H/P2Jhkb3g9z0PG4r/fgD4V0KIO2ZZZhdwbHp0exaW/f0u8dheN6ZFHGuFQlFhlMhWKBTXIaVM4OR9/m8hxE8XC8DcQohHhBB/DrwJpIHfK77+APAR4MkyNn8QmCwWZPmFELoQYocQ4s4KLT+TYZzc1VkRjj/x+4VjwZbDifpaxbePAo8X9/khHHFXCZZz/CrBbwohOoUQDTiR0K9Ne+8oZXzmeY7bvN/XAsd7Jj/CKQj0Syn7cdJgPoSTznRkjnXm/b4XYCeOgD4OfAr4RyFE+4xldjF/qggs8/td6rFlxmdf5LFWKBQVRolshUIxK1LKzwC/A/wBMIoTRfst4GkpZQH4KPAIMIZj7fcJKeWZMrZr4QiOXThT7mPAXwGRSiw/C/838AfF6fXfneV9L/Bfi9sdAlpwhCfAvyzuOw78AvB0mfucl+Ucvwrx98D3cYrmeoDp7iHlfuZZj1sZ39d8x/sapJRngRSOuEZKOVkc74HifmZjoe97Pm4FjhX39TROEeTTM5xIbmMBkV2B73epx3bmZ5/zWAvHeWbW465QKCqDmH/GS6FQKBQ3EkKIXhwXixdWeiwKhUJxI6Mi2QqFQqFQKBQKRYVRIluhUCgUCoVCoagwKl1EoVAoFAqFQqGoMCqSrVAoFAqFQqFQVBglshUKhUKhUCgUigqjRLZCoVAoFAqFQlFhlMhWKBQKhUKhUCgqjBLZCoVCcYNS7Ph3RAiRFEL89sznKz0+hUKhuJFRIluhUCgqgBCiVwiRFUKkhBAxIcR3hBBrK7DNDyxjE78H7JdS1kkp/2KW5zUbV/G4TH9YQoj/Nceyv1RsRT7z9U9OWz9X3EbpebzYPlyhUChWBUpkKxQKReX4iJQyBLQDw8CsIrKGrAdOzvO8ZkgpQ6UH0ApkgW9MX0YI8atCiJ+5+lR8atpzpJR/O20b/wV4dtp2o1LKfK0+j0KhUCyEEtkKhUJRYaSUOeAfgG2l14QQa4QQTwkhRoUQF6enawghfl8IMVBM4+gWQvyEEOLLwDrg28VI7e/Nti8hxC1CiP3FSO5JIcRHi6+/CDwIfK64/sznW+ba93zjLXdcC/BzwAjwyozXvwjcBHwaR0TbwDNzbGMX8M4S9q1QKBQ1wbXSA1AoFIobDSFEAPgY8EbxuQZ8G0cwfhzoBF4QQnQDvcBvAXdKKa8IIboAXUr5i0KI+4H/S0r5whz7cRe3+0Xgg8B9wDNCiDuklO8XQuwHviKl/Kvi8jOf3zzbvucb71zjEkL8HwAp5W+UcYg+CXxJzt4NTU7715r2fCa7gK+UsS+FQqFYEVQkW6FQKCrH00KIODAJPAT8t+LrdwLNUso/kVIWpJQ9wP8LPIYjJL3ANiGEW0rZK6W8UOb+9gIh4L8Wt/si8CyOMC6HufY933hnRUr5G+UIbCHEOuB9wN/O8vY/Ay4C/wP494AH2DfLNsJAF3B0of0pFArFSqEi2QqFQlE5flpK+YIQQscRhz8SQmzDyYVeUxTgJXTgFSnleSHEp4E/BrYLIZ4HfkdKeaWM/a0BLksp7Wmv9QEd5Qx2rn3PN95ytrsAnwBelVJenGU8/39wCh+dp87zWbgNSOIIcoVCoViVqEi2QqFQVBgppSWl/CZOpPg+4DJwsVicV3rUSSk/XFz+76WU9+GIWwn8WWlTC+zqCrC2mN5RYh0wsIixzrbvecdbxrjm4xPMHsWePqa/kVLun2eRXcCxOdJNFAqFYlWgRLZCoVBUGOGwD6gHTgMHgclikaFfCKELIXYIIe4sele/v2g/l8Nx3bCKmxoGNs6zqzeBNPB7Qgh30fbuI8CTZY5zrn3POd4yxzXX/u7BibJ/Y6FlF2AXKlVEoVCscpTIVigUisrxbSFECicn+0+BT0opT0opLRzxuwsnxWEM+CsggpMT/V+Lrw0BLcC/K27v/wb+oOgc8rszdyalLAAfBR4prv9/gE9IKc+UOd5Z973AeGcdlxDi80KIzy+wv08C35RSJssc31zchhLZCoVilSPUbJtCoVAoFAqFQlFZVCRboVAoFAqFQqGoMEpkKxQKhUKhUCgUFUaJbIVCoVAoFAqFosIoka1QKBQKhUKhUFQYJbIVCoVCoVAoFIoKc0N2fGxqapJdXV0rPQyFQqFQKBQKxQ3MW2+9NSalbJ7tvRtSZHd1dXH48OGVHoZCoVAoFAqF4gZGCNE313sqXUShUCgUCoVCoagwSmQrFAqFQqFQKBQVRolshUKhUCgUCoWiwtyQOdkKhUKhUCgUispjGAb9/f3kcrmVHkpN8fl8dHZ24na7y15nxUS2EGIt8CWgDbCBL0gp/+eMZQTwP4EPAxngl6SUb9d6rAqFQqFQKBQK6O/vp66ujq6uLhyZduMjpWR8fJz+/n42bNhQ9normS5iAv9KSnkLsBf4TSHEthnLPAJsLj4+BfxlbYeoUCgUCoVCoSiRy+VobGz8sRHYAEIIGhsbFx29XzGRLaUcLEWlpZRJ4DTQMWOxfcCXpMMbQFQI0V7joSoUCoVCoVAoivw4CewSS/nMqyInWwjRBewG3pzxVgdwedrz/uJrg/Ntb2gyx59970wlh6hQKBaJNdGPCNajeYMrPRSFQqFQVIj3tRgMJrIrOobLfX184rFHeen1xfVEOXb0bT79G79KLpvl/Q89zH/6s/++KPGcyBqL0pcr7i4ihAgBTwGfllJOznx7llXkHNv5lBDisBDicCaTqfQwFQrFIpBmgcLZVzEHTq/0UBQKhUKhAODf/M6/5M//x+c48PZxLvac56UXvl/V/a1oJFsI4cYR2H8npfzmLIv0A2unPe8Ersy2LSnlF4AvANxxxx3y9z+0tcKjVSgU5dLT08OXDkOLnuZX1d+iQqFQ3DCcPn2a9oh/RceQD/twaYL2iJ+enh4effRRvvCFL3DnnXfOuc7g4CDZdIqPPPQAAL/yz36Z/T94jl/4uZ8ue79xv5uZ+vLfzLP8SrqLCOCvgdNSys/Msdi3gN8SQjwJvAdISCnnTRVRKBQrz8DAAADDw8MYhrEoyyOFQqFQKMqhu7ubxx57jCeeeAK/38+uXbtmXW7//v0MDAzQ2dk59VpnZ+fUb1W1WMlI9r3ALwLHhRBHi6/9O2AdgJTy88B3cez7zuNY+P1y7YepUCgWS+nCZds2Q0NDrF27doE1FAqFQvFu41DvBOOpQkW32RjycGdXw4LLjY6Osm/fPp566im2b98OwNGjR+dcXsrrs42rXcC5YiJbSvkqs+dcT19GAr9ZmxEpFIpKMTAwwIYNG7h48SIDAwNKZCsUCoWiokQiEdauXcuBAwfYvn073d3dfOxjH5t12f3799PZ2Ul/f//Ua/39/axZs6aqY1wV7iIKheLGYXJykmQyyX333cf4+HjVp+MUCoVCsTKUE3GuFh6Ph6effpqHH36YUCjE448/Pm8kOxqNUldXxxtvvMF73vMevvSlL/Ev/sW/qOoYlchWKBQVpSSqOzo66OjoUCJboVAoFFUhGAzy7LPP8tBDDxEMBtm3b9+8y//lX/4lv/RLv0Q2m+WRRx7hkUceqer4lMhWKBQVpb+/H03TaG1tpaOjg9OnT5PJZAgEAis9NIVCoVDcAHR1dXHixAnAiVAfOnSorPXuuOOOqfVqwYr7ZCsUihuLgYEB2tracLvddHR0TL2mUCgUCsWPE0pkKxSKimHbNleuXJkS16WiEiWyFQqFQvHjhhLZCoWiYoyNjVEoFKZEttfrpbm5WYlshUKhUPzYoUS2QqGoGNOLHkuUih9n8yhVKBQKheJGRYlshUJRMQYGBvB6vTQ2Nk691tHRQSaTIR6Pr9zAFAqFQqGoMUpkKxSKijEwMMCaNWvQtKuXFlX8qFAoFIofR5TIVigUFcEwDIaHh69JFQFobW1F13UlshUKhUJREXp7e9mxY8ei1/v3//7fs3btWkKhUBVGdT1KZCsUioowNDSEbdvXiWxd12lvb1ciW6FQKBQrykc+8hEOHjxYs/0pka1QKCrCbEWPJTo7O7ly5QqWZdV6WAqFQqG4genp6WH37t1lNaTZu3cv7e3tNRiVg+r4qFAoKsLAwAB1dXWEw+Hr3uvo6OCNN95gdHSUtra2FRidQqFQKG40uru7eeyxx3jiiSfw+/3s2rVr1uX2799PNBqt6dhAiWyFQlEhBgYGZo1iw7XFj0pkKxQKxQ3CpTchO1HZbfobYN17FlxsdHSUffv28dRTT7F9+3YAjh49WtmxLBMlshUKxbLJZDJMTEywe/fuWd+vr6/H7/czMDDAnj17ajw6hUKhUNxoRCIR1q5dy4EDB9i+fTvd3d187GMfm3VZFclWKBTvWq5cuQLMno8NIISYakqjUCgUihuEMiLO1cLj8fD000/z8MMPEwqFePzxx1ddJFsVPioUimVTEs9r1qyZc5mOjg5GRkYoFAq1GpZCoVAobmCCwSDPPvssn/3sZ3nmmWcWXP73fu/36OzsJJPJ0NnZyR//8R9XdXwqkq1QKJbNwMAAzc3N+Hy+OZfp6OhASsng4CDr16+v4egUCoVCcSPR1dXFiRMnAIhGo2U5iwD8+Z//OX/+539ezaFdg4pkKxSKZSGlpL+/f85UkRKlKHd/f38thqVQKBQKxYqiRLZCoVgW8XicTCazoMgOhUJEo1GVl61QKBSKHwuUyFYoFMtiviY0M1HFjwqFQqH4cWFFRbYQ4otCiBEhxIk53n9ACJEQQhwtPv5DrceoUCjmZ2BgAF3XaWlpWXDZjo4OEokEqVSqBiNTKBQKhWLlWOlI9t8AH1pgmVeklLuKjz+pwZgUCsUiGBgYoL29HZdr4Trq6U1pFAqFQqG4kVlRkS2lfBmocKsghUJRKyzLYnBwsKxUEYD29naEEEpkKxQKheKGZ6Uj2eVwtxDiHSHEc0KI7Ss9GIVCcZV4PI5hGGW3Svd4PDQ1NTE8PFzlkSkUCoXiRqW3t5cdO3Ysap1MJsNP/uRPsnXrVrZv386/+Tf/pkqju8pqF9lvA+ullLcB/wt4eq4FhRCfEkIcFkIcHh0drdX4FIofa0q51XV1dWWvEwqFSKfT1RqSQqFQKBSz8ru/+7ucOXOGI0eOcODAAZ577rmq7m9Vi2wp5aSUMlX8/3cBtxCiaY5lvyClvENKeUdzc3NNx6lQ/LhSEtmhUKjsdUKhkCp8VCgUCkVF6OnpYffu3Qs2pAkEAjz44IOAM6t6++23V71vw6ru+CiEaAOGpZRSCHEXzk3B+AoPS6FQFClFpIPBYNnrBINBFclWKBQKxbLp7u7mscce44knnsDv97Nr165Zl9u/fz/RaHTqeTwe59vf/jb/8l/+y6qOb0VFthDiq8ADQJMQoh/4I8ANIKX8PPBzwK8LIUwgCzwmpZQrNFyFQjGDklgOBAJlrxMMBjEMg0KhgMfjqdbQFAqFQlFljo4cJZFPVHSbEW+EXS27FlxudHSUffv28dRTT7F9u1Oyd/To0QXXM02Tj3/84/z2b/82GzduXOZo52dFRbaU8uMLvP854HM1Go5CoVgkqVSKQCCArutlr1NKLUmlUjQ0NFRraAqFQqG4gYlEIqxdu5YDBw6wfft2uru7+djHPjbrstMj2Z/61KfYvHkzn/70p6s+xlWdLqJQKFY36XR6UakicDW1JJ1OK5GtUCgU72LKiThXC4/Hw9NPP83DDz9MKBTi8ccfXzCS/Qd/8AckEgn+6q/+qiZjXNWFjwqFYnWTTqcXVfQIVyPZKi9boVAoFMshGAzy7LPP8tnPfpZnnnlm3mX7+/v50z/9U06dOsXtt9/Orl27qi62VSRboVAsmVQqVXYjmhKlSLZyGFEoFArFUujq6uLEiRMARKPRBZ1FADo7O6l1WZ+KZCsUiiWz3HQRhUKhUChuVJTIVigUS6JQKFAoFBadLuJyufD5fCqSrVAoFIobGiWyFQrFkliKR3YJ5ZWtUCgUihsdJbIVCsWSUCJboVAoFIq5USJboVAsiaW0VC+hWqsrFAqF4kZHiWyFQrEkVCRboVAoFIq5USJboVAsieWK7Fwuh2malR6WQqFQKG5went72bFjx6LX+9CHPsRtt93G9u3b+bVf+zUsy6rC6K6iRLZCoVgSqVQKr9eL2+1e9LqqIY1CoVAoas3Xv/513nnnHU6cOMHo6Cjf+MY3qro/JbIVCsWSWMgjO2lamPbsxv/KK3vppE2Lgm2v9DAUCoViVdDT08Pu3bvLakgTDocBME2TQqGAEKKqY1MdHxUKxZKYr6W6YUu+NjTB1qCP++rrrntfRbKXhmlLvjEcY73Pw4ON4ZUejkKhUKwo3d3dPPbYYzzxxBP4/X527do163L79+8nGo0C8PDDD3Pw4EEeeeQRfu7nfq6q41MiW6FQLIlUKkVzc/Os7/XnCpi25Ew6x12RIB7t2kkz1Vp9aZzP5shZNr25AraUaFWOwigUCsV8ZI4cwYrHK7pNPRolsHv3gsuNjo6yb98+nnrqKbZv3w7A0aNHF1zv+eefJ5fL8Qu/8Au8+OKLPPTQQ8sd8pyodBGFQrEk5ksX6cvl0YXAtCVn07nr3lfpIkvjZDKLLgR5y2a4YKz0cBQKhWLFiEQirF27lgMHDgBOVHvXrl2zPuIzbgR8Ph8f/ehHeeaZZ6o6RhXJVigUi8ayLLLZ7KzpIlJK+rIFuvweJk2LE6ksO+oC1yxTKphUkezyGc4bjBZM7ooGOZxI05st0O71rPSwFArFjzHlRJyrhcfj4emnn+bhhx8mFArx+OOPzxvJTqVSJJNJ2tvbMU2T7373u9x///1VHaMS2QqFYtHMZ983UjDJWjZdfi8Wkv3jSfpzBTp91wpC5ZW9OE6msrg1wY6Qn4GcQV82z93RxTcCUigUihuFYDDIs88+y0MPPUQwGGTfvn1zLptOp/noRz9KPp/Hsize//7382u/9mtVHZ8S2YofGzKJOP5wpOrVxD8OzCey+7J5hIBmq4Df7+d1XeNUKqtE9jLIWjYXMnluCfnwaBrr/R5ei6VIGCYRt7qMKxSKHy+6uro4ceIEANFotCxnkdbW1rKWqyQqJ1vxY0FyYoxTr7zE4LnulR7KgkjDIntiDCu9enNu52up3pcrEDXynPnGS/QfPM7WoI+L2Twp81rTf9VavXxOp7NYUrIt5Aegy+8FnGOtUCiqSzpvMhDPrvQwFO9ClMhW/FiQGBoCYPDcGVKxiRUezfyYEzmslIE5klnpoczJXJHslGkxmisgT59lYsyg78QVtof8SAmnZxRAqkh2eUgpOZ3KscbnoaEYtQ67dOrdLvqySmQrFNXmYO8EL54eJlNQHWoVi0OJbMWPBYnRYYL1DXj8AXrePoRprN4osRnLO/9O5JBzNHNZaeYS2X25AvGhKwSuJNACYfLxHFZ8kvV+D6dSTjS2RDAYJJPJYKvGKvPSlyuQNC12FKPYJdb7PQzmC+TV8VMoqkbOsOiPZZHAhREVFFAsjhUV2UKILwohRoQQJ+Z4Xwgh/kIIcV4IcUwIcXutx6h495PPZMgmJ2lo72DD7jswclkun3hnpYc1K9K0sRJ5NL+ONGzs5OqMVKZSKVwuF16v95rXTw4MQmycgGjE09aMBHqO97It5Cdr2VzM5qeWDYVCSCnJZFY+Yi+ljZSr84bmRDJL0KXR5b82p32934MtHU9yhUJRHS6MppBSUudzcX40udLDUbzLWOlI9t8AH5rn/UeAzcXHp4C/rMGYFDcYiREnVSTS0kaovoH2zVsZH7jMeP/lFR7Z9ViJPEjwrI8gNIE5fr3H9Gqg5JE9vYg0lUpz8tIlWmw3BEI0bT6Gu36M0fPDrPN5CLt1TiSv5jWuJq/s4eFnSSTeWulhXEfcMOnPFdgW9F/XeKbN48ara/SqlBGFomqcH0nRFPKyszNKMmcyPLk6r8mK1cmKimwp5cvAfAmy+4AvSYc3gKgQor02o1PcKCRGh/EGgviKRXrtm28m1NDIpRNHyWdWXuBNx5zIIdwaesSDXu/FjK3OlJGZLdWllLzxzttYUtLibUXzXSDaoBPqkFixNKOxNNtDfobyBmPFvMbV0lrdNFOYVopU+iyGEVvRsczkZCqLJmBryHfde0II1vs8XCp2f1QoFJVlNJknkTXY1BJifUMAl6ZxfkQVayvKZ6Uj2QvRAUwPN/YXX1MoysK2LJJjo0RaWqdeE0KwYdcdIAQ9Rw4jV0lOq7QlVjyPHvUihMDV6F+1KSOpVOqafOyh82fpmUzT2NqON5Yg0DBCIXWFSIuBJuHc8T5uDvhwaYJTKSeavVpaqxcK4wAIBPHE2ys6lukYtqQ7nWOD30tQ12ddZr3fo7o/KhRV4vxICl0TdDUGcekaG5qC9I6nKZir4zdjVnKTMHZ+pUdRFlJKTHtpxaS9vb3s2LFjyfv+6Ec/uqz1y2W1i+zZDI1nDdkIIT4lhDgshDg8Ojpa5WFVDzuXI/vOO8hVXJj3biI5PoZtWdeIbABvIMD6W3eRjk1wZZXY+lnJAtKSuBqcqKUe8a7alJHpLdVTsQkGzp4mWd9MvRZC105TF3Fx/M0XGRl9HV/QZOzCIG4h2BTwcjaTI2/bqyZdxDAmEAjCkd3k88Nks/0rOp4S5zM5CrZkR51/zmU6fR40gXIZqQSJfki9O347YrkYiXxipYdxQ2NaNr3jadY3BPG4HKm0qSWEZUv6xlfXDOg1XHoDel+B3Oo/P7JmlmQhiWVbCy9cQb75zW/Oaj9bDRYU2UKInxJCHBFCTAghJoUQSSHEZC0GhxO5XjvteSdwZbYFpZRfkFLeIaW8o7m5uSaDqwa5EyfIdXeTv3hxpYdyQ5AYGUbTdeoarz8nGtZ00ti5jqHz3avC1s+ayCE0gR52igmFLpyUkVXmMmLb9lS6iG1ZXDxymJQviL9tDfrwZTzeGJn4IBcnxrjY102gMYUrluLSuJMyYhYjtH6/H03TVj6SbUzgdjcQCm7B7QqTSLyNlLW96M/GiVSWBo9r3tbpXk2j3euhd1pB6Woinim8O2zPjCz07Ifel2GVp96YtsmrA69yYOAAtlzFEdV3OX0TGQzLZnPrVTHWXOcl4ndzbrWmjKRGYXLA+f/E6tYQtrTJW3kkkoK1vCBBT08Pu3fvLqvRTCqV4jOf+Qx/8Ad/sKx9lks5kez/AXwSaJRShqWUdVLKcHWHNcW3gE8UXUb2Agkp5WCN9l1zrMnJKXFduHBh1bodvJtIjA5R19iENsd0+7odOwFBfGjWe7eaYsZyTqqIfnUCx9XodxxHVlHKSDabRUrpWPAl4uQzacz1m8kZNg2po9RFGzlz5i3ShToG8h6S+VdwWzbnz1yh2eOmwePiUraAEGLFvbKllBiFCdyeBoTQiERud/KzU2dXbEwAactivGByc/D6XOyZrPd7iBsWCWN1idlMweQHp4Y5eHHlb2AXZPgk2Cbkk05EexVzMXGRvJUnY2YYSA2s9HAWxM7lsLPvvkYu50dS1PlctIav/Rvc1BJiLJUnnlk91+QpBt8BlxeCTTDRs9KjmZec6czQuoTLEdtL1Dvd3d08+uijPPHEE4TDYXbt2jXrIx6PA/CHf/iH/Kt/9a8IBAKV+ijzUk4/3svACVkFxSeE+CrwANAkhOgH/ghwA0gpPw98F/gwcB7IAL9c6TGsJrLHjyN0F74d28kePYo5PIy7rW2lh/WuJZdKkU+nad2wac5ldJcbf10d2WStJmdmx0oVkAUbvf5aS7yS6LbGs7gi3jnWri3TPbJLx23U7UMO9+Ijhde/htHYOFsGmhmJSs5zjh16nuHeQVJ3baTB7WIkb0xtYyVFtmWlsKWBx90AgM+3Bp+3nWTyBIHABnR9YZFbDRKGE0lvKKNlepffy2uxFH25AjtXUYv1o5fiWLZkZDJP3rTwuma/0V1xjByMnoH6LkiNOP+Prl1wtZXAsi26Y900+5vJmlnOxs6ytm51jrVE+tVXsfN5wh/6EGKOYMdqYzJnMDyZY9fa6HXv3dQc4u1LcS6MptizvqH2g5uL9DgkLsOa3eDywaXXITMBgeqOcagnQW6R3YmllKSNNC7NhUtzkTWzjLlyuDTn+uULumnbGFlwO6Ojo+zbt4+nnnqK7du3A3D06NE5lz969Cjnz5/ns5/9LL29vYsa81Ip54r8e8B3hRA/AqbmJKWUn1nuzqWUH1/gfQn85nL3827AHB/HGBjAt3073ptuIn/6NPnzF5TIXgZXrfta513OXxcmOTFWiyHNiRXLgwBX9FpRJ7SrKSOeLonQZitTqC3TW6pnk5PkXW4mpE0wfpqQp53zZ79DcNSmsfl2PIWLvCPPsyF3BG8sTM9oimidm/PpHJaUK95avVBwvnePp3HqtUhkDyMj32Fy8hj19XetyLgSxRb00TKE6fTujzvrahOdWYihRI5LExk66v0MxLJciefY0BRceMWVYPgk2Ba074JYLwwedfJZfQv/yNeavsk+cmaOO1vvJGWkODJyhLHsGE3+ppUe2qxY8TjmuDOTkb9wAd+WLSs8ovK4MJJC4AjqmfjcOp31fi6MpNm9th5tFVyTARh6B3QPtGwDacPlN5yUkSqL7KVgWAYSiUfzIIRAExqGbUyJ7HKJRCKsXbuWAwcOsH37drq7u/nYxz4267L79+/n9ddf56233qKrqwvTNBkZGeGBBx5g//79FfhUs1POJ/pTIAX4gLmTAxXLInvsGJrPh2/LFoSu49l4E7kzp7FSafTQKv1xWuUkRofxherwBuY/fv66MOMDlzENA5fbXaPRXYsZy6HXeRDu6zO4XA1+zLEc1mQBV3Tlo9nTI9mxoX4mghHGEpfYmZ0k2vYg7xz930RTdTTvvZ21sRBnJy5zlhNsz+7iQu8423etARwhGQwGGRkZWbHPUjAmEELH5bqaAed2hwkGN5NKnyUU2ozbXV/zccVNC10IQnp5tenr/R6OJTPkbRuvtrL17JYteasvRsjn4u6NjXzn+CD9sczqFNlGDkZPQ8MG8EfBdTMMHYORM7DuPSs9umuwpc2ZiTM0+BpoDbbSaDdyavwUZyfO0tSxOkV2obcXNIGrvp7cqVN4u7oQntUtI6SUXBhNsybqJ+idXSJtag5xeSJDfyzLusZVcGObmYBYH7TfBq7i8a1bA7GL0LmnqrsuJ+I8HVvaJPIJ3FqYkMe5icmaWbJmlogngq6VP9vh8Xh4+umnefjhhwmFQjz++OPzRrJ//dd/nV//9V8HHHeSn/qpn6qqwIbycrIbpJQ/K6X8Iynlfyw9qjqqHzOMwUHM0VF827YhiiLPe9NGAAo9F1ZyaPNSyJn0Hhsjn11duaAAlmmSGh9bMIoN4A87AiubXJlqbDtnYmfMKVeRmZRSRszx1ZHXeE26yOQkY14X1mQ/9dYaBsdfwDtYwBfdilx/G6FgC5u0Noa9GTLp05gDoxRyzvmSMKypdJGVqj8wCuN43PUIce2lMBy+FU14VszSL2FYRNz6Nc1+5mM1dX/sHkqSzBncvq4el67RWR9gMJHDsFZhkV4pF7ttp/Pc7Yf6DTB+HsyVP5bTuTR5iYyZYVvjNgBcmouNkY1cSV8hWVh9nQilbVPo68Pdvgb/nj3IfIHcmTMrPawFuZLIkSmYbGqZ232iI+rH59ZXTwfIoWOgu6F1+9XXGjY6NQarzDGnVOzoc139vfNoHgRiSQWQwWCQZ599ls9+9rM888wzlRxqRShHZL8ghPhg1UfyY4qUkuyx4+ihEJ6NG6de1wIB3GvWULh4EWmtvNPBbExcSZOZLDB4Pr7SQ7mO5PgYtm2XJ7LriiJ7cmXyss0JpwBkZj52CSdlxIe1ShrTpFIpx8dbQM4o0C9j1KczNPm203fiOQIZD4VtP4XbcJH2rmVbqAWvy8s5rZvg8BVGJpybhbhpEQqFsCyLXK72NoVSSgpGDLf7+ulUTfMSDt+6YpZ+cdMsK1WkxGrp/pjOm5y8kqCzPsCaqGM9uLbBj21LBuOrzIqyFMWuL0axS7TcArYBE6snwFGKYtd762kLXk0h3BjdiCY0zsXOreDoZsccGsLO5fF0deGqr8ezfh35s2exM5mVHtq8nB9J4XU5N4dzoWmCm5pDDMSyZAsr/PucjTtpIc23OEWPJaLrQGhONHuVYEubvJnHo3muSQ3RNR235iZvl18A2dXVxYkTJwCIRqMcOnSIffv2lT2W6etXk3JE9m8C3xNCZFfAwu+Gx7h0CSsRx7djB2LGNK9302bsfJ7CpUsrNLq5sW1JYiSD7tbIJArER1bXhTMxPISmuwg1NC64rMcfQHe7V0xkW7EcWsCFNsfUJICr0Yc0Jdbkylu1lTyyc6kkk6JAyszQlGki476At28MEdqA1tiFy6NjRjvw6iF2BDcw4YuTGj7G8Egat4CEaa6oV7ZpJpDSuiYfezrB4GZceoh0urZOI7aUTJoWkUWIbCEE7R43oyvclObIpTgAu9dFp15rDnnxuXX6Y6vrGsFIMYrdftu1rwebINgMI6dXjZ1ff7KflJFia+PWa173u/ysq1tH32QfeWvlrw3TyV+8iPB6cK9xmjT7dtzqBJVqIGyWSs6wuDSRYWNzCH2BXOtNLSEkcGF0he38ho6D5oLWbde+7vJApNMR4KvkPM5beWzsa6LYJTy6B1vaGPaN1SNkQZFdtOzTpJT+FbDwu6GRlkX2+An0+nrca6+vEHe3tqCHwxQurJ6ISonJsSyWKenYUo+/zs3wxUksY/VMBydGhwg3t6CVmd/lrwuvSLqINCyslDFnqkgJPVJKGVn5aGDJIzs7OUlSmOQK0K43cPn4k3hygsSGn6It5KdrZxNaXR2Gt4kd3npcfg+XXOdx9Z2jkLWIG9aKtlYvFJyCLLd7dpEthIbH04Rh1Pa8SJoWtoSIe3FODFG3zqRprVjqzWAiS38sw/Y1kWtyWYUQdNT7uZLIYa2CmRjAiWKPnLk+il2ieSvkJ2Fy5a09pZScmThD2BNmTXDNde9vrt+MJS0uxFfP74Sdz2NcuYJn/fqp4JEeCuLdtIlCby9W0U5ttdEz6qSubZql4HEmEb+bljrvyrZZz006My7NNzupTjNp2AhGBpJDtR/bDKSU5M08bs09a4GjW3OjCW3V3Swul3Ka0bx3tkctBnejk79wATuTxr9z55y5l96bbsKcmMCcWF1es/GhDG6fTjDqof2mKJZpM9K3OiY4sslJCtlsWakiJRyRXfvxm7E8SNDr5xfZqyllpNRSPZucJK5JhCGp07JYF7oR/g4yLdvZsqUBr99FuNlPoW49WjrPHV13kfCNM9n9GrmMMVX4WNpmrTGMCTThwuWqm3MZlzuMZWexaxhdiU85iyyy0t6lY0tIrkDuc6nYsc7n5ua264/n2voApmUzmFgddQVOFNuA9p2zv1+/AVx+J5q9wgykBpgsTHJLwy2z/k5EvBHagm1ciF+oeee8uTAuXQJb4unquuZ137ZtCJeb7PHjKzOwBRiIZ4kGPNQHyyvO3NAUYjJnkMiuUPR16LiTEtI6R3vwyFonyr0KUkbmi2KDczPu1b0YtrFqzuNKUE66yL+e9vhD4NvAH1dxTD8WyEKB/OnTuFtbcbfOLQY969cjXG7y587XcHTzk88YZCYL1LcFEULgC7lpaA8SG8qQXQVNUxLD5Vn3TScQjmCZJvka5wuasRzCq6MHF3Y1mUoZSazsnX4pXSSbnCTp0gkZNqNnn8adNxnp/CCdjSGa1jiRoIa2IKJpE0bBZndkK16vxri4QOHyJbKWjcsfmNpmrSkUxnG7G+YtLnS7nMp506xdgVPJvm8x6SLgRLIB4ivQlOb04CSpnMme9fWzTrO31Hlx6xr9sVUgsqei2F3gn8M5RtOgeQtM9jvRwhXkzMQZQp4QnXWdcy6zpX4LeStPX7KvhiObm/zFi+jRKK76a4+v5vXiu2UrxpVBjOGVcxWai3imQEOgfPeThqIYn1wJkZ1POQW6jZvBM0f+uO5ycrNjvWCv3EyzlJKclcOtuXFrc//WLacAcrVSTrrIR6Y9HgJ2AMPVH9qNTaGvDzufx3frrfMuJzwePF3rMfovY+dXxzRKbCgDAqItV6enmtfX4fJoDJ5PrHikNTE6TCAcweObZfpsDqaKH2sYzZaWI5hdcxQ8zkSPeEGwot0fpZTTItlJkgj82Tz5nrcRvmbSbXvYub15ys/bF3Ljj7aSD4VhYIDt6+8g45vAOPkylpQYRTuvWkeypbQxjBgez/wesqUot2nWLmUkYVh4NIG/TPu+EpFi5Lsk0muFZUtOD06ytiFAW2T2KJWmFVNG4lnslU4ZmYpi3zb/ck03O1HC0ZVzxBhMDRLPx9lav3Xem8GWQAtRb5RzsXMr3inYisexYnE8G7pmfd+7eTNawE/22Du1HdgCFEybrGERDZRv4xrxO8vGMysgskuzLG3zawgaNoCZh+TKpT7lrTy2tPEt0NxrKQWQq52lGKr24whtxTIwxyfQ/AFcDQsbxXtvuglpWRR6Vr5Nqm3ZJEYyhBt9uDxXI226rtG6IUIubTAxtHId/EzDIDUxTngRUWxYGRs/azIPNrgWSBUpITSB5tGR+ZWbSsvn81iWhdftQkqbJBoN5w8i8jkybXsJNzXQtebadIGG9iBWUye5yQnu7PogQhOIQjc5wyJpQyAQqHkk2zDiSOw587FLXBXZtYtkx02L6BI6NwZ0Dbcmai6yJ7MGli1ZO48bA0BnvZ+CaTOSXMFggZQw2g3R9XNHsUt4As5y4+fBWpl0gDMTZwi6g6wLr1tw2S31W0gWkgxnVjYGVvLG9qxfP+v7wuXCt2MH1kSMwuXLtR3cPJRSPkrCuRw8Lo2Ax7Uy6SKpYQi1gneB/PFwh9OkZgXbrJu2iS503PrCx/ZGK4AsJyf7fwkh/qL4+BzwCrC6bkHfhVjxGHr9Ahf5InokgqulhfyFnhW/u5scz2GZkvq26xtLRJr9BKNeRvuSGCtka5QcH0VKuahUEXDaq3v8gZpGsu2MM62vlZEqUkJ4deQKWkaVxLBb08hgYhYK1PWfQQRCTLTey9bNjdelC4Sb/egN651mAymTOuowRJJ0Oj+Vl117ke3UOCwUyRZCx6WHMMzanReJRTqLTKfe7SJu1Pb8iJfEyQIRwLawD10TXF5Jl5H8JFgFJ1e1HFpucZYfr31RoWEZjOfGWR9ejyYWjod11nXid/k5G6utG850pntja965Z+g8XV3okQi5VeQ0kijaXy50Hs8k4ncTr7V1ppSQjS18owig6U5qVPwSWCvT08KSFroo75pWbgFkb28vO3YsPt77wAMPcPPNN7Nr1y527dpV9WZo5USyDwNvFR+vA78vpfynVR3VDY40DKzJSfT6aNnreDdtws6kMYdWtkq4VPAYiMyet9Z+UwQpJcM9K9PYJTuZQAhBMLL4Ln3+cLimNn52zkS4NYSr/Akl4dWxVzCSXUrr0KUkKQw84wN4CllkdDOB9mbWN19/86XrGpGmdvKRINnLPTS7G7D0HIXBS8QNc0VaqxcKE2jCM2/RYwmXO4xZI5Ft2pKUaS3KI3s6EZde80h2PFNA0wR181hQArh0jY6o02Z9xYIFmWIBeTniBCDUAoFGGK+9D3U8HwegwVdeW2xNaKytW8tYdgxbrkz+bckb2ztHqkgJIQServVYk8lVkwYZzxhoYuHzeCbRgJtE1qjtOV1IOfaT5Z7HDRuc2ZjJ2nv+29J2RHaZTl+1KID8u7/7O44ePcrRo0dpaWmpyj5KlJOT/bdSyr8F/h44Baw+1/t3GSX7oplFIfPhbmsDITDHV85lJJe+tuBxNjx+F02ddUyO5UivQIFeNpnEEwig6YsXKf66MLlUCrtGlc0ya6L5F3dB17w6smCvWN57KeIsLIOkRyc4MYBmCQpNW6hrbaZ9jpzcpvZOrJYo6UScTr0BKUAOnVqxSHbBGF8wil3C5arDNJM1+RGdKnpcpH1fiahLJ2lamDU8P+JZg4jfjbaArzBAZ32AnGExmlohYZWdAMTstn1zEe5wxHmNHQ9i+RgAUW+07HWi3ii2tFesA2TJG9vV3r7gsno0CoAVX5mAzEwSxfO43C6rJSJ+N5YtSddyhjHrnBtln8ehNsfib6L2LiOWdI5LuZFsYKo4srTuQvT09LB7924OHTq0+AFWmTlFthDi80KI7cX/R3BSRL4EHBFCfLxG47shMWPOH0i56SLg5LHpdWGs4rorQXy4WPDYOn9BYWNHEASkYrX/Ic2lkvhDS7NxD4QjSGmTq1FU1c6ZaL7FiWxRzINfqZSRKTFcKJB0aQQTIwhNx+rYTns0gGuOYr1gpB5PfYS0ZtOhRxEC7Hgf8RUQ2VJamEZ81k6Ps+F2RZDSwrKqP8alOouUKInzWkazExmDaJl5rO1RH5omVs5lJBsDX8SZQi+XQCMgrwqbGhHPxfG7/HNans1GxOu44ZSi4LVkNm/s+bgqslfuN2068YyxqHzsEleLH2uYMjIlssvUEJrmpIwkLte8vqAUjV6MyNaFjkCUFcnu7u7m0Ucf5YknniAcDk+lgcx8xKd5s//yL/8yu3bt4j/9p/9U9eDJfL/w90spf600JuCslPKnhRBtwHPAV6s6shsYayKG5vej+ct3vwDnomSOjlZpVPNjWzbxUsHjAlE2TdfwBd3kUrX9Y7Zti1wqRaS1beGFZ2F6e/VAOFLJoV2HNCykKdECi49kA07x4yIFeiUopXUI0yChCeomE9ieIKK+jc76uc9nIQThhlZiDWnqRj3UZSRxOULBkriCIQqFAoVCAY+nfPuspWIYMSRyzk6PM3G5nPPCNCdxuRZuUrEc4qaTM7lYj+wSJXGeMC0aPdU/P3KGRc6wiJZpe+bWNdojPi5PZLh93eJTupZNJgZ1i6vXIFC8GcuMO90ga0QsH6Peu7hjFPaE0YVOPB9nPbMXHlaLQl8f2BLvhg1lLa/5fGh+H1YsXt2BlYFh2aQLJpsDi//7LonsRNags1andDYG3jooo5Bwikin40iSGYe6pf1Gzsblk8fITM49G5E385i2SdBzfSrhXATCEcKb1i8YyR4dHWXfvn089dRTbN++HYCjR4/Ou87f/d3f0dHRQTKZ5NFHH+XLX/4yn/jEJ8oe22KZ73Zz+m3ZQ8DTAFLKlW8d9C7HisfRo4v/a9Tro9jZzIrksE2O5bBNSX17eX8ovpCbbKq2xSD5dBop7SVHsn3BEEJoNXEYsbPOxUMsNpJdFNkrlZedTqfx+5xoZMI08Wcy5H1hXL4ga6Lz3zRGm9qQLRqm5aEp6ULKSfL5AjJQ29bqVzs9lpsuUhLZ1Z+CTxgWQZfjErIUSiK7JNarTcm6rH4RxWKd9QGyBYvxWqeMGDkw0uAv73ufwlsHutcRJzXCsA2ShSRRX3RR6wkhCHvDJPK1T8Eo9PWh10enItTloNfXr4ruj5NLcBYp4XPr+Fx6bR1GsjFY5LkxtXw2XuHBzI8lbbQyZjZm4hIuTDn/dSwSibB27VoOHDgAOFHthSLZHR0dANTV1fH4449z8ODBRY9tUZ9jnvfiQoifAgaAe4F/DiCEcAGLC8EqppCmiZWcxN05d2OBubg6vRZHm6eBTTWIDWfw+F0EI+V5OvtDbuJDGQpZE88i846XSjbpiCB/3cLFbLMhNA1/XV1NHEbsXNFZxL+4tICpdJEVFNk+nxcLGyM2iG5bpPzNrG2M4lmggNPrbcJX7yPrcRHNe0BkiI2OYkWvNqSpX0QK1VIxjAl0zYvLVd4No6770ISnJg4jjrPI0v9ePJpGQNdI1MhhpOSqEF6EOFkT9aEJJ2WkMVTe9aQiLHaKfTqBhqtFkzWgJJIXG8kGJy97IDVQ6SHNi7QsrFgM3y23LGo9PRrFGBxEWhZiCXU0lSK+DJENzvmfqJVXtm07DZIiC9s6XoM35Fj55eIVHc7a7XN0TS0Sy8Xw6l4C7vktPmeSM3PkTcdfey53HY/Hw9NPP83DDz9MKBTi8ccfnzeSbZom8XicpqYmDMPg2Wef5QMf+MCixrVY5vtV/FXgt4AngE9Pi2D/BPCdqo7qBsaKx0FKXA1LiGRPE9m1JJc2yE4WqG8r/4/EH3Kmj7M1TBnJpRwR5AstTWRD7dqr21nT8Yv2LFJkawLh0VYskp1KpfC63WR1G9/oAMISmPXr6FjAIxnA42kkEPZg+yVhGUSTNumhM5ge79S2a0Gp0+NicLnrauIwEl+Gs0iJiLt2DiOxtIHfo+NbRKGm16XTXOetfYv1bFEkBxYZyQYnLzsbq1nXvFiuWPS42GgljsguWAUyRu2sEq3JSZAsKooNxeVlcf0VJJE1EEJQ51uayI4G3FNCverk4iDtxRXvlvBFalpbYNkWErmofOwSpXUWyssOBoM8++yzfPazn+WZZ56Zd9l8Ps/DDz/Mzp072bVrFx0dHfzKr/zKose2GOYMmUgpzwIfmuX154HnqzmoGxlzwrnQL/ZiBE5LWs0fqHkOWyqWAxwf7HLxBlwIDbKpwqLWWw7ZZBJvMLgkZ5ES/row4wOXMQsFXFXMD7azJsKnL7qSHUoOIysXyQ55XKR8LgLxERAa7tZNU+2F58PlCuH1+8k0ZAm5G/Aaw+TGz1Nwv29q29XGtk0MM4HfX6ZPchGXK0w+V91MuZxlk7PsJTuLlIi6XFzM1iYVI5EtLCn61xD00D2UxLZlWa4kFSEbA3fAcVlYLIEGkJYjcJYi0hdJLBfD5/Lhdy1+rNOLHxcbPVwqpd+kRYvs4syVFYstym2r0iSyBmGf6zqP/3KJBtwYlk22YOFfZOBk0SxnRsZf7/hl14hSTvVS0kVKln+WtHBz/TWmq6uLE0Wf9Wg0WpazSDAY5K233lr0WJbDUjo+KpaBFYs7BR+BpV389Gi05tXY2ZSB26df0+FxIYQm8AZqW/yYSyWXFcWG6Z0fqxtZkbnF2/eVEN6V6/qYSqVwAQkX+JMxpCtAqLmFcJm55R53I1qTxOdpIZiXyNQguWJ6RC0i2Ybh/O0s1OlxJm5XGMvOYlexC1kp+rzsSLZLnxLs1cS2JZNZk/oyix6nE/G7saUkma9hc4zMxNKECRQdRqhZykg8H19SqgisjMOIFY8jXDpaaHGFg1owiHC5VjwvO7FEZ5ESUw4jtWhKk42D0Bafkw1O9NvMgVGbWaSl2PeV0ISGJrSqeWXXCiWya4wVK7/T42zo9fVYySSyRoVNALmUgS+0+AuQv85DLlUbk35pO9Z7JYeQpTLlMFJFkS1tiZ23Fm3fV0LzurALVs29sg3DoFAo4NY0EtLGl0pieaJEIuE5rftm4vY0oEdshN9POOMBM0bSsPB4vTWJZF/t9Li4v8HpDiPVIr5M+74S0RrZ+E3mDGwpiS6yQx4wtU5t81jjiy96LOENg+auSfGjaZtLKnos4dbchDyhmotsPRJZ9MycEAK9PrqiItuyJcnc8kR21O/caMZrcT5P2VAuQb7VuPjRsp1Oj+V0LJ2NcoofVzsrKrKFEB8SQnQLIc4LIf7NLO8/IIRICCGOFh//YSXGWSlKRY96/dKnG50cNomVqE31uGXYGDkL/1JEdsiNbUkKuerfieYyJWeR5UWyPf4Auttd1c6PMmeCZOmRbI8GEqRR265uJRHsdbtIJsdxmyYFXz2RcLTsbXjcDbj9GqI+QDjvBVIk45O46sI1EdmFwhi65kfXFzeTVAuRnTBMhIBwBSLZcFW0V4uSoCgJjMVQ53MjBLVzZCjlsQaWGOAQolj8WH2RHc/HkUgavEv/nYh6ozV1GHEcs6JLWlePRrFi8RXrAprMGUgo24ZyNvweHY+u1eZ8Lred+myU1qtw8eNcLKad+mzoQseW9sp1iK0AC4psIUSrEOKvhRDPFZ9vE0L88+XuWAihA/8beATYBnxcCLFtlkVfkVLuKj7+ZLn7XUlKRY9LvRhB7Ysfc2nnouErI+d2JqXodzZZ/Sm0kihebiQbHI/Oatr42VnnzlwsOV3EWa/WKSOldA6v24U50otuQz60hki4/GPu8TQ6PuthF3WmF7dtMj50AS0cqUm6SMGYKLvT43RK7deraeMXNy3CLh1tCXn60wm7dEfAGtWNAMWzxTbUS5iR0TWnyKwm0+uwvDzWEoFGp3iyyj/4paLHUtrHUoh6o6SNNEYNGo/Y6TTSMJYlsqVpYte462uJ0s3iciLZpfWrHsk2C05L9aUUPQJ4Ao7DSA0i2VJKbGmX3U59NnRNRyLL7vy4Giknkv03OIWOa4rPzwKfrsC+7wLOSyl7pJQF4ElgXwW2u2opdWtcirNICT0URLg9NRPZJXcQX2jxP6RevwuhiZrkZedSjvhZbk42VN9hxC5G9peeLlLyyq7tNFop0uwJedEmhkFq6I0bFpUuoOsBXC4/er2gTtThNm2yY+cgGKp6JNu2DUwzuWhnEQAhNFx6qKo2fokKOIsA6EJQ59JrEMkuEC6znfpsRPzu2kWyMxMgdFiGcMXfALYJuepGiOP5+JIsz6ZTasVei5SR0m/RkkX2tOLHlaDkClJuXclcRALuKb/tqlGKQC/nZtFfXxOHEUsu3VmkRLkOI6uZckR2k5Ty64ANIKU0gUp84g7g8rTn/cXXZnK3EOIdIcRzpTbv71bMWMxxCFli0WMJPRqp2QUplzZwe/UFuzzOhtAEvlBtih+zyUm8geU5i5Tw14WxTJN8pjoWWHbWRHh1hL40cbJSXtklEWzXefHHx5EuH/7GlkV5JIMTFdYbXQQ8TQRzYCYvI/3Vb61eaoteSv1YLC53GNOojsCSUi7bI3s6UVf1bfwSWWNJ+dglIn43qZyJWeUCTeDqFPtS8lhLTO/8WEViuRj1vuU5bdSy+NEsiezI0m5g9HAYRO2taUsksgZ1PlfZdSVzEfG7yZlOB9SqUYkZGX+0JukiS2mnPhNNaGhoN3wkOy2EaAQkgBBiL1CJX5rZFMbMebi3gfVSytuA/0Wx6+SsGxPiU0KIw0KIw6Mr1Hp8IaxYHL1h+fZPejSKlUgga+DZmksZ+IJL/yH1h9xka1D8mEsl8S2xCc1Mql38aGdNNN/SLzxCFwi3VnMbv1Sx2U/W58GfSmK7w/hCQeq8ixOGuh5Ab3Ch+8JEszoiN4rl9ZHNZrGs6n0m03REtl5mE5qZuF1hTDNZlXM5bdmYtpwqWlwukSqL7JxhkS1YyxbZUKO87OwynEVK+KJONLyKUcBS0eNyRbbf5cere2sWydZCQYR7aeeC0HX0cGTFRHY8szQbypmUcrqrej5nY04rdc/i279P4YuCmYdCdX3ULWkhEEsueoRiYaymY9rXz9r29vayY8eORW+zUCjwqU99ii1btrB161aeeuqpJY+vHMr59L8DfAu4SQhxAPgS8C8qsO9+YLpZbSdwZfoCUspJKWWq+P/vAm4hRNNsG5NSfkFKeYeU8o7m5uYKDK+ySNPEmkwsKx+7hKu+HmlZ2Mnqtnm2LJtC1lySs0gJX8iNtCX5TPVSG6acRSqQKgLTbPwmqxS1XIZ9XwnNq9e8IU0iHselaSTySXSjgPQ0EI6EF50uoOtBXEEbUVdHJOdFyiT54j13NaPZlu38qLgWWfRYwuUKI7GnIuKVpJTasdyixxJRtwvTlqSrJLRLQmIpRY8lIoEaiexC2rEtW66/taY5Qr2KkexS0eNS7fumU6vix+UUPZZwrGnjFRnPYrBtyWTOJLKM87hETW4as/Hizd4y6jZqVPxYKnpcSi+I6ehCd1JPKhTc+NM//VNaWlo4e/Ysp06d4n3ve19FtjsXC4psKeXbwPuAe3C6QG6XUh6rwL4PAZuFEBuEEB7gMRwxP4UQok0UvyEhxF3F8Va/vLsKWImEU/S4DGeRErUqfsxN5WMvL5I9fVvVYMpZpAJFjwC6y43HH6hKJNsuWEhLLltkr4RX9uRkAo/bRXLwAsKWmL52og3RRW9H1wO4PKA1RAjlfXjsHIncJDaiuiLbTDuRFW1pzZFcLmc6vBoOI5MV8sguUW2HkSlnkWVEsuu8TvOPqnfKm5pir0ATmUBjdUV2UfiUcqqXQ9QbZbIwiS2rN+MpDQM7lV6+yK6PYmey2PnaNFEqkcybSCkrEskOenRcmlbd4sflOIuUKBVNVrn40bKtZRU9ltCFU/w433nc09PD7t27y2pI88UvfpF/+2//LeA0yWlqmjVuWzEW/KUXQvwm8HdSypPF5/VCiI9LKf/PcnYspTSFEL+FU1SpA1+UUp4UQvxa8f3PAz8H/LoQwgSywGPyXerlMlX0WB9d9ra0cBih647IXr9+2dubi5IwXop9XwmP34WmC7Ipg2hrpUZ2Lbnk8tupz8Qfrk7xoyw6iyy16LGE8OjYsRxSymVHCsollUzidbsxxs4TAvJ1nUSji7+x0fUgQtPwtNZRZ/pwWTGyiT7ybndVHUYsK4OuB5Z8vEoOI4Y5iW+qDrwyxA0LlyYILjMvtERJrCdMa9ZCl+USzxTwuRfXTn0mQgjCtSh+LDWQWa44AUdkj3VDPgneyl1vSsTysWUXPZaIeqPY0iZZSC7LqWQ+SlayrgpEsqGYetJapR+KWUhU4GaxhBCiusW8hYwzI7Pc89jtB5evqmlPtrSxsZeVj11ieudHneu3193dzWOPPcYTTzyB3+9n165ds25n//79U///wz/8Q/bv389NN93E5z73OVqreM6V80v/K1LK/116IqWMCSF+BViWyC5u67vAd2e89vlp//8c8Lnl7mc1YJWKHoNLywedjtA0tHC4JpFsl0dbVKfHmQgh8AXd5FLVs+rKFtNmKhXJBgjURZgcGca2LbQK3I2XsHPLs+8roXl1sB2vbFHtNr5FMpkMIZ+H9MQYlu7B19C2pAiQy+UICFeTn6ArQiB/hWRqgLwrUt1ItpVB15cWxQbQdR+a8GAalb/5SpgmEdfyp1ZLBHUNlyaIV6kIK541ptI9lkPE72Z4MleBEc1DdsLJYXUtPyXgmuLHKojseD6+7HzsEhHf1eLHqonsZTqLlJgS2bEY7lqK7Gxl7PtKRPxuBhNV6qZYiaLHEhUsfsz3JrBnpIOatolpZjFcBlJb/DVdC7jwdjnnrC50BMIppJzxUzc6Osq+fft46qmn2L7d8cU4evTonNsdGxujv7+fe++9l8985jN85jOf4Xd/93f58pe/vOgxlks5v/SaEEKUIshFf+sKXK1+vDCX2elxJq5oFOPKlYUXXAbZJXZ6nImvzk1sMI20JWKJdl/zkUsll+wskk6n+fznP08ul8Pr9eLz+fB6vegCjHSK4OkzbN1eOVMbO2sidIG2TGEsvNMcRmoksrO5PPXNQTx9SWx3CJ8/uKQIUKkRjKfZh8sbpSmtcSU/St7VXOVIdhqPZ3lTgy53XVXSReKmRaP76uXYtm1++MMfMjY2Ri6XI5/Pk8/nsbKTdOa7uWnHXez5md+a0y1DCFEsfqx8LYRtSxJZg80tyyi+KhINuOkdS5M3LbwVSpW5jszE8vOxS/jrnZbWmXGo76rMNouYtslkfpI1wcrMktS569CFTjwfZz3VmfG04nGE273s4FHJdavWednxbIGAx4W7UjNIATc9YykKpo3HVeFef5UU2b4oTPQsfztzUErt0JdR9FhCCDGVlz2TSCTC2rVrOXDgANu3b6e7u5uPfexjs25n//79NDY2EggE+Jmf+RkAfv7nf56//uu/XvYY56Mckf088HUhxOdx3D9+DfheVUd1gyEtC3tyEnd7e8W2qdfXk794ETuTWbYl4GyUih4jzUuP/JXwh9xM2JDPmstyKpmLbHJyyc4iBw4cIJVKcdddd1EoFMjn8+RyObKZDGOTKZ7/wQ/YcsstaMux/pqGnbMQy0wVgate2bVyGCnk8xRME8sD7mwWGWzH4/cR8Cz+s2iaF0240BpcaIEA4awXrDiGx1O1SLaUshjJXp4YcLsi5HKVvbm1pWTStLjJ75167dy5cxw4cIDGxkaCwSDhcJiAG9ZlR8kkggyeeIXUlk2Etn9oTqEdcemMV6EhTTJvYtuS+mV0yCsxVSyWMWgJV0FkW6aT2tGwoTLb03RHoGQqP9WeyCeQyCW3U5+JEIKIN1LV4sdKFD2WWInix0TWIFqhKDZcW/zYXOddYOlFko05qR5u3/K35Y+CVXCKgj3LuyaWIs7TsY000jYIVKC2AJyUEcO+Pg3H4/Hw9NNP8/DDDxMKhXj88cfnjWQDfOQjH2H//v28//3v54c//CHbts3WA7FylPML+fs4BY+/jmO7933gr6o5qBuNkt1eJSPZ1+SwVUFk59POj3NFItkh58c4myxUXGRL2yafThFpWfwUYzKZ5ODBg+zcuZNHHnnkuu1++yt/y9s9fZw/f54tW7ZUZLx21kSvq0D+XzF6bdegZT3AxMgwAEZ2BB2J9LQSiSx9ulzXA2haHi3aSF2fF4+VJRVyVU1k23bOaYywjHQRcPKyLTuHbRfQtMpM6E2aFlJCZFok+7XXXiMSifAbv/Eb6Lru/Bie/R4Yt5Bo+SRf++u/4MKhF7gtGISu+2cV2lGXzsVsHlvKZXeRnE4l81hL7iSJrEFLuALiYSa5OCArU/RYItAAif7Kba9IyW6vEs4iJaLeKJeTlxdecAlIKbESCTwbNlZke3o0ijF4BWmaiAr5xc+HlM6MTGtr5c678JTILlReZOfilYlig3OjCE7x4zJF9mxY9vLaqc9EFzp5mceW9nWWgMFgkGeffZaHHnqIYDDIvn3z9zT8sz/7M37xF3+RT3/60zQ3N/PEE09UbJyzseCZLKW0gb8sPhRLoFT0qEcrKLKLxv9mLIZ7TWWLsACyxRzqSohij09Hc1Wn82M+k8G2l+Ys8sorr2Db9qwWPkLT2LC2kzNXhjlw4EBFRLa0JDJvoVVgdkC4NIRL1CySHRtzvOftxCAuCXZgLdH6ped56noQ287haW+n7qwPN0kMMqRSFf5hKlKy3dP15aU4THcYWW7qSYnEDGeR/v5++vr6ePjhh2cI7BxsfohIqIXOOx7hjUPfZVP/CYIwq9COuF1I6Yj4qLtyoiWWKRTbqS//2uD36HhcWvUcRkpFj5VKFwGn+HH8fEWigNOJ5SpX9Fgi6o3Sk+ghY2Qqul0AO5VCmlblItn1UZBgTU7iqkA/iYVI5U0sW1Y0kl3ndaEJUfniRykdQdx8c2W2VxLr2RhEKlsaLaXTBt2rVe5aPr3zo1ZM7enq6uLEiRMARKPRspxFANavX8/LL79csbEtxIJz4EKIe4UQPxBCnBVC9AghLgohqpfMcwNixWIIjwc9VLkLsnC70evqqja9lksZ6G4Nt3f5d6Ol4sdsFUR2NulMhS7WWSQej3P48GF2795NwxwX9EA4zKY1bfT19TEwMLDssZaKHpdr31dC1NArO1G8UZTJcWxNxxVaQ33j0gtNdT2AZaXxr20lIAN48xKsCRJV6rJpWZnifpcbyXY+s2lWzqO+ZLNXst177bXX8Hq93H777dcJbEItANx///2M6m280W9C7CL0vgIzmlNNdxipJPGsQdjv2O9VgojfPRUdrzjZCdA9lS1SDDQ6/5YEfIWI5+MVse6bTjU7P04VPVbAMQtqZ01botJFjwCa5jjmVNzGLz8Jtlm5SLbb56SeVMEr25a2M2tYQcOA6Q4j7zbKSTT9a+AzwH3AncAdxX8VZWLGYrgqmCpSopo5bLmUsSzrvpn4Qx5yaQPbrqwDY65YKFeOyJa2jTRNpGnyo/37EUJw/z33IOfoMugNhuiIhvF6vRw4cGDZY52y76uQyNa8rpp5ZU8Wrbr0dBLTE8DtDRJdxnSorgew7Bz+tnrcrjANGYFuTjCWq45Prjklspd3o+tyhRAIjAoWPyYMC5+u4dM1JiYmOH36NHfeeSdeYc4qsAHq6uq46667ePVcnInAxqLQfvkaoV0tr2ynQ17lat+jgSranmUq0OlxJv5pDiMVwrItJguTFXMWKVF1kS2KbdErgBZ0ukaWZn6rTUkIhysosgGi1bDxK3laV/Jc9kWr4pVdEsKVTBfRhOYUP9o3pshOSCmfk1KOSCnHS4+qj+wGQVoWdiJR0XzsEno0ip1OIwuVtcezLdspUqykyK5zg4R8he/ws8lJPP4A+gI5fMaVKyT+8Wni3/wmvU8+ydGjR7k1EsF+4Yf0/O0zxA4fv24dXzCErgl233Ybp0+fZmJieZGrKfu+BQofTcNiuHcSY4FUEOHRaiayk8kkggJ6NovlCSPcHqJ1SxdaJbHraQ3iDgSJpl0IO0HMMLHtyjfPsKw0Qujo+uJuDIYnc8QzV/++hNDQ9WBFbfzipjUVdX799dfRNI333HkH40e+TTaTvk5gZ4wMpm1y77334na7+eGJYejYA7Fe6D84tZxP1/DqGokK2vjlzeW3U59JxO/GsGwyhQoXaUpZmeYdM9Fd4ItUVGQnCglsaVc8ku3SXIQ8oaqJbL3Ys6ESCCHQo7Vrrz6ZNcr2erdsi7RRXr1IxO8mlTcxrQpex0rOIhUqigUqauM3Hct22qlXUmSDI9pNWb3O0dWiHJH9khDivwkh7hZC3F56VH1kNwjW5GTFix5LlKbXzApflHJpE2Rl8rFL+KrU+TGXSk61QZ8Lc3yc9OtvoNWF8O/cyWHTRNd17rv/fnIdt5AQTfQc6GH86NkZY3ai4zu23owQgjfeeGNZY7WzJppPn9fGsJA1ufjOGOP9KQbPxefdnvC6kLZEGtXr6AbODEA6ncGvxcG2MX3NBAK+ZVmu6UWvbE/IRquLEM34cNlZ0i5JpgopI5aZmbIOLIdE1mB/9wgvnRnhR2dHsabNwLjdkYra+JU8stPpNEeOHGHnzp0UYpe5cPkKL+S28ta4oDd+mbeG3+K5i8/x3Yvf5ZX+V/D5fezdu5eTJ08yRDM0b4XRbshftUGMuvSKRrIrWfRYohRJrPwUexJso7JFjyUCjRVNFyl1eqx0JBucQspqOIxY8UTF8rFL6NF6rHi8Yi205yOeNcpKFbGlzeuDr/Pcxef4Ts93ODx0mMuTl8lbs8+6lf42KhrNzsaclCe9ggWhvihYxjXXi0pgSQtNaBVvkqZrupOK8i7rR1iOyH4PTorIfwH+n+Ljv1dzUDcSU0WP1RDZxW1W+s6/Eu3UZ+LxudBdgmyychceaduOyA7OnSpiJZOkX30V4fMSeu97mWxo4GRvL+/Zu5fwLbcyTJCBmwvEmvJc+NEpRt65OLWuL+gUybmR7Ny5kyNHjixLANo5c94odmaywMVjY9imTbQtQCqWJzE6d2ODko2fna/u3X0+myFvGHhFMQ/Z10mkbplpF1NpGzlczc3U5b147TxpvVAVhxHLykzb59wUTJsjl2I8f2KIsVSBTS0hsgWLntGrP0QuVxjTTFbkYm/YkrRpE3HrHDp0CNM0uXvvXq50H2ZC07jkjvPksQN84fXDHB3oJ+KJsKV+C+O5cd4eeZu7774bn8/HSy+9BG23ghAwcmpq+5X2yi4VKEYrmC4y3fasopSif5UseiwRaAQj7aTyVIBYPoZH9xB0V97pIeqNkjbSGFbljq9dKGBnMlUQ2VGkaWFX0S+/RGKGyDYsg5PjJzk+ehzTvvo3c3zsOEPpITZFN9Hga2AgNcCbQ2/y7Qvf5od9P+T0+OlrrgVVOZ+rMSMzvfixgliyss4iJUrt1d9tednluIs8WIuB3KhYsRjC7UEPLb9xw0w0nw/N76+8yE4X0F0CTwX8nKfjC3kqGsmechaZI5Jt53KkilXEofe+F83nY/+3voXH4+Hee+/lnVNneCv1NvVrfWR32Vx++zwTP0qyExftOztxeTy43B5yqRT33HMPR48e5dChQ7O6kSyElBKZtdDDs6crTI5nGeiO4/JorNvehMenk0sZDPUkCEW96O7r74enGtIUqhvJzqdT5E0DdyGJLQQu73qi9cvLw9Q0pwDRtNIE1q4h+JYHj2VjuTKkUqmKt7m1rDRu99wuPFJKLo6lOdafIGdYbGwOsbMzgs+tk8ganLwyyYamIC5dw+UKI7GxrNRUq/WlUipKDCJ54eBBNm/ejMgnGJvoZ6Stia0dOrs6NjI47sMwvGQSPm5ZX4+u6ZweP03EG+Gee+7hxRdfpH8kRmf9Bhg7C+23gctL1KVzNm1j2BJ3BQoV4xkDr1vDX8EGSF6Xjt+jVz6SnZ0ARGWn2EtMFT+OV8SdIZaLVTxVpMT0vOzmQHNFtmnF4sDyOz3OpFREacXj6EvsfVAOmYKJYdlEA24s2+JC4gJnJs5QsJzUsKHMEHe13cVEboJzsXNsim5iV8suwLlWxPIxhtPDDKWHODl+ErfmZlP9JgDqfG4EVM4xx7acwscKNz/CH3X+zcWBtRXZpC1tLGnh0Svfr3C6w4hLq77FY6Uox12kVQjx10KI54rPtwkh/nn1h3Zj4Jj1z2J1ZhkVmW7Uo9GpC16lyKXMKW/rSuKvc5PLGNgVylXLppwp+9mKHqVhkHrlFWQuT/D++9Hr6hgcHOTUqVPctfcu3rp8jDeG3qCttYEPdT7IPU17aL1jEz3RC3znta9x7NBJ8olLeH0auXSKlpYWNm/ezJtvvolhLP7iKQsW0pZovuvFycSVNP2nY3gDLjbsbMLrdyGEYM2mKJZpM9w3iWmmSSZPMjr6/almKKWukdV2GMmlUuQNEz2fJucNEPIGiUaXd9OoaS40zYNlZvCva8cjQkQzgJYiOVk55w4AKW0sOzdvusjL58Y4eHGCoNfFB7e3cdeGhqlczVs7I+QMi/PFaHYlHUZKUebLZ06TyWS499576Tv9BuMyy5r1m3j/2vdz77qdPLprM3dtaCSZN/jmodfITozS5nFxfOQdum7tIhAIONHs1u2OC8FoNwARd2UdRuKZwqxRbMNIYM/SLKJcItUoFstMgC9c2Sn2EhUsfpwqeqygP/Z0SuK9knnZU84ikcq2a9fDYdAE1jLrXxYinjGQUpKyhni+93mOjR6j3lvPB9Z9gPs67iNn5vjWhW/x/d7v0xJoYWfzzql1hRA0+Bq4pfEWHlz3IK2BVk6MnyBjFIuriw4jFTufs3GnvmBaJFtalpOKupx6LJcX3IGKFj9Wo+ixhK7paGhT++jt7WXHjh2L2kYymWTXrl1Tj6amJj796U9XfKzTKefq8zfAE8C/Lz4/C3wNx3VEUeTSpUv4/X6am69GCqSUWPEEno3Tuo1ZBoychuGTYOaciEjbrc5d6hJymPRoFHN4GGlZFSlAsW1JLmPQ2FH5yLsv6BQ/5tImgfDyRXwu6YicmSJb2jbpN97AiscJ3XvvlOfqSy+9hPALsmtynOm9xKbIZh5s3Uz2+ZcIStiLZJNo452+13nj0qscbNLpag7R7L8DjDu45557+Nu//Vveeecd7rjjjkWN1c46FwZt2vSklJKR3iTjAylCDV46b66f8gAF8ARsAk3DDF05S44cHr8bgUYyeQKfbw3CrSF0gaxyukgulaJgGLjyOYy6ZoTuJTpHRH4x6HoQy0oTXLsZjy9EfVpDNCQZGR+rwKivYi3gLDKZMxiMZ7mlPcxta6PXvd9S56M14uP04CQ3NYemRLZhTuJjeR71CcNCSsmJN15nzZo1eFyCsdFu8k1RImdOce7iIOHWLhrWbOCmxjW0BnM8c3iEs4Ma927Ikiv0cGzgEnv23sQrLx6jd2SSrnAHjJ6B1u1EigXBCdOkaQndOadTat5x04x26ul0D7H4G+h6gPr6vfi8bYvedjTg4exwEtuWaBWyBiQbg+D1kdtJ00IHgstp4+7ygCdUjJaXh2EY9A320dXRhWua8J8sTDpFj1WIuBdMm5GETf+4STzRx/rdN1Wk3bcVj6P5vGj+5Xv+A060NjWMSPSjx09jvX0aNq+tTqoP0Bsf5GzqdTwJNy3BRva07qE1eHX27N419/LFE18kbabZ1rgN0zbnjM7ubtnND/p+wDuj73D3mrsBp86gUraU5mAvRs8gdvoCttmDnU5jZ500JeH1EH7ooaW3ta9w8WOpaH2myM4ZFgXTxq1ruHWBa4lt7HVNvyaVZ7HU1dVd0xFyz549/OzP/uySt1cO5Vx1m6SUXxdC/FsAKaUphHh3JcXUgOeff56BgQFaWlrYvn07O3bsIOrxIC3TmVKzTBg9DUMnHHEd6YRwh/Naz34n4tJ6KzTe5LTuLRM9GkXatmPgX4G873zGcBqkVTAfu4S/6EaRSxkVEdnZ1OzOIpnDhzEGBwncccdUo56BgQEOXzxM665WYhMpdnpvZ8+WLnIH9mMHgiTa1hPvPcPoWD9pr4fYZJhsj0HfkMm2m4+w7ciX6WrfTXtbG6+//jq33377olqtyymP7KvfbXw4w/hAivr2IG0bw1OFIrZtcOnyC7j0GHrARnNDdmIDnbt2kc8PkJg8gmEkcLsjCK9edYeRTCqJyI0jLRvDWw+6m2hk+SLbpQcwzRSB5gi6P0g448Ejs/QnqiWyZ49kDyWcH6yNzdf/UKXTaTRN49aOCC+cGubscJLtayJomqciDiNx0yI1Nkp6YoKfePRRzp14maSdwZP1krcDXLE0xk4fpvfUQYJ+H3p9gfqcZML3ISLRCNt9nRwZeAGjboy168Z49dV/oOujj8O578NED9EGZwo7XgGHkeQszTtKAtvracayc4yNvUgouIVweBfaIqZ0I343ti1J5s3K+BabBSikoOnaJlKnUlleiSWREtq8bjYEvNzk9xJaiuAONC4YyTZNkwsXLvDWO29x4dwFLMMisibCT//MT7Oh2Qm+xPJOTuz0SLaUkv5YljNDSXQN2sJ+1kR9RBdoZS+lZCxVYDCR5Uo8y2gyjwSSGQ/j9igvnhnmA7e0LlnklLASFWinbhZgogcm+2Fy0JmBERp6QyPm4ABceBG2/qTj51xBkoUkr115DU1I7lt7N52hzmuK9Azb4O2Rt9kU3cTa8Fr6Jvt4oe8F7mq/iyb/9Q2oQp4QWxu2cnL8JIOpQdpD7UT9bvonMli2XJafvDU5Seql/cjEGJovg1ZXh6utDS0YRPP5yB59h/TrrxN68MGpIJs0DOx0urzvxxd10sukXFKQ77rxSgsN7RqP7JxhkcqbaAIKVkmEC9y6wO3ScGta2TfWutDJ2/nr6mF6enp49NFH+cIXvsCdd5bnMH3u3DlGRka4//77y/x0S6Ocq2BaCNEISAAhxF6g8qXK73Ie/flH6T7dzalTp3jppZd46aWXaG1s5CZNY0/sIt7JN8HIOsJ6zW4IFSMsLbc41ltDx6HvAOalwyTc7YjGzehuF5ruQncV//W4cXuuFTdTBv6xeEVEdjWKHku4vTq6WyOXLgDLL/DJJZP4Z+Tt5c6epdDbi2/7drwbr7b7feaVZ0iEEnxg/Qdpn9hC29p67HcOk0zn+UHQT9/5EwwYeVKNN6O33067t5mGCyfI9rzKq711xBqyfNw4wr2dkn84PE736ZPcsv3WssdqZ02ESyCK0/e2ZTN6KYk/7KH9pmunXE8efIbT//gE9bfdy/t+7teoDwW4dHKCxJCgoWMDk5NHyWQuEIncjvDo2FXu+piMxwnY49gIpL+FkNeHuwLd/nQ9SD4/gu7W0BobiF724bVz9Kcq6xB6tdvj7OfclXiWOp/7ug6GiUSCL3zhCwSDQX71V3+VNVE/ZwaTbG6pw+0KV8RhJGFaDJztpisapa6+ngtvHSUpC2wxAnRuf4CQO8DoUJzRgX7Guy+jGYfJTvg4j58+zwPctvdBXMFbOND7LSJrBGO9R7ic+BnW+htg+ASuxk2EKuQwUorMlURwSWD7vG00NLwXgMnkO6RS3eRyV6ivvxuvt7wc4NI2J8t0fFiQGUWPUkreTKQ5Oplhvd9Dq8fNhWye12MpXo+laPG62WibbLQN/C4XCCctgOKjJGquIdAI8T4w887UexEpJefPn+fkyZOcPn2afD6P7tGpX19Pe1M7Jw6e4O//5u+57QO3cd8t95HIJ3BrboLu4JS4PjGQIJE1qPO50TU41h/nWD/43DptER/tER/tEf81UWnbluw/O0J/zCmWbgx62dERYU3Uz3BuM2/0n2BkMsv+7lEe3NqyZPEnbRsrkcC9nC64UsKFH0JyyHHNaNzkBJ7q2tFDPRQyr2KnE2gXXoItDy8q8DQftrQ5OHSQnCG5s/U+1tZdm4sspeTQ0CES+QT3dtxLW7CNrnAXr/7gK/zwB6/wgcc+TWPk+nqRmxtu5lLyEkdGjtAcaCbidzs3NzljwRujuZCWRfr1N8DOEXn/3Wi3f/S6ZYTXS/rAa2SPHiWwZw/G4CCZw29hZzO413Tgv23n/Lnt/nrn5qaQqkjDppKzSIm8YZHOm3h0jTqfC1uCYdkULJu8aZPLmCAlfo8Ll8sR20Kj+K+4zqGkVPxoy6spp93d3Tz22GN88YtfJBAIsGvXrlnHtn//fqLTbjy++tWv8rGPfaziLigzKUdk/w7wLeAmIcQBoBn4uaqO6l3I2exZ7HU2v3jXL5JNZTl16hTHDh7ktfFx3vruGP/84Z20bH0Q6mb8gQoBDRso+FsZPv4mo6cPYmeOQ+AtaNh43d1lU+c61u64bSp6q4VCCJe7YsWP2ZSBVoWixxK+oNuxCFwmJWeRcNNV/2ArmSR3/Dju9jX4t2+fer13qJeDAwfZvXk3m3O7wQ91ExeYHBrlqbzN67kkPh+siXr5iTUd3N11K53RMIXTjXzzq31ciPXw5qX1DGsN/ETEj88b442XnuOWLZvKjrI49n1Xj2lsKINZsOm4+doLWzY2Rt8/fgVXQmfwu6c5FXyFXfv2EW72M3o5SbipGZ+vk3Smx4kWenXMVGV90qdjmSapVBK3nXDusv3riAT9iApMOet6AFsa2HYBb3srkXM6urQYyVU2H3O+SLZp2Ywk89zUfG0KRKFQ4MknnySXy5JOpzl06BC33no7z58consoSWcwTC63/C6gvaNjpIaH2Lt3L8eOfp/J5ChtdR34R/30/+8vYtsSKW1kLk9ITqAFE3gyUdpSb/HyF4fxXryTzR95kNs6HuKQ9TJa/2UOHXqKte971OkCmegn4qqrSE72ZO5q846ZArsUtY5G9uD3dRKLvcHo2A/wB7bQEN2NWCBHM+xzIYSTK7u2EhkCpSlwXxRLSl6aSHI+nWNbyM999SE0Ibg9EiRhmPQkM1x55xi9Z88yKGBnyE9gRuqdcOl4t27Ft3Xr1bS8YDGqmRmH8NW0oeeff5433ngDl8dFqCNER1cHd2y7g5sbb0bXdO7acRdfffKrvPXtt7gyeAU6oSvcdZ24vvumRtY1BBBCkC1YDE3mpiLUvWNp/B6d925upj7oiLjXe8bpj2XZvbaeza2ha/yfC0RpCLnZ2OzlRH+WV8+P8d7NTUsSGPbkJNhyeZHs0TOOwF53N7RsveYtPRoBTwirfgNa8gT0vQYbKhNtPDNxhlguRpPrZppmcaU6PfQWV8a72dlxD23BNq4MDPD2V75C7MQx4p44f3P+/8d9P/8v2HP7nbimzaBqQmNP6x72X97P6fHTdASc9ufxzNJFdvbYMSflcVMzWv3sheCezk6sm7eQPXWKQv8AMp9DD0fwdd1C/tx5ks8/j2fjTfi2b0PzzjL7WCp+LFkELoHnnnuOoaEhAEzbRBMamtCQEixbIgTX3dBJiWM/C0gkSNCmnYstLa184P0P4fbquKadxzM7P46OjrJv3z6+9o2v0bWlC5/uuyYdZD6efPJJvvzlLy/pMy+GeZWUcK6M7ys+bgYE0C2lrFJ7rncvTe56jsVO8kLfC+xds5e73/Mebu07xJjI841chL8/0MevbPvgdfHbbCrJ8IVzjPdfBiQNO3+ClkAebeQ4dtiL1X4Htm1jmSaZyTjDPedJxWNsvP1OAuFIxQ38cylj2f7YZixH4XISze/C1RxAj3imLubeoIvYYBppy3n9ohei5CziK96lSynJHDoEuk7gjj1Tyxm2wVdf+yo6Oh/atA9jwqI9nCJ97BxfH53ktXAjW1vSPL4jxPq2u/D7r0Y29G1b2Xvr/WT2n8c7fILTa9r4QdqHd82tHLzQzYcPf4vWO3/Gyc9cADtnohdTLCzLZuxykmC9l+C0tAu7UODoE/8dI5tl2y/9Hqefe4UTT32TqMdDx4MfIBXLMXg+QevmjWRzl8nl+tG9DUhTIk27IsJ3Jo6ziIluZch5vNR5momGK1P1XxK9lpUhtL4Dj/QSzsKIu7KWUqaZRtM8s6YvjCTz2LZkTfRqlFLmknzrG19jcHCQj9/ZzMG+DC+99BI7duxgbUOA7uEkazaGsewebDuPpi0tdSZn2Vy4fJkgNv7mZsYPHiCSyNLQU8BI9RFsu5nQ2hZk9gpuTMyOOIkmL+NaI/nv/Qj70gkOf+8sZ08eZtfDH2TzzTt5u+E0I6PvMGp9jGZPCIZPEG2+j7OZ5VvNJbIGAa+LQq53VoENThFfwhKMaOvpnXiTkYGv0xh4jQ9s+WXqPHOfNy5dI+StcLGY5ibnCvD8aJzBnMF7oiF2h6+90QqMDLPx7SN0ZTJkdmzlR3UN7Ac+0BCmwa07asC2KfT2kjtxkkJvL4Fdu3B3dFzrMFIU2YcOHeKNN96gaUsTrbtb2dS4iW2N2/BOa4K0tnMtv/nrv8k/PPUP9BzsYXBkjOMNWS7Ut7Eu0nyNuC7h9+hsaAqyocmJdo8m87zeM84Lp4fZu7GR0VSeC6MpbuuMcmvn9cWIYa9TR9AUsbhdq+ftSzFe1wX33HR9+sNCWKXur0stesxNQv9hJ3I9Q2BP365FBPea3XDliNP8p33ndcsuhoncBKfHT9Pm7ySjtVxXwJtIj3LmzDdZK7z4x3X+vvv7JA8fp8402PjgT6C31nH8e0/y4lf+JwdeuZN777uP22+/Hbfb+b1s8jfRFe7iXPwcHaG1CCCWKdC1hFlbY3CQ/NlzeDesx62l53XI0RoaMC5dwkokCH/kowTfcxdC1/Fu3kzu5EnyF85T6OvDt+0WvJs2XVu7VdpuNg7RdYse51xIHIHNbALbllPZKZomkAgsW2IDruKyui7QNIGRs7AtidurO1pH6AjEVF52JBKho7ODF19+kV/e8sucO3uOf/r4P511TNMj2e+88w6mabJnz55Zl60k84psKaUlhNgnpfwscLLqo3kX03ZmjEBMcjI4yI8y32cngqbhSzRsuYuf3343X/nS3/Lkk0/yyU9+EpfLRSo2wZVz3UyODKHpOs3ru2jduBlvoPgjEIlA/yFInoIN7wNNo5G1RFpauXjkMGcO/Ii123fSvK4LPRql0NuHlBIhBHY2S6G3l0LfJfRwHf49e2a/i52BtCW5tEHDmqWlckhLUuibxBjJoPl0rEQeczyH8Oq4m/24mgP4gm6kDYWciXdaQwvTspGAu8xcwZKziL/O+fHInz2LOTZG8D3vuaYY5/W+1znbd5b3Nt+HOFmgbo1F/uRRvnHhCkdaW9kX7eZDwVGimfvQE3EQESc/HhCaxvoP3kvDsTfwTZ7BPXCW8zt3sn6di2SPly+/Hee3Iy/gufmD8zoYSNNGFuypSPZ4fwrLlLSsr5u2jMnwc88ycvEd9D17qG/tYuejjez/yt/xxje+we6hIdi8gytn8/gjW9G9AdLpC0SL0/GyYFVFZOfSKfIFA5eRIxtspAUP0Uj5TV3mo5S+YVkZghs6cGtB6rOjXK5LYafTSy/mmYFlZ+ZMFRlM5NAEhC5Pkjvfg8d9mddOneHEhTg/sXMtm3fdQb3/TT7/yiA//OEPeeChD3N5IsOFcTdr/GCYSbyepYnskXSGocEhPrRxI68/9yW6Tg5Qn+1Cr2skuPtOmuoEcjKHq3kb3nvW8Wb2aa4YblojXdz8ic289uw38fdeojD4Nk8/dQrv+i60LQ3AZQ699Y98+PYPQv9BmqIxTto+Uqa1tNzjIpNZA80eIRY/dZ3AvjBxloHMEOPZcSzpdHxrCG2hKdjC2ZGDfO/CU9zd+QE66zrn3H404K6cjV8uTtYT5pmRGJOmxU80htkcvHojZafTZI4cxRgYQI+ECT34APUtLXzYMHl2NMF3bJufjEZp9TrXKPeaNXiGh8m+/TapVw/gXtOOf/dudE9oKi/7/PnzfPe73yXcEWbDnZu4f/09hD2zW10Gg0F+8Z/+Il977jscOvUcDWN57L1n2Lu5g0b//Oe9EIKWsI+Ht7fx6rkx/uHtfvKGxXs3N89auAtQ56lDFzrxfJydHeswLJvjAwm8Lo096xc3dWDF46AJtPmagEkJqREnnSbWB5oGzbc4NUd9B0BosP6eWVfVfD40nxcrEYeb73JmJQbecoR2/fpFjbWEaZscHDqI3+VnXWgbPUxQH7y2CP3Iyb8nH7c5NdrID/q6WT8yzO6ozi0fuJ+6PfdDfRfRpiBnX3iWidQgzz33HC+//DL33nsve/fudWo3mm9lMD3I0dG3CXm3LMnGz87lyBw8iB6J4N/cCRdOzeqRbedyZN9+m0J/P74dO7CSSazYBFgW6Dqaz0dgzx68mzaRPXaM7DvvULhwgdADD6CVdIbLA57gsoofH3nkEcDxGU8aSQJ6iHRBoglBxOeeyrc2DQujWD/k9jipo6UbScOymcwaU84smhBIKTELNmbRmcvtc6FpjtC2pFMw7nK7+Juv/Q3/5KP/hDpfHZ/8xCfLimR/9atf5eMf//iSP/NiKCcn4IAQ4nM4jiJTXSKklG9XbVTvQtxr2gllM+waznH+rQMcYRQ7F4LJAOaVNO958EMc+MGzPPmVJ7kp0kJ8cAiEiy3v2c667Tfj9s7I92vb4dzqXT4ISNjwAGga4aYWtr33/Vw8+hZ9x46QHBulLRTBLuTJnz+POTSMMXgFJLgaGygMDGCOjRG46y7cbfNX/ecz5pKLHq1Ugfz5OHbOwr0miKfTEZBWLIcxkqHQn6LQn3I6HhYscmljSmRfHEvzZs84hi1pC/vorPfTWe+/Lkd2OledRUJYiQS5Eydwd3TgWX/1Itwzdp6XD+8nko2wt24PpPLk3zjCD4bPkG538c/CV7g1msPXche65nMu5ANvOfZc9eshuh53Q5R1t2zn9LEEm+PDMDDBxa4m2re7OHHa5ntnYryflwht/Qnnh2QW7KmiRxemYTFxJU1dkw9/0SZR2jbp117j9BvPEV8f4n33/DyXTx4DYMOduzn2xlscf/VVNgxcIlnXwWWfZMt7NzKZPIEVciKUdt5Cq2AXvqnjnEphZGJIwyLvC6MJL9G65Rc9wtVItuOVvRa3L0QoowF5EqNXqA9ursh+LGvubo+DiSyNBYm4fBjLynEileOFvjjbNm/hzg/9NEe++mdomTQ76xs5cuQIO265jXX1IS5O5GlsBdNI4PUsPhoIcPDUKUQ+R/DECI2n36ZO1MOGu2j5wHtpEGMYg5fx3b6HTEbnhXNPM+QZYNemn2VP+15sWyN2ewh3y6vYsSwtvZcZP32e/gkPemcAcfkQifc8SkT30BzrhsBtTBjmokW2ZUuGJ3Ncnsiw/3Qvzd7j+Gni7m33Tgnso+e+w/m+/YTrN7Bh7T20Blpp8jfh1t1IadGum7w90cPrV15nc/1mdjbvvCZvs0TE76Y/lsG07MUX5hXSTjQul4BcgvyFl/mRaCGjdfGTG26mw3c1apk5fYrCqdMA+G/biXfLFkTxbzfqdrGvJcq3R+N8ezTOI02RqXXdra24Hn6Y/Llz5E6cZPK55/DVZfC12YyOjPCNb3wDb8QHHRLPsXOcODdGfWMzTU3NNDS2oPuj4L2aljQQz5GItrDpppsInUmRfquXV5tf5aGNDxFwL3wj63PrbGwO8tqFMezi1Pxcx04TGmFPeKrz4+519RRMm5MDCVyk2bluzYIpPSWseBw9Epk6ZlPYNqSGHWEdvwRGBoQO4XbHVav/IHR/x+nEuf1nHXE3B1pk2uzs+vucroQXXwbvTy7JceT42HFShRTv7XwvY8XNTo9kX7z4Q/ouXebymTBhO8aHovV07biFyK2duBmH3ldh8B223fEzJJJjRE6f5q6Nt3FkPMn3v/99xsfH+amf+im8upedzTs5NHQIQxskkVmc+5CUksybbyINg9ADDyAKThrGTJFt5/Oc+vaXyU/GuHnvIwRv2Y41MUHypZdIv3mQ4H33TglYPRIhdP/9GENDpA+8RubQIYLvfe/VmRJftCI2fo7whXTeRgiNcFFgSykppPNYho3udU+J5em4iznbyZxJKmdS53NsbN1eHU0TFPImhYyJ26fj0lzkzBypQgqJpCncxNe/9nU+8lMfIRQM8dhjjy041q9//et897vfXfZnLodyRHbpdvNPpr0mgfdXfjjvXtKtnVzQo4zkn8fSdSaHvUxmh8nmv0FmeBun/OuxXWs43NPPYCjJnu27iYTbMQsebGuOi1vrdkDA5TdBvgQbHwRNw+31sfmuexi6cJYrZ06RvPwmkYuXsOMJ3O1t+G6+Gc+GDeT0UexRQebwcSa/8w7axha0La2gWbjdDTQ03HPNVHe2mNu7GI9sKSXGlTSF/iTCreG/pWEqLQLA1ejH1ejHzpuYI1kKw2lcI2mysRDeqJeDFyc4N5Zi3CvQgzo9qTTGxCRuIaj3ulgb8bOrpY4NM6KnmckE3mAQTdNJHTqEcLkIFKd+7LzF2KUrvH7hR4xcGuWO5j0E17Ux9sJTXOk5hLbOz/2dLdx881oK9R3Ud/6s82OQT12NvFw54jzqN9C6czPDPf3kzX52jHRjNzTR2xihPniOnsJ67DOj3M8rNN7y3lkrtO3sVZE90p/CtiUt66aluRw8yJVjR7hcN8G6PR9AK+hous5tD30YTddp37Gbbz3xBPVZg2ZjlHHNjf+DP8tk8gRZsw8XrVVzGMmlk5jJQWwBpr8eoXmoq5jIdmYcbCuLJ+zDXd9AKOXCLQ3ODfZyV1eFRLaZwetpue71ZM4gOZmnM5bA5U2S3LiR73zzBVrCTTy49m6Of/7/oXvkDTTLoMMXoUOs4zvf/jb33PHTjMcMTuQkjZGl1YBLKel+/U32XBnCc6UfO+JF3Pohbv65nyGQiZF+8xK+7dtJbajjjf7XGJ0c4DZ7KzuT29CaBS6PRkv7WgrmVjqi5zi76Re48/J5wm+9wCkrQWy94Aff+zwPbbuPusnLuF0biZkhypkQtm3JxfE0lycyXInnMG2bgmHhFVfY0BRkMHcb3z42zHvWR4gNPcOF4aNs8rZym/QjXBEItU9tSwidtsZ7uJMC/ZaH8/HzTOQm2Nu+9zohGfG7kRImcyYNwTKvQZNXoOdHjmPTNC7kTVKRKB9NHqVpMA7r78GWcG7/M1w5fZjg2i52v//juGcpCqtz6exrifLsSILnxhI81Bhmvd8554WmOdfXdevIvvMOueOvkznTzzcz3ZhCINrT3JHy09XWQbpgEbvcTbzvOLomCARyjAXyiNat9KQbOT+ikdYu422RtK7by8VXjuJ65QIBT4D7629HjMUwxydwt7fhWXf9Nzc8meO1C+Pc2dXAuoYAJ64keOH0CPdvbiLovf6nPewNM5Qemnq+qwNyycOcuzSEy4jQHGnF62nGU3zouu+6bYAjsl3t7de+mE/C+RecmxzN5RT416+HyFrQizf/Exfh8BcdwT34jmN/2HrrVROAaeiRCIULF5zZWd2F3PggPad+wIVTb+Bd9x7qvD6CLp2QrlHn0gnqGvoc+eVD6SEuxC+wuX4zLYEWzg+O4XVdbaiUSw7y5tEXuHQ6RJvm4iMb1+Gvryf03vdeLRocOwe9ryKSV7j9gX/Cq+kvkOg7wkff9094MdrEy4ePMpbX2HvvfRTMCLF4A90jPUSEm52dERqCninROR/5s2cxhoYJ7LndSZu5dMY5ftNuzmzL4uj3vsLEcA+pPZtJ1I1ynzTxNDXhv+02skeOkj99Gt+2bdds293Whn/3bjKHD5E/exbfzU7eOP56x+VsmQ4jlm2RN2x8ukbY75pKEykks5jZAromcXkkQswuOz0unaAXUnmTVN6cCrLpbg2v5qKQsyjkTEzNImtl6VjfwTvH3sE2bHRN58UXX6S+TPOHnp6eJX/OxaI6PlaI/3zgFa7ERtHyWWTrXvRmN/6BXqKp84QuHGc0mmS0eT3ebBMjiRxaQdKqSZL9EzSNp9i5u4WOxiChmRfH1m3OiX/pDeh5sSi0nfykto2bcV+4yODQMCOZJMHODsIf/jASm3j8IJlkL5rXg3Z3F5wexO4ZgYkc3jt3kLeHGB19gaamB6eifLmUgaYLPLM0TCkhpSRtpEkWkkymE1gXkgTyPiJtjUQ3N8+ZsqB5XXjW1uFq9uPqSzJ+fIRXYkmuWCbpiJuIX6cz6KPQCLG8wVCywMVsgWNDcb4zFOfu1jCPbmgm6naOTyYRJxCJku/uxpyYIHj33Wg+H+Z4ltS5MV5LHmAkEyOSinL/R+/mynN/T6znTUbaWljTtZdbH9jOWPYo+DZwbOwEbs1N2BOmLtpJqHkruplzrI0G3yGSgWhXE+ZoK8nUAXZdPsXw5q2k1odxJYbQN23lxVN93C3fpHP73us+u501QYAJxAbTRFv8U1H87JGj5C72ciTVDR1R7rzr5zjw4pNMWH20T2ygveVWbrnlFoY//GFee/557jUzaAN9JEZy+HztZAsXCYmWqjWkyadSGKkr2EKHwBrqfD5cFSqKFUJDL9r4AbhbmgiPuPDaeS6MXuKuCuzDtg1sWZgS9NO5Es9ijGVp1+PIeoMnX3gD3e3iZ3/hUU5+7UuMXn6NqBFCBOoYGT3LWnOIXH8PBa+PzshWziVgnXeAbTt34vWXf0zsXI5Lzz9P8MwZ0r4m0m2Czq07uf0T/xTNyJF85W1cTc1candxov9l3OS596ab6dTvxx4skD02indTPW0RH8fjm7gvMkpmvIfjt93PLo8X7c3vcVwf5uLa03T3bqQje55IOsRw4AGomz9Cms6bvHx2lNFUHp9bp6spwNr6AOlMHy/lbHZ17aY+3MnB7j5e3P9FcoU+dvm6WG+tI1PoxjP6TVz3fhIRvhrd9/s7CPjW0FUYpSNyO0fGTvDDSz/krra7rvEmjgSutqMuS2RnJhybN0/QcWzyRcAfpT82wmgsxZbN99CkpeDKUWKxS5zsHiQ/OorYcjMX14XIx49yd/DuWbvHBXWdj7ZE+c5onOfHEjzYcG26ieb3E9y7FxF2cfxzf0JD0od1Sx0362vZe/tDhDbciWEUSMaS9PVc4ciVk5xOjZAeCZE4mSKHIOI3cQfOYSUMTKFRH4HJC0OMfeEiJ9Yf4qb6mxAuF4XeXuxs9qoowmkK9OKZEep8Lh7c2oLPrVMf9HD86EEODx/ill330NLYeM1ninqj9E32kSkkKWTPkkqeYb0VxzxbYOjcAIH2ASa1lFN5Bbi0EI03PUzdhtuvnrvZLHYuf23RY3rcEdjShg3vhci669PnpHSKHZu3wpYPQvwSp/peZvDSD7ll/ftZs+H91wg8PRpFWo417UWXl7cn84yHbkO/fBqzu5t0qBPbsrFNG8uSSEvS5fOwKxpkfb0ff50Hj89F3spzePgwYU+YHY1O45JExiBSimJbBi8f+BLnTnqpqwvzkbVdBIJBQg8+cE2K5WSgnkt2mnTfS4z6N3KhqYPE6WMc/MJ/I9ZxG0ZjKz84epFzMZtbtm7BbTZQSPRzdvI03zYL+HTnGAR0ScgtaA17WdcUIhgM4PH5cft8iEyW7LFjuDs68G5yrDfJxq7Jx7alzVsvfZXJ/lM03NnJmhabC7H97E8eZkfzLnzNdZiNOQpvvYTe1oa74dqov3fjBsyhQXLHj+NqbnZ6SPijxa6SyalUyaWQNQ0kGiGvjkvTnAh2Io2RN7F8LgyXRq5QQLPT6H4/mhAIQBfgEo6TiM+tY0tJpmCh5c2pm0VN1/AGBKlMmkwhC2j4fX6ELYjFYrjdbqLRaNWdQpbCgr8MQohW4L8Aa6SUjwghtgF3SylVM5ppbHHlabHjNIYCePUmrFO9+BMm0Vv2MhJ/h/WJQRKhIOe3bcG6coWB0z9iz4afRWxt5OSpcZ5/rZ+mzhB1fjetYR+tYS+tYR8+t45s3kpfepALF1+gaeIMW7b9PD5fI+nXX0ePT/L/sfffUZKd53kv+tuxcuyq6pzD5DwDYAJmkAEGBBJMomhKurJlyZaczpHWDbrLXvd4OcrnWrZ1aOvoUBRJSyJFECRB5DSYQZgce2Z6OudUXTnufP+ongCgp7sReCV5+VmrV89U7d711U7f873v8z5v25NfYODYm4xNjeEtLFHSzpHPzzAzoxAOb2H79u0IzQLGzAyl06fhdBbXtl4K/lEWk68Qq3sARQlSKRq4/cqHLtT50jzj+XEKeoGiXqxpLm2ITLpQNInRBo2qdB3XhIs6Tx0xT4yYJ0bEFfnQvixFZEDRSA9NcrUssBCwkMdnac9eJO0J8fTTv0uwoTbxarZNVjP5yfAipxbyDBQqPNZWx76AG61cIhKJUr1yBbW1FbW1FatkoI3kuOwMoDcJVF836KyvY/zMi2SunmYm3IR87yGaqOP85R+TqVMxq/6bGq8bEBDwqT6CSpC2WBfR8Us0irOUWo5Qnd6EnR1iz7ifN5rCDKeneWrD57kqmLx9dYxtpsjGbfveV+xhl01Er8zSTBHHgVhrLTqiDQ2hDQ0xalVIhzO0d+3jx8f/M+MTZ7FEWHj1X/K1u/8+DT0PcPjwYRYWFrjy1lt0WzKLo5N07O0inXkHU06haJ+ul+wNVEtFLD2LLsr4vQlCLjeC+ulpv2XJi2XXLMe8bc14z8v4dJ2J3Nynsv/VGtHMTOTwGjbR8Dz/fgwyZY2/+8XHOfXs9yiOvEJI9rHz8X+AL9DH6dnnGen/K+RMCun8D9h9z5exJueYTqu4M13EtrQRa/avWcyrT0xQPneeoWPvMtHYgiAK7PS7uOvpXwFFoPj2CRAEFjbFubx0mWZ/Mx1KCcw8/oYenJhNdShDdTBNfXuAy5LKUnQvO513yJXHuLB1P5sNm9KZnzJtz3M1MUjM00xo8iwDRYVEvwtfJII/EsUXjuINhhBlCUEQmclWeGd4CcuGe3vjdNTViu9s2+D49ACZdIU/++O/Ii7l8AQmSQpV3NVO5pUmGu/pJl6Nog+/hP7Mf0Tc/TSuDZtu2t6Fw3tZWPg5ASfJg20P8t7se7w7+y73td5HxF2LPvnVWho5W16HxadWxBl8FVtzY0UOIcoBJK+KKQqcX5wlYpZJXnuGM3UtmNgsvfQCUlEguOMpIv4DWPOTXBjvZ3oozb66e3C7VRRVwuWV8QRVXB4ZjyRyr9/Ln1ye4T9dT9EX8/HZ9jq6I7WxOY7DTy5cx18nQ8hkb84mPhpgIjdP8cWfULY0ZhSH62GdvJzHVbAIzHiQ8nmazWl6fG7GlHmakw6NuRTZYJmJcIR+d4TZdInFwCJt8Q1II6OIP/kxcnc36qaNpKs2l+ZKSKrK3VtbQKtg2QJN6dOEXSOMJIuMvzVKuWcXHZvvuVmYHXKFMPQ0IzM/JmToSBMGgSU/vdEWzmagaProrPNgODl0O0u5Msb8pT9Hn5smuvcxBFW92Ynxpl1sbqbW50F2Qc+jt9wqPogbbiIdh8AXZ8TIczXahJIxeHfkeeqSl9m2+cvEArUW9UIoxIJu8MbwBAuxetSiSW9OpqkcRchOYTcGMcIxdI+AJkNOcLheqvLsfIbYfI4+QabNpTDoXCYrFni4+6GbzhTZikFnrHYO+0/9mBOny7g9Hn7li19CeO8Erp5uRJcL0zQZzRU4PjHE5YVp8rkQ5aKN6Uxj6xZOoIfe3GXq569R7usl0WmjL13AOnGVzZ3tBClwrjhBNF0m4o9SskTKtsiUJTI4aYHjEHU5JFwOccXCe+UqLo+b0JaNSIV8rd6okrlZkGjaJqfee4bK2HHCW+toaG3G42nD5Wrg6tJFLi2eZkO4C6VHwpiaxDz6Z9Q/8VvI8vszEp69ezFffoXyyZMEHnoI4WbxY2ZNku1YDla2imPYNRnkstWeLUDVMHHJKqos4VgWWq5EyXIwPCqiS0ESBGxBwNZ1KFcQXCo3VnSSIOAWBdySiFcRwahFv8uWG4+nFhiomBUMSccjuDE1G61kkqvmEASBSCiCUyhju12Irk9fNvlJ8Nfa8VEQhMeAPwQk4E8cx/k3H3hfWH7/s0AZ+NW/qVrw+9Ij5EsF8iU/ppFEFQyatnfS/OgDqIGvcubtv6J0+TIdyUnOdLUz6Z7hB+de4J889BX2PNzD1YsLlE0Q3DJT6TKjyy2cJVkna47jyDmaYlsYTl5k9J1/R3eqgXoaCe2+CzHUTFdPnuGhtzj59v+XgmkyMCBQqXiBUS5evMjjjz9OpLmZYDRK6cQJzAujhA/tJOdcJrn0CtHIfVRLBnVNt9JS6Wqa/qV+FsuLuGU3EVeEem89AcWPd0LAHZDx7YtT8RkkK0lSlRRLlSXmMpN4rk/hFlw01HfRXN+LLxyj4MBf/sc/JGflGe5spSrL9FSW2OmvEKhvY3Ssn2ee+X/z+OP/d2KxFlyiSL1H5e9va+HcdJafTizx7PAi53xQL6jUjY4jqCqe3btxDBttMMOAMcR8JIOv5MfJZpDrC4yen6cixqgeaKKj1WY+c55QXmWz+zHibd2EXCFsx6aoF8nr+VqUXs+T03KcMIpEg0EatKs0RgYg2Ml0foFIdoJupZlrYT/vXTrBFx78HCffe4vLgyMMzabZuHU3PU0xZEnELhnYXpnsQploow/VLWOm05QvXMCMhHnu2hvYrgrJgXchX0HIRakLJJgSxvk/X/8PPDl0gu33/QOeeuopvnXpEtpimvTVa2y695cQcypVaRK33rjyhfkJYFSrWIaOYJSpun34BT9Brx9xhVT0x4UoeTH02sQd6GnDJbgIlUvMlRdwdB1B/WRNi+7kka1XDGYnc3T5NCZUg9MV6Nu1h/7Xf4Z25TXCsod9v/r/JL7tHqrDWfaLT9LUuZUXj//vjJp5csWXaOveT3oig3jtPZLX+8n19tC0fxPeyK1osaPrWKUSdj6PPjWNNjlFOu1w1qMyF63noHaCvfc+ihBtp3K5HzOVorx7A5eKgzT4GtiX2M78wk8J+DcjCCKCpybJqlxJ4ZkqojowR5zOug7uZZI3hWYubD9AV0mnfP0vyJ44gfb3/gVNEwplM004sZNiJk1u4ZZswHFgJlthPl/F61LoqQ+SzysMuD2oXi+WNM2lq4OMDMp8RpygLE8ybIlUtC58eh3ZygyXXp1hw95dfPnRX8c6+QP0c8+jDY+idnbi3rgR2RvA799EoXiVhK+Xwy2HeX3ydd6dfZcH2x7ELbsRRYGge22HEStXxDz/JmZGxanbBvMmzGdAgNOKxdzEaeTpN7gsR0hffYvWiRJxJUhL3zbinjnCoXka49uIZvycXzrPucIptum7cXRhuRsEIMKUYTBd1en0yTRGfJxbKHB1Lk93wM3hxgiX332bqZEhDshe2pQEurGZzPAUwtApjJZOJusbmIlUUcQ8fXkFv3877kfb2eC3cI59j8LsLI7iZ+vdm4l17iCZ0pCTp5jwWYzbIeZUN4/LGg1bt2BdvYZ+pZ+x4XGG/VE8qkJnwsf0uWnmzCLB/BVkR0ePbEIJbyS3NMn0xWNUpi7Ts+swQiiBOf0zivPvsFiQEcfdFAxI1XuoehU8XTu46N5Jx84mIstpesusMHfxz0nNvIXx6iJ1+57AzGRr91M4DKmRWhGjOwQ9D4N6hyzJbW4iTrSH6bkJzoy/R9yMsNf1y8yqp7g+f5w30n9IY8dhKmoTr4xO0j01giY4BMKtxMsatssgH7LY1GAQVq/C5qfe5+z0qG1zrVDhXLrIpZLOe7kBrMIEu+WNpK8a5JR5RI9EdamKv87P1KX3+MlrV5Elmaf2PUr+lTPoA8PMZnycPTrENdsm45QQqBDSDWJph2hunpgi0hgJEmzsYHi3C/fVa3QsLHFhWy+LIY238xr5yRSPNLVzsUMi1+Tjq3d9FlW5FRlfKlQZX8wxsZgnVaqiXTlP1HTjNPeSGhrGPTqMy6UQLkzh39iC16hy8tJfoI+8SrS9kUjbQVKpejyeMN3ddxOJHuCdmXe4ogvc23wv9j0tZI89x/yZPyOx+2nU2+pGRFXFe/ddFI8erflr795VyyJU0isWljqOg53XMZJlrGQGtAJOyAFTx3FEHEGkali4DfCaJmU9R8V2qCAiuhS8bgWvJKCIIoLqwZZErFIJBxvB58NCoGrblCyLslFFtQxcgoUqOpjVAmWjgq3KGIKNW3LjVlwUrDyVYgnbsfFLHrRUGluvIvp8+Fx1H/oOf50QPtg550MbCMJpx3H2CYJw3nGcXcuvXXAcZ+cn+uBalcUg8DAwDZwGfslxnKu3bfNZ4Heokey7gT90HOfutfa9d+9e58yZM59keB8ZM688TzZZwK7fSkNPK9KpV/Bs2ohnW61hiWVbnHn3xxTPnSHc2s1QWz0vj44h6iL/7MgXaVajzA5mCcbcNPWFWSyWeW/qKv3z01R1hUZvC3WeOhQji/DWn+Nk5jA7NxNt2YWsGiwtXiRV7UczRKq5Drb27eWeQwcZmxrn1VdfxXEcHnroIfbt24dgmuRffRVsG88D+0kX3qFaLlKY2Uz7po0IQZP+pX5mijO4JBcboxvpCnUhiRKO46ANZzFTVVzdIZT4hx+s6bePkhm9zpKTQ89Oo9hV/KbJyOgUGaGAqXqQZC8N0Tj1iQ0kdjxA/e7dTE1c5I03/ghJlnnkkX9Cc9OW9+13sVDlpeuLXJmbopKdoSsQpHlDL/WJOIHpIrPpyxTrMjRH2zjxk1egnKJiO9RPGtRt3sKOX/4sdYpCKfcOarIZn7kBz/Y4onpnecxUYYr+pX7Sbx5jo7dITGgnvVDHon6RvAHHmuOYkpc//MpvoyoKi6OXuXKtn4Wqgprooa+tneaZMiVRpGBDx64Y+VKF1Isvk5yd4nmxH0uZIGJBY8mPvximMVBPoH4bI0aSN9wXqKsusVeKsXXX53nzQobwufNEos0c+v3fpWJeITd+kajxEIG9n54FE0AhtcTwsZc4/8b/wXhdO91dv8SBtp303vfpfU4ud55i8TrNzV/DyFc49du/z4mGca52BPlPX/yX+BqaP9H+S6VhMtlTNNQ/gSzfWkCOn5/n6GCShzpm+XmpymvDWcKyxl0XfkaDYNPyhX+E03k3mmHRFHSTWKjiVE3SsSx//sP/nYw0Q1+9G9N/mLui+2hYSJIdW8QWFXwdzUi2jlAtIZg6kiQgiCKm5ZBTmrg2M8mZ6gRaqMqDMZnPPv1PMQo6xbfewmhJcDKRR5EUHmx9kGp5kFz+Ig31jyPLt/TDtmZSuZLiTLJAMqzwxR0xxGs/wXSFeFfax/hSCfnVH1JKvYgQDrLxiV/Dys6wd+dn8cW7MXWdUjZNNpPl7HiaTEmjOexmU70fEQfLMDEzFarZNCOFF3llJkFvMU+7OsB4IEBdaCPNrXVUKJLPakxMmGhlmfsff5Qj9S7s8dNoZiNa0kBwuWpFXD43CwvPIUk+4vFHyGpZjk4dJewKc6T1CKIg8t5IisVClSd3vv+8O6aNMV/CTJaxJy+BXkDq2Y7S2owUdmGXDQYn5vmPg29xT/IFXOUsM4V24jNpRARyHSHkcJU6V4VG1aCj7TCth/8ZU4VpTs2fIuqOcrDpII4uMD5b4NRIikxep15V2Bj2okgiBcvm7XKRa9kiC/OzSIVFWqpVDkljxMJu5nqeQG2MoCxOIEyNoy1NIqSSKBU3SrCTREOCtuYILiePreUYXrzAeyGTjr2/zWPbNuNRJaqFKgPHfspPUucYVZoJu5v4tYN3sTnazKkXjlO8cpVwVzs7P3cEHBtr/ipMnsS0BUrR7WiiD61YpJzPM5MtoKVHiVhzuIRRpiUPb9kqUjlGvPr+GoVQQsPTUEf3xq/x8OZbDjC2bZKceIHC4Ak8xTjuYhQ5FiO0p61WJB5orEkY72Rj6jjMn3yW4myWauReKtUiF/SzhJQA9zbcSzDoQdQs9NQsY/PP8XL+EhcUFUeu49GLU3hkjVJbGJco4RVFVATcdpDexjratz+4okOJ7TicWBrj5xNvIyr1NAZ2ENQsEsUUrvkZ9NEhGvVJhovTZB0fXqWbtJJAmJokqQa53LMLEYeIkqLXlWOrN0prXiaiVvCJk3j6epD3PQ2AZmm8e+Ul7GMnaG7fytzGDn5+/RKLRY2GapRNcxLp7iyPPXCErbGtKx6ixUtXWXj3FAtN3cwnmihoaczqPBTGsBavoLsUiiRpsgx8QpSFfAPFwq1AR19fH5/97GcRPAJvz7yNaZtsr7sb4fg7lGZPU72nC/x7McR2JFFgR0sYVRapXL5M9do1fPv3o+ZOLy+WHrx16gopjMEr2MkkTjWPaJcRvSKSX+G6fwcbeztxTAtTt6hqBrZtYjg2lihhSQq2KqI4BiI2AiBKEj5vBJcrcLMrpSCKiD4vgqVhmRpVR6AqqliiUuuobOpo1Sxg4pNcuG0PjmlSNisYjo0iimDbSLqBLUmIoRDh4Cdvyrcarl27xqZNm973miAIZx3H2bvS9n+dHR/vAoYdxxld3u9fAk8CV2/b5kngu05tJXBCEISwIAiNjuN8OrnkTxFKOkdDeRqflUHONFDSF5GCt9p7SqLEXQe/xEWXh9R7x+m1Heq6t/DD4Yv8wTvP8g/2f4bOjgYWx/Ms6APM+kawFZ3Ht3WzMbKZfNVmMZmj/Po1SloDo/VhJq0JCpOnEMwiomAgOiIepQ5/cJr5xQyn37zGhvot/Oav/h2ef/0oL774IleuXOGJJ54gfOAAhddeQz93jdj+h5kYfpmS9Q7XsrNMp6uIgsimuk30hftQpFvpF30ij5mqorYFViTY2sgw0thlWhtluqP1VI0go4P9XDp9nZRiM9XXQZuoEJ+vYNtlUiOnWRo4xdVXw/h37uTA/b/FO2/+X7z80r/n/vv/b3R2Hr6570TAzZe31BM9/hzTySQcfIglycPUaJK59DmyyiLhvI/pc69gF5ZIuQLsK1Rpa95Gx+e+QjwcJpl8GUn0EO27i2p/Fn08j7vvzjdla6CVZn8zx5pyjFan0aQkXnmBBrERuzDEhuEsp3s38OyFd/nqviMkuraRaGwlefUYV+eucPFcmnOlKKqqIsTdXOqfw3f+JNa1kwzEB1HVIh2qyOa6jfRs+Czj4yWmXQ3MOl7q+k+zz/MI70Qu805miKXjP6Jst2CIIrFcjrnhSZo3d5OTL1IpTeC3WhGkT0+TVi0WqKSnsC2HkiuMKHiIBD5ZZPmDkCQvDjaWVUUJevBGEnjLk1i2QXpp6hOT7JUa0ZjpKtNzBVxhmSopRs06mpJjtCxcQsTGuPvL9Ls2Is7lkUWB4WSR+zrqqJu1qMtF+fJXfofvfvf7zC2eJuAc5Up0J5u/+DiR5CILb1+iNDWPo3rAEwCPD7x+cHtxZDfG8Chj2gy2rNOhlGjf9kVsyUv55Ns4XjcXEhVsx+Zg00FkUaZUGsGlJt5HsKFW4+DZGKU+V2VipshSX4JE+37k0bc43DhDLNDDmfuepHp8DG/qOhMvv4TQ1ciWiRPgayJVcUhVXQzlfRhhD/ftrqM77sexHYzZIvpMEcftcKz6JjOlHOFSGF94gFRvH33CbtpTMcQpEW88QmR3G9qBIv/1O9/j6MsvUv+Nr7Ex1oGnvIS68TDFkxcovvkm/iNHCIV2kc68R7k8SsTXzd6GvZycO8n5xfPsqd9DxKcwkSrVImPLTSisvE51OIOjW0jlQVyBBeSt+xES3QDYts2pq6f4s+GT2LJFXS7PYiHIHsfHxg37cfVuZ0pY5NzUAEPz88z60kyXj7FpaoJtT/5v3NN0DyfnTvLG5Fv47K3MpA0ijT4e2d9KzKNSKeoYmkVgbpHHZhbxzA5yzAPlmJukL8h1TwNmZZBTioJasKkPt6LkZ5B1N9HoTnq7t9AmWoiLWcz5JE5dPd69+/G52ogM/Bz/7CWes0P01geI+V30Pfw0vzbczjPvfodBp8Ifv2zQ448Tb+hh3+EADdMjWKdP4WsREPIT0LoJOu8lrHiwdQsrq2Hmq3QmcxwzKhxLpmk26mirGmzwiOQ8KnvifUQb6ok21TOVnOXdd9+lUsyQr/4RTaHfZEtzLaIpijKJjs8j+yPkht5Ge/EdggsR7FAHYtPmmvzjDt0YHdNm9t0TpPoLlH09JM0856RzWKqMFNjBq5qOP2/z5M5mkrNFnplyESDE3aVZLNtAlX3E9Rio9WS1PKlKCUWp4ncvURldJDM9x5YnYyhN7+88mddyLGQv8mAkTqvuJzP9FrnkFOlsgVJBY0FXWLBCCO4gMbdNQtXwW2M0KDN0dbSwv2uMWCPEgj782t1YpxawDQtX+2aUQA+ieaXmZqP6cEkuDm39LKcKVWbOnqMpFuH/8+DTfP+N73OaOd5tj9A1qjDonKb58RYi3vD7xmqm0yjXrxBoEpltuICQexWxUMYoV7ELZexqBqlcRlI0hhw3AT1MnxKiZetWOnp7mcrMc/Sdt/ijP/ojHnjgAY7sPsKf97/Ct4afZ5t3L3XZOewzKaob3kGUJyk528iWDR7cmMC9ZQvmwgLlM2eR+7yI5TQYVZz0CNboVazZORxHQAxFkNobEKN1CJ4gjuLDHF+kUtaxLQvNMrAEE1NxsCUBxTLxGAaiLYHbi6ioOAjoeol8YQm1WsTvr0Py+7HyWaxUAcnvRpLd+BQ3XkFCdxyqlkXR0dAlCdGQqRo2lpPHwcHEwZFETFlF0UxsRcFyB1ClT3d++jTw19nxsRmYuu3/09Si1Wtt0wz8jSPZ0S98BWNoGnv6Ovr1q8iFUeQ5Lwibap0bfXEEQWDnvs9zzeVj5tjLBLQyn4218erSCH906kV+add91IdUrgyO0LjJz+Hu3YRcIXAcnInzFF/6OeXUOJlOAX/CS0smiZEp4JIC2L4wyoKJ0NSA7vWykJpjOjvI5cIgm0dOsqt1G631ezl+pp9vfetb7Nh/H0e2bMe4fBH7+jDTxUaSpQHchaN0xB9mS8Nh3B/QcukzRYz5MkqjD/U2WQkAto01cQHz6A9weWWUpn1ovgTXzp9heMJiIBhhfOsuDuw4QHN2lupbeQQxh3e/iCdt4kxPk3/vbUYXrtC5aRvD/Zd5/Y0/4eDBJTb0PYEoytiahvnu2ySMPJ6NfczH6ikMDlBcPE2WcRKWSWtFoFyWSRsJnuzaSFveIJ/YSiDmo1weRTfSRCP7kb0e1GYLfaqAma4iR1eupIea/VVrvItINox7WyOL5Z+gJKfxeSQaF3N0DF/kNV+Uz+w8QFBRwBMmvuvzHKk/z9TpId5b1EjFw2xQC9RdPkv19EsMxGexPAG6PQHuO/B5Ojf/CunFJBMXjlJsCXJ4RzdNbW4qV65w96bHOVodIDV6hbqJBfLeEFbRINV/hY4dfaiuOBV7Akffj/ARCvDWQrVUJLs4hi2K6GoUVXbjW6/rwzpxyyu7hCS58TQ34B4UwTFYTM/QusbfrwXTKiGJHoRlyzjHtNHGcizaNg2RAmdtH7lkhg2Tp2j1gHX/52k48EX2RQKosohp2bxydYFjE2keaYvinSrSqDVzaP/dvH1Cw/C8w/zUX3JtdhM72hpo+3LNJtO2HSzTxjJsLNPGKBssHrtEykxStKvUe5P4on20bbyLypkzOFqVq9uCFKwCB5sPElADVLV5TKtIMLhtxe8mehXadtRz8rU8E5cWiB/qQKibgflLbO5rpm53Jz+efhg9mMeemid7ocqrE5ME5tykY3sQgJjfxf7uOsJeFbtqog1nsYoGYkTlxQs/JJm/ipwTCcWvI/Ru5cjdv05v3QZKuSxL/aMURxYpvZlG9bl5YPs+Xjt3lmee/T6/+tVv0lzNIi2dw3/4MMXj71A8ehT/kSO41Bj5/AU8nlZaA63ktBwD6QHCrjBRb21RlS7pNAbdNwm/6JJwR6eR5DFo2QfLBHtsPs0LP/sz5uRZdF8zu6eyWFmRDZF6th38AoGtezAWNHrSjfQ27UILwzsDJxkZep4Kcyz8X7/DXY/9E+5pvoc/OfsSqlPms71H2NwYRJZEtHKZwswkuYEZzLRGf2GKxeIcWynRdN9eGtsfpNnIkRhNs7/JRzIrM3L5ZYp2mS379rN335H3dV609eVnTrLCfEqnMbaTA06FS8XL9JtbbqpV3EoznT2/jHDtzxgM2VzN5bivkKXtic8gN0Ypv/BdShM2/ke+AI07sCsm+kQWM1UBB1KVFMfH/pyiMU5C9pC39lDtjdBgXsJxSiQcBf+sjrA4x4ZQiNC++3nt/DEqIwbPGf8Z6dFvsLFhJ1ArUI7GDiFWNQrSKSySFMeiuNu7UFcg2I7tYC6WSV2ZIH19GDtex7ZHdvN25h226nHuaTiMInhZKuicGlngL372fd4tTlJWPPRa3TwRuAu1Oc819SrKlMkDnV/C50tQ9dsMZ8Y4e+mHlN1JsmaK9Pf/Jbse+R3C2/fUahnyeV64+iO09AzRvMxMsUqhJFPSg1SEds4ZNknRQgwoxHrC7Nx8kJ6wj/jgZUTfWeQ9PozsBeSsjIe7qIz3Q9BH4JGDOIYLY0rBnAmguAZRt+1AUEQUUWH/gS9zLltm9swxtJCbX3/0H9Fx/Ae8MDPE9c4wxbyM8N9/zsNf+iL+ZTmZXcoz+7M/ZXppgJkOFe+Em61SE0GxhTxLjGhnyQoSJdrp1eOYcYcZY5px7RzC5CjCdCehSAdP7XuIMzPXefnll7l06TJmWy9+b5YtvT5aQgdxBgdQGpsoe2ZIlc9zKbmJE6MSB3pieO+5h8LLL1K+NIwvtIiTz2KkNWwniNC4D2XLVqTQrQW+ZZn0v/jn2PEeTFnCUFXKhoAhuBARCdkybq+CQwWzVMGplrEtA8XjxxNMUKmW0LQ82ewsbk8Qr1Lr6u5IfoRlG2PbttG1MpVqHsE0CFkiEgImoCGiISFKIqJk4NerKI6A5fEhSPZq7Sr+2rAed5FzgiD8Ijo+rhRy+6B2ZT3b1DYUhN8AfgOgbQW7o180ZJeMvLUDoz5B4WgYx6nD5WlEXBqqFX3I7lpXsFALmzYfwOXyMX7sBYJL8+w1DC64xvneuTJ9La1sdCXYJGxFyc8zcvmvSJ0+SSGZxHBJaLs6ibX2Mj5wBUeTaO3dy+Huvdh6kYGXXyNTmsPd3sqDkQ2MTpa57CTpJ0X2+ls0GDJ9LodreoQXTp4g1ZUgkZ9FeOkkhabdRFsOsaF+CYkMol0CbhFPY7GMPlVAjnlQ226Lqtk2pIZxZs6jXzwDigf1/m8wrlcYf/1nFNM5LrstxnsO8YW9D/OF3h3Yjk2/MEiq/xLMXGUx5Ma18zP4rl3FGelntvwGdlymOl/i9JvfYXH4Feo8rZiXZ9ArGqOCBK4senKYmalFdGuRe2yBhBOgKDUwWZG5a/NmNssiuWAYqb4BxWOTTF7ApcbwejsBUBp9mKkK2ngOKaiu2szF7fOTnZ+lN7aVtqd6uPb6swjjp/GVDZoWM2TGz/JX13fy61uX14miSDm4jaqpsMc/Q3PnAIX+a4ycOMFIrEKqs4mQ5mHL7v20bfkmSC7O9Y+Qrjrcs6GNYMjFpKeLZDJFfqyA3L2RVJdCqnyBhkqFcslCun4dx7bxBXopz71JtTiP13PnZh8fFdVSkXJhEV2UUb11hFUPouvjNzNZCbd3fYQ6PK3NuPpFAlWd6dwcn7Qfl2WVkeRbUWx9skChYlANKRhGkrQnQGTobSJmnj2HP8v1u77IoG6wb/lSkCWRBzYmeLF/jqMzWR5uDMJsmUMbHmRgYBTJrieducrb577Nxqb/Fddyq2VRFBBVCUWVKCezLB2/jFEo0G+M43cyJIJBCl0HkQaH0aanmejyMS/k2RbbRoOvRtTLpRFEQcXtvvNSwxt109ARZnamSHUoi7v7boTiAowdo37zE3z9C5/j//yvJwh1T7OYjhKcGyNhPMsDX+mloXfrTU9lY6GEPlEAEeQuPz986S/JF07idwpYDQFETyP3bP8mvXU1hwtfKIzv4G6suw1S1yfIXJkksiDTGYwxll7iL176U371wS8zM3yGae0slW17kK9exXv8PaI7ejGt85C9RGN0L1vqtpDTclxYvMD+xtqiK5WtEpkpYxV05JgHl3cGYfYKJDajxTYxMptncKHA+Mm/BPEy8+oumsdsGitJIl4/2x79CuEdtVbcUsiLVdTRJwuoSZ0Hmu6hr66TN8/9H4x7siz99D/R0nkf3romApE0rQGT5NVB8mPzGEtlBEtA9Xm4rqYZKMwhhcocfvgwh7Z8rub3bQZgTkVbuI46f51YY5b4ji8Rqt/1ofMlqhLu7jBWwkvubJ5EpQVRCnGXep197XnSgT5SRb32I3fhbf1Veqae53oYjlPF+u63uX/nHmJxBT3vwRDaMK9nsLIagijgRBVOjp5kYOjHqEqJaAl2dB+g+6GvMVOFi0PNWBM/pSBNsBTYg9tSCWVS+FIOD8W3cTw1QHFM4JkXfkTbPYvc03aQJrcbX34C/8AghjuKfk87mqnge+8Y3sw23Nu2IdxoHpKqYkwVKOXLzE2ew24w2PjYfZxJnaVklDjcci/xZZ/rcmqChYE/YThQB1KQfSmZzx98krZtXQh6Hq/8MwZmn+Ns+tvsVe7Hk9nKFqmL3j3/KyfGX2UidZShoMnwa39K/NwAnoYQ1zNHqZSX2Fqux6QFRd5IVzxB3l3lneHzJIwyHYkiPXd3c0/ffhr9tSL73FKGUp2FHXfhbfkSnryMcewnyKaGa9chJL8FgSBKgw9dH8CYmMe0GlGa/CgNPkRJZPfDv8yVZ7/N/PE3OOOReOjI16i7eo1nzzzLdNBL1lzE+uEzHL5rJ6JrnKE3nqM4u0S1r5OtvoO0N9/DvJPn2Pm/pFIdxO33EM05HGm+m7bDj1GtSzCzNMvZ8TcYn7vKVG6IrqVJgnMuYlIQIRzh/FKOpfRVAu0hBpuS9G3fjbU4izBYou7IvYjCSXq1s0zMtnG97GGDJ48/MIU2cI3KPNB9F05iO66eVuTY+4vpdVPj/PPfoTgxSqxlK6o3RL6YwRRlFEfAZ4h4gyFUj4IghHF8Bno+g1ktYRazaHoBUZRwKy5Ms4pWTKOLErLoRiyXsIwyulnFMHVwLERHwIeKrLgxBRFN03AcB6+qorhcjA5d4tGv/yoX330LQdWwKSI6PmB1TfZf/MVf8K/+1b9CEASampr4/ve/Tyz28XodrAfr5f13AR3L2+9evqG++wk/exreF6hqAWY/xjYAOI7zx8AfQ02T/QnH9rGhxL3IwTKm0Uq1shElvhM1VEAoTNc8XdOjgECXP0HbI59hduQawatXcU9lWBh/ifmZMOMNzTivfZdgvoyUtxE9YQJ3PUjjkUdYnJnhzOn/jiwb7Nn3JLt2PY0o1qKLW3NtLM5d52pU4pyWI9gdIDDpYUSb53LQISxE2GCqdNkp/JlJBqfTXPBL7ExmaZm8Qv1jCeKe3WS186RSbxGPP4LouMkPzqNN5fG3xnF11Vq5oxVqhS+pYdCLaDMZNLkL30NPcz07xMyrP0dx+bkYjzPuamJ/8xae6qm1xRUFkfrGJmQ7SGdsBwtnzzA8u8hMsA057RC8Oka+Jc9sHUyVNKavjyA7EyiWCyMYoFpxUDMyRipJUKxysH4TXX2HmNECvPjKa9QFPRyOhiGfp9q4AW9IIZN9B9vWCYVuyaYEUcDVFaLSn8JYKKM2+1c4ozW4/f6aHr1cxuMPsPOxX2byzFY8V36GWT6OMXKdU6d+wvaGRnr9QUpZjdkrabwVjVBLiLHhSyxePMN8zEG4/wFcEynqG33s2PENJMnN0EKekdEJWtpbsIIqz8zXWos77d0wMEBgzqK9pY2hljkyS4MkFZPA0hKp2QXCdR0IgkSpMII3/umRbK2Qx9DyVBUXbjVM2O1DWEW//nHwfpINgb52xOclQhWBydwCjm1/uOnFR4BlllDU2qRuaybGYpmUT0IoaUw7Jjg+YskhXG6ZjkNPEwjX8cx8hkuFCntDPnKLC9i2xZGeKK8OLPFWqsiDUQ/mXJknHnqan7w2QMzWmZ88zstn2nninltdxBzbZv78dTIXJ0AE+nxk3sjS6s5DYi8+xYd27SpLTX6GAiXaA+1siNZIrG2bVCpT+Hw9K7aDvx0tLUEuFDRKqZpLi6vhEOLkyzDxLqHu+7n30Jd5993vYHdHGfP6iIyeZOgv/h3+L/0vBPq2oY/lsbIaUtjFhDPFC9/9Oaa9SH14ESneiCQHafJ/ng2Nm1f4dAlfcytCMEFxZIpdQw7JYp7yuM0fnXiRrYluesozTDXvJb9pM1PXBzH7J7FbmnmvnORL0hitoU7uariLN6be4OziaSS9h/krVboSwVrdh5yEkVPk3Y30612MnZ3Gsh3kifdwcY4xZSvdiyot2ggpFcJtGxnwdNNX0m9aAUp+Fc/mOsychjFdpFmP8cUt/wtHx/6YdHian16bIeAkcVqTHD2Xo9duw+3zEehsJdjVyPGLb3L+3DBSqMqDn3mKAxtvaYEdR0CbXKCYO4vRlSC25QlCdR8m2LdDc5s4jSoJqQk7G6cyX0VKXyPS5ybW0YXYWHN5sLY3YVt388rxF/jJ3CDHEwbRM/+NrUYMudSC+bN3qLQ0M6bNMJ4dJpmaxutLEpFLtFTd7PrMPyK4qbbwb/dB2H8PJd8CoVQRT/4y054NDHVtopwrkFvIsBjYyVUtTyHn4HotxQt1r3HAXaDVmsWTsRGUnWjhwyTka8Rcc5gDZzDmM6jdW7GLFnbFwnKJDGXPoQaTbDjyFQaLQyQrSe5uuJu4t+aJPTT8Nn/+9rNMBlsQ8z72iS6+9EuPE40sW865Q8R3fwF7rMxlaZb3tHc44J0mJPeiVCzuDwSY0PZwae4MFWuR8tyzjC6Y5FwKW4QdxMI7SbS2EG1r4q3L73H+8kWCIRfuRJJEWy8Pb/07+NXa817LzpGdehc21lEX2oPHaaJ45SiE78a3pRGpMgWDL4EvgRjrxb2xGXvsPLpLQ59yMOZLyBE3UtTFpoe/ivLzP2f83bc5Ltm4IxH8LXvoy5xlXhvlolgg+d6zBDM2oZSA2r2NYGwzE1aR81d+QCZ9AZ9PpCXQjHt4jNbuPXQ+9XVEjwcF2NjSzsaWX2OmOMPJuXNMLM0Ry7kR55OQm2ODatFgw/yUj9PJSWYahkiYBi0j43hy88Q6E3SVzhLOHiU3E2chtplwYAdGYgP64CBu001gXw/CBxoalbQiZ3/+bYyZWdoOPkJJgIViBlsQ8ToKimaiBly4vLcynYKs4IomUDQNq1jANHU0UaRqG9iChI0NlolAEcsuIhgiIiIuFFySD7fLgy3L5IoFDKOKqqqEQiFkWQbLwuOIIAgIQT+2VUXAhfQBWd0HYZom//gf/2OuXr1KLBbj937v9/gv/+W/8C/+xb9Y9e8+CdZj4fc9oBu4ANzwOXOAT0qyTwO9giB0AjPA14Cvf2CbnwG/vazXvhvI/U3UY38QdjmHq68FOebFmC9jFf0oTXuR29wIlSXITUNuGnnpGm1hkdb92+lta+SNd94kfi1JbjxNSvCR8frwtUUINTSie3Qmj/+IVOoKkXA99933G9TXv198L0djRBaTbOx6lJ9MD3G8MIvZYOGpNuIpDFNgnqSnkU51N4pnHGlyHLfhxqqPMzuYYerEm0xUB9nd3khRnmPp2p8gTfbiGCKW22LOGqKp6qHOoyNVlmofGmhEF1uoVCdx79jCWH6Mmdd+TjDaxPG6OEO5OTrlCH//wMM37fwcx6Ei2Axny4y6vOR99WjTSRwth+yNESrKbBjJ0ia0MNFSYDJ1CVPK4JIF4sEQkpjH67HxS2Ee2vsU8a67ePnV1zl9+iU6Ojp46sABnPMXEDdswSq6wHUNTVsgEr4HVX2/b6jkV5H8Cma6sgbJXrbdKxbx+AOIokD73h3M+uvxeFooH/sOWy6/y/fdIntKMp6kiNuu0ihKlOYy5BevUQxI1D/xFVKLGRR5mgP7fxuXK8ZstsI7l8cIKKD2dHAqV6LX52Z30ItfksAjUjx+HCXSyYudW3ljcICYX8SYL7N4/jJ1n38YVYihVebvOP6PCse2MQtLGIZBwR8hKruJeDyIq3iofxxIkhsB8aYLSKCnGQWZYAnmq0m0XBp35ONHGSyrjEeqLTzMVK1hSVIVyC+lcHwy+qXL+LQc8Z5GxEg7cUWh06Py3vQc8oVJzEKt/EQQRLq8QfrzMm81NnC/P0I0D90Nm5hMlQmlClw49wO6mjvY2rqfUjbD9FsXMBereBIhmu/bxp8+8x+JO0vE69sZCfXRNDnBUoOHK/U6UVeU3fW3/Ih1PYmDjdu9dse4xpCHywGVTFDFU9Ap5xxkcRtq8hJiaIi7774br9fDd88+S7KlDl3rYnZxlMp3/oCN3Y/gjrWSDZU5d+ECQwtVJKlKd9MYRlMrCbWOkO9+FtybkASBUk6jWjSoFHQqRQOjeps/uxxB6vSy14A3F88wutiCkxvjgTY3O/wW1DdhJ0Ikjx4lPZLnjU4vP5oe5CuSn2Z/nLtDe3ntystMzp+gomzFs60L0cpiD7zFYMHFaa0HsVSmM+bDM3ie00s/p1QJ01320KYsYu9to7uxCXEpy6m0wfWlGXqibnY2+XFMHVPXMXUNw6WhaQWq+QK93gMMWKeoeDWUioG5kOO4copJYR7HkBEyAvZFgVzWQA4bHH7073Bg462CbKtYpPT2O5j5JexIkdCWLxOKru3wntNq1mOx5ka8HVH0aRfW1VNoF6/APIjhCFLEhRx2I9gOD/c9QLd3I3889jopr84ZYwr3Qgbr4lHmjCCiYqEKNi1RB79Roi+4gd7H/ilC9P2L7oAawOX24960nQ2ZDInJAS4vLjLshKn4JFSPxO6Cj/zCPLY+x7b0DGFJYsi7CW3JRnBsrl81UKUu6hwPG6xF+obHaRurEt29Ebkzxpnhi7j1Mbp3HcYdSTA+coqOYAetwVYqpTyvnfopLyzMUFK7aC6E8fg06rccukWwlyH6fHj9MfY1b+NUeJHj6RF2awNUCg7jS2WyZQvb3YNHn2TBO82sbOEuNzOQM7mWOwcT55bvXYGWDRE8oTHKWjf3bP7VmwS7Wp0leelHOI5BYutTuKwoxbfeBMB//4O1hjDWvlrPhORAzU3FcRALw7jrElgdD2DMlzGXKhiLZQRJoLn1EOK1txi+eJlkvQspOUIjRRplh37D4gJe+lIa+YCCIw8jzgwjiSIer4e+tjbqsl7SmQwNm3vYcOQL4LkVUXYch2nN4FrVz7yyixmlymS0wp7NT+GviFhnz/JwfoqF5CDTVQ2pOI8peVhMJ1HfHObSVBu6r56AO05ILJKdMmiLNFC/IYbHuo45f4nqtU48W29d46nyEhee/zOkhRT1dx/kuJWk1/ETEiT8tguvZaN7BRTP+5uU2Y6DaTkYSJguHxgOgiEge0OAhaMXsXEw7CqyYwICjqWgIyMoEqZlUi7kEQSBcDiMx+OpZUxsG6tYRBRFHAFsW2N8YoGvfvUb/PEf/zH79u3jTnAcp9bro1Sirq6OfD5Pzw1P8l8Q1hPJ3gtsdtayIfmIcBzHFATht4GXqVn4fdtxnCuCIPzm8vv/FXiBmrPIMDULv1/7NMfwi4BVLOEYOnIkgqsjhBR2oU8W0EZy6FMFlEY/SsNOhOZbE6oAFPqmKLU2YJ1xCAxfZaouzFBTHNFl01iZoyU7hCpU2bjhPg4e/DsoyvtTOVXLpt/j44IrwPzQPAuVAPf4ejjc6qY77EYv7ePiheP0p68wZTg8EL+PS4V6xhYus6E+jlVXRF0cY+5clpeHB9luawTrCiiBaSJ9h1C9IoXRC5QvpSmpfnxde4lsO4xoK5RffQ05HmfWqzH50k8Jhuo519pJ/+IYkTL87pe+hCiKZEo6I8kiM9kKhaLO4lKa7uo8O0M5mp/YTaBpK1bFRJ9NU3z9FMbcJHd547i3/QbXxHkuDb1AdVFks/JZDh35DEqDj4JW4jvf/T7T09McOHCAB+49TOm1VxFDIfS6VoxCP7Y4Qci/CZ+va8VzJkXd6JMFbM28oz2dy7f8UC4Vb503UaBpUwMLri/SVDAwz34b16m3qEoqXltCVCQWdRHBLSEEYrTe9ziucJyB/mNs6HuYpqadZEo6R68n8VRzlBtiDCkeNvnc3BcN3PIYb2zEvXEj1YEB+rbGeTUUopSvkp0r4LtyDeHxR3CpCYr6NSyrsmLjlY8KrVzGLMxjGRY5T5RWNUBYlT/1SDbUotnmciRbCXmRPSEClQKzRoVUcormj0myLauKg31L952u4ngkFspVUmaRdtlD9epJFEFn68FHcCSV9PQk/qEh5jW46pJ4dOceVI+X3OI8ucUFmquzjJ4e5KVImN2NLXS521iQL5K3duFJXeCll/8DxW2/hn8AZFsltLEOPTbHy2//AeX5DPWKgRLZQiWfYsmzyIV6P1E1yoGmA+9riqLrSYD3WW/dCRGvgluRSMoCPTsT6LNFjPlGzMU0Sv486v46tm3bzuc8Pr538RWSYYtNdiep0iInr7yIaRXICg5zfjd2g0PLBhUt2E6n6eOu+L28kOnFyVW4XprHsWvTgOKScPsVwvVePH4Vt0/GMm20skmsJ0r/uyKXykmCUyrXx07gmXLTcP9XiLfFiN9/P5633uJzw2l+1ijyA/0cT0mbSJQV9ok7SNad54p+gSspgZ7ZAa4talwL3cXmljp6gwrTP3qRwbEf4iqDLx4nFK2Q7gzQ07iF6OwVDNNic+Eak/NpLp+vMKrKdMf9qLfJwRSXG08wSKy5m0C6g81L/UTzRxlY8JKXymTLRQIVD7gkTBncCYnd9/4a927sxi6VMDNZrEwabXgEUypi9PnxaeD371pXQ4yMVstUhVy19uSujgg0H8G+9Dxm4RIWd2PMmRizpZt/0+aN8vsdG3hnbIYXCLLFvELHmEC9nsAV30BdoI6oMUdjQMaz/fMY3gaomuDUomKWYVMp6OgLIv0TE0y5djFrGsS0K/SJixySZeIuBW+dRCqhMzaSJJXNkBXauU+KoOSG0N1+ts3OcEVxMap4eFWKcFwuEi9N0HV0HsUt0VAZIN7VgibEGL9+lmxuia5SG6+de473iuOMOBZiOcDdHhf1W2xi8g5Gp5cY8UDII9cs40wTQ6tSTSUxF+cJ93RwesngpWoGywaPItDY6CUeCeGRgsQLXja5oK5UYWlpmCzN5KM9uPBBsETIGqXLu5Nzzr1E/DUZZKFwhVz+IixWCLUeRJyvUrj6GoKq4j9yBCm47BktybWmcPWboZisZW9TwzDwPJJWQAq34SRs7EIZK1fBrpSIa3nC78yDY7C9ApY7TrxlN3dT5sLsCJlIiGsbd+M1JLZXyxxwlfH7XKRSacaUHLH7DrC1mrnZTr1kWVwvVRkoVsmbFi5JZGcozOOJR7k8/w66dpnqQjcu71Zcrftp1nQGL/2cTD7FjnAfHZEYhf4TVJb8vOvZQrIqYIlFPPYC9fnn6R2LUq/XZHqen79GdGyCuu2bSTlZxt57AXExR3rzFl41q0xPLbChq4uA6cGLieSV0BQHURAxLBvTsjEsB9N2qF15AoosI4eCSOUSoqUhqgKmJGAKbhzHjWDqCLKFrYgYBlSrGrbt4PV6CQQCSNJtdQ3lMo5lggvAYXBomr/zjV/lT//0T/F4POzcuXPFe+7o0aOEw2G+9a1vsW3bNnw+H729vfzRH/3RmvfrJ8F6SHY/0MAvoNjQcZwXqBHp21/7r7f92wH+4af9ub9IWNkswM2OWHLYjRx2Y2artfbjE3mM6QJyvbfWbrxsYOV1ZsYG2aglqO/sZjCwnahH4V6fi8rGIOOOiSII7Ax4CcgSg5qDVilh2A667VCxbSarOlVbwsiWidhJ7urt5khf/FbRjR/aHulmw9B5Xrnyc14uvszWSA/j6QiDSxoH/fcim5dRkguMOSGO1UXpsWX2uGeQrXN4hc149zxCWYkxN5dmcm6W6WNv40umSQTDpFqDjL38I2zFz8vNbYxn5/Gmi/zGoS+QrAq8N7lAqqghiQJNQZVt4gQFaYb6oEzDvvshVIu4iEFQ6hO4N3aT++lR9PFxrCXY3HwvkT4XJ0Z+xrnUuxgDYXrMHp599lkMw+DLX/4yGxoaKL/5BnalQmD/fpIzc9hyPz5/L6HgndO38jLJNtMaauPKt4SsKCguF9Vi4X2vC4JAQ3cYQfoal8ZH8OiTpOMJnIiXPYEE7nIUpacOdzROtL2RZ3/yv6EqTRw69A0yJZ3Xri2gSAIVr82UEuW+oJ97I/4PTdTurVsxl5aouzZPZ6yR9OIQqSBExscoFwqorgRoV9H1JB7PJ69JqJaKFJLjWIJAXg4RdgfxyhLCp6zJBpBk381INoCrLoE7NYtmamTSMzSzeur9TrjdWcTWLayiQSaiMpXMIKsm/pxMJjeDElDxhFrpP/oaWrlEOBDkru4uFt0+3A11+GSJQF2Mlk1b6a2UCfSP0D8wyqXFaZoCGo2hEPPJCk7xbpT5k5wq/ilBd5xI2EZJVklPWWTzEeq1DO5YJ+V8iam6OTwNcTbHNrMpuqmm7b0NmraIqkRvSsFWgyAINITczGYrOJKAq31ZOzouYFw+ifnGKcTuPbQWXGyMHcRnzTKtj9Aqe1kIB0nlPXizGQ5XCgTmJUQtgDfqIqLEmSgmWEjN056IEGnw4gu78AQU5OXniuM4YFk4toUoWMhuG1mGwI4etryXxKhmMPDjunaekQkfE+Ew0b42GjbuIjo6ymeujPOz+ml+HDD4Ss9B2po38Xihhe+eeY1jJ/+S03mNQPRxDgUFXFcuMfTSa+TMfjJukf6mLuQGh6K3SGc1iDSZo5qbwY50EY7VkWhtJVVxuDBXYkxV2d/XSEs8iKy6EJcn7ULVoFic49Cuh2h0BTlsFnkvV6BeS7Bz3sXEVJJxQ8bT0Mi+1Az5n13B1rTacRdFqPNR7Sij2p340xpiNQeu1VPWANlqloAaQBFva5yhuBG3PIQ68DxIp3F2fAarLIAkIPkUBEy8/Qvcv+9BUu6tVEyLxnMnafd4EPq2krl0Cr3axLR3IwyIwOKKn60ZbvrFRZqiIk3tu9mfuI96Ray1pl/+8eoVUo1LXL46SWr0GlXpIl/Y4MW96wBtvijbqmWS1SJXSyL9mkHSazOZ0WHJRKWBuusW8eGfkPdOY0o60+4Mi16FsuVQl7TYETKwtBTx+S5c0gTmdI6zSYWu2C0/e1EUsU2b3EKegUSAsPsgDfECfc0RWhriyJKCKIhIgoRcShEvJDEyAyTFfjJLoxQLSRY6thM2C+yObmAssBNpYRxBX2IxmUXXU7jsBEK+jJ1PUSlUUVta8Ozahei5Q6DCH6/9+GJw5Se111IjCKKEJMpIUQUnFkBu3EF1vAU8dYyWPaSqJh29dbRZJkY2ymyTC1mGsazKsWyQc5rDVruI1qLh69hDWPBwrGhSKUuUyxkWdQPHgSa3yr6Qj06PC1kUMHULR9jNz4ZeYSx5jAcbDpPoCBKu91LdfDfvvvwuFycGaflsL3vv+RKbz5zhsQab1KbNnMzrnJmvZ2hhjhHTJGy5kTUfbkPCe3kU+fplQrkB3GWNxZ6t5As6zuAMrVkXSpeCyzFxVImF0iXK2hJZ0XWzaacoiEgiyKKIKIK1XF5nGbW+AY6p46gqosuDLCsIto1dqIJbwcFAVsLEwvsRRQmwsW0bcLBLFWytiuMCUVZIpTI8/fRX+PEzP2bLllr0/cKFC3e87wzD4Fvf+hbnz5+nq6uL3/md3+Ff/+t/ze///u+vec9+XNyRZAuC8By1ZUgAuCoIwilAu/G+4zhP/MJG9bcYN0l2KPS+12+QbauoY8yVaj/LUYqsmaUolNjQu5mmhiZU2+LYYJLF6zm2BFW+tDPByVyRU7nS+/YpCqCIIi5RoEWWyZQEggspmuMxdmyu/xBREwSBDX27STS18eboG6QEiyNbH+DFZ15iJiHx+c//DpULZ+nIzvOSEubbip+/yiQ5Is3weHOQRNs9eAWB7iaoFPJMHj/G4tQEhT0eUq/+mHnN5nxXJ6ZZwTeyQF/9TgYqfvTRFAG3wq62CB2uAq7p46AXGK3vpZrogVDDh46j5FEIf+lB8i8cRx8ZwTEztN6zi1RpiFB4losXX+bEiRPEYjF+5ZvfJLCYpPD664geL/4j92EHXWSvvY0/FCIaPXDTXWIliG4Z0StjpSvQeOdOcy6f/32R7NtR3xFi16Nf5tWjL6IJKtebO8n4RL7kkunc9yC2rXP8+H8in7N4+NG/x8WZAtfm8qiyiC+ucmHJ4u76MIejK0/Qgijiu/turJdeptNyMyRCR1BiaTzFwvl+Gho3QFlE0xY/FZKtlYqUM7PokowhhQl7/SCAoHx63R5vQJK8aNVbUhd/UxPS/CVk3SKd+/gSmNtJtpWuSUXmHIupYo6DdQZLb/cjCVUiiRhjowu46pro2XsPofoGWi2bv5xLcS5f5t7bzonq8bJ/3zbkeDPX5vI4Losen07GTNE/4tBobKc5d5msdZEZW8YSAnjKXhqK05iuKJOSCzE0g5zo5oGO+9m8wrXvODa6voTP37vu79oU8jC+VCJV0okHXDU3jg0N2MHt6GdPYc9fI9HcjF+OsH3zr6Nd/R5zZy4QLiRp9pt0d2u41RBOuQ0rKWFOGtgxD269n55MiW7bj6vswXa5KDkOjmXXokn2hxOco5Uq4YrOr7gkziwskJMqyOIcdsZEmW0gd+kkBUlG9XiRZIcHr8wxELB458RJ7u7aRlCW6H3nFI42T1mxsYTvcq3kwlW0KDfleK9D5ky0ha5YhAdirWyu30pXvBdVNBGv5aHtAMRrtm4tQMdGg6PXF3l7pspO0c225lsE6vp8AVEQ2NgYR5UeJZs9QTR/imE7SaHpaUpakK70NJ3GEqIWRmpsRI5GkaJR8Csspd9EtFWidY8hZn8GpaWbAYPVkNEyxDwrZCncIeh+EAZfQpg4itz7yC2LvIUhsHT8Tdv5sjvCyWyJK/FGFi+dpts1Q19PgHLDETS79gy7+fxf/qUJDv22wXQqjF2c56HWAFsDwVvbSX5w1TJ2IrA73ovauJmXbYfSlbOcrl7nkbs3Ed25DySZTmrFWpOLKV67eorpyBBam0PBSZAsKcwaOkVhjjqlEdUXIriUI7FocujhvSyKC2yp20pXuBMEAXs6x9Biie6dzfjcCtmKxXC6ymL1Kr7CVfZu6mZjZ4KQ5w7d/PxNUA+qcYCm9CiB4VdJjrxDdOg4SiRIOuAls3QMvyBhaDVLzJBvO/ZbIxQHhvDu24tv/wHUlnVahkY6IdhYMzPoOPS+twRqxMq/HBvwz+QYnMwg72rDK4vsZD87gYJeIFlOcjWzwMmxMm9XfLjtKE2ZepLGIkEhQMAR8YgCOwJeNvrcBEWRStEgM12kXNApZTVwIMFOZqOn0TvH8NR3oqgSrcFWmvc3E5JDPP/C87i++EU23H+IyvnzxC+c4yu7d/FLOw5wen6Wn1y7QKmUQdJMdKWO4vUJIlPXKeNlsnU/FgHyF/IIdgDRdLAsg6JtIjoShm4gOg6KJCBLItJNWaiN49jYho2Dg21a2LaFIIIoCIiSjKi6ahIQUQRdQLBAVL0IiNh2CdtePqgOOCUNLAtcCqLbi6oECQaDNLc0884777BlyxauX7/OV7/61RVP2dGjRxkaGgKgu7vmTvSVr3yFf/Nv/s2K239aWC2S/Qe/0E/+HxRWNosUCCDIKx9aya8i9dbssqyCjuRTOLF4BROVlvbuWlQKeGJXM6/kTPqvp6gGZB7ui1GybRxAFQVcglhbyVo2M9kK742kEIAtG1qpc1mrpiwj/hiPbfo8x2eOM1WZob61lauT/ey7fw8dv/wZvJcu8SsD1zkgmfyx08mLizLvpedoufgd2ho66Up00R2NEVW8zAUlzrz7EhnFy2DffnxlN9r1BaCZaOdm6oNuehN+Ei6z1rxgerQW6el7DPeCm0Jau+M4RVkk/MQRjMVNVC5cIH/8GK45g633b6elI09qqZ6DOx/CunCBaiaL2tGBd9dOHFlkavx5HNumvvE+RNF1x8+4ATnqRp8uYuvWHZvTuH1+cot3Jn37D++jZ1MHP3vuOfQLo1xrb+HPEwLfmH0Bq1phcHCEUN2DXMp5qRh5OuM+9JDK+dk5um2dh9tXf8CLPh9Kaws94wu85JgUwm68Sp7ZM2dp+tIWZCuEpq0cvfqoqBRyaKU8mqhgSiHCbj+iKq0rFf5RIUs+ynYFx7ERBJFwdwfWOZFwyWDxE5HsW90e9XQJ0SNxOlvERYlmyU3/xBVwOdSFG8ATou/ug8jLHSaDssRGn4drpQo7g7UM0u3Y1xGlOezh1FiagUWNuu4ePCP9JOu3EAruxG0pXJ4ZZUaYxJCLNNS5CSpBEiGL5i33oyi9dPgTHxozgK6ncLBxqSu/vxLqQ7Uo0nyuSjxw63oXGztx71iChX4ojeDX6yjnRPbFWhm5p0pqOkN3TMfbuJNI19dQXHU10qNpOJUKMwtZyoNzBFoDuEUbR9Nq3eFECUGWar8l8ebvkgNXUwXavW466oJUuzp5/flnCSfcjKpV6lWTjro9lBZMUpkMmqmB3UTQmea6UOCvBq/QuphhtiAhyq20ixozoSITDRa+eocrqsyo2cKeDQf4pzseIu65zeM+u+z2+oHW3iGPwme3NXJiNMWFqSxLRY29HVFUSWR0qURHzIdHlQCJurojNJY9HJ34HlX1GR7c9xU2NB8E20aQJBzHplqdoVi+TDU5CwjEYg8iu6I1glxOrXmuNEujYlYIu8IrbxCorxG3sWMw/jZ0Ham5OC1eA38D+GL4gAfqgsx1+LhyYoGzM81c3XiYQ+EoMbU29xRNi5Rh1n50k8mqjuU47IokyEtTJKQqghBaeQzL2Nocwv/5z/PSzDi5a/P81eXLfDPsh0AD1fwSI5OT5HNZdikST9Yp+Ft6oHkXumlxbHKQ41NL1LGdoUvjmEUv9923l35zhg3xXja07EAWBQqaSSQiMDde4pnLS8QDLiq6hSyJ9HQ20lidIRqVUO5EsG+H4kao30ywfjPevidJnfgLzKqAOOrFmTWIyn6CZj1SJII+OUH5wgVcXZ2En3zyo3WXlWSIdEBmHFrvYTXvuBsLg2xFJxG45dgVUAME1ABd4S4+3wkjs0toebDyBuJ0GkFSUFUTX9iFIFikxzPMloyb/mqqRyba6EMOq1Sv63wm8RBZLnJs+hj3td5HwptAkRU2378ZwRJ49tln+epXv0rvo49SPnWK0slTKDMz3LV3LzvvfYyLQxM4x/6U+fQItlBEbqlDiXUjOC7emFggAGyPJuhoiuJWZQJeF4LgIPs2IQAuafV5VpQkZEVFtoo4joStOwiyjOj3I4giVrGIYxg3VQA3TOwc28YplnEcBTEQQlBdCIKEIKRRVZX//sP/zpef+DJ+v5+vf/3rq0aym5ubuXr1Kslkkng8zquvvvqhxjKfNu54ZTiO89aNfwuCUA/cUJOfchzn05nJ/weElcsiR6Nrbie6ZUS3zGxxlqyeZV/DvvcRGLci8eBdzbxzbJqxiSyZqsGRvjguRSSZrbJY0EgWNFIlHcdxiHhV7tsQR5JT6OPjOI6zKiHyKl7ua72PVwZex6hPI5YkfvrTn/Jbv/VbeHbsQPT56D13jn/jF/lR/TYuLY0yWVpiaGiMV0bm8ZgK4bkBwrkJqprNZM9Wut2NyOki8+USX3/6QfZuasMjObUJfvgy4EDjDmjYDpKMq1gku1DB0C2UVbS+SiKB/PDDlN97B2F8BP+AiLteJuaZZ/Fn/wFZ9ePeswO5zU/VSlIujFIqLOGS9xKMxtd13m6QbCtTRaxfOZrt9gdYmprANAxkZeUHfjwe59d+9Vc5d/Ycf/XmMS5Xo3xLL7CjdJF0rp3yhr2Igk1dk48BEayKRkclxwa3hMe/dppZ7eigeWyIkC9A3pSoD+QYu3aJ3ZKDQgy9OoNt6+uSGawGIztPxdQpq2F8kkLY9ek7i9zA7Q4jsuwn2teJ7UgESwIz1TR6qYDqW/vYfBCWVUZARLRVrEKGcszNwOQS29xl5gcqoGfxJBRspY6m3o03CfYN7A56uV6qcj5fXjHD0BT28PiOJs5dr2c8VSXctYPpwUskYwcZHRtDrzj0xPewY0M7eX2KqpXjiYOPMiXHKZSqeKWVswK6Xnu8qur6rl0AlyxR53Mxl6uwreUDxKl1HzRsg0qayPwS6WqRAAbtskq8TSbQ8jiBlkffl+0RXS5wuSiWRfR6kbptLSh3GO/teDuVR/OE2N0QRZEltjY1cW1xkblrP6Vj40ZOmhqyPkb7oXvZtu2XWVhcYm5sktTMHM25k5xTXUzGNlNxAgS9brZttOiLWGTsOY5ODDO30Mu2lt3887sew/VB15lKTeeMO/yhcSmSyL29ceIBF6fHM0yfn2GpqJGvmrRFvSwWqkS9Kldm81yaThD03IPfP4aP02RzObzeTiqFccqVcWxbRxLd+P0b8Hp7UJRl7a63DgoLax6jbDULQMS9Sme6um7QizBzDqo5MHVIDUHfI2BqILtg9jyNixcI9jYxWfRzSjd5ZiFNXFXIGib6bVmGgCzRtiw18IghniucI6fnqPfVrznejpifJ/bdxaupBcZmJH546hwHm+sYLchoaoj2DVvpam9F8tWBUiORLhf4/INsCUWYO3EVT7HE3sP3MaTNQcVPVGjgmdQ0kihgLY/TsB3GlkpsqA/Q0Oimvc6HbBnkBs9j5XIoDR/O+qwGOd5B/eP/DxzHwcpmefvNK3SrOnalirEwgKAoqC0t+Pbv/2gE+wai3bA0BLkpiHbecbOwtzZX5MrG+0j2B9HdFIMmwHHQrBRFtZeSWyK7UMvIeQIKsRY/noCKN6AiLWcVT46mEASBPa1NaHaAY9PHeGv6LfY17KPJ18RCeYGvfu2rfP973+eHP/whhw4d4uDBgyhjY1QuX6bw0ku4t2xh0+w4gwuT5CSJpU0PsK3nCO3JEZ45+S4BBe5/7CkO7tmEIAhcu3YNfyiI4zjoVRtVVHAJKrZtgVPLvAqigCCItX8LQo2PGBWwQPD4QXWwi0XsYhHB5UJQFBxdxzEMRFVFEFQc08QulsERkIJhxBXmXbfXzXPPPccjjzyCz+fjySefvOMxbmpq4p//83/O4cOHURSF9vZ2vvOd76zjZH98rMdd5CvAvweOUsuE/GdBEH7XcZwf/UJH9rcQjq5jl0pIXSsX2K2Ea6lr+BQfrYEPe+H6Qi66mgLEdZMhy+K5S7fcC0VBIOZ3sbkxSCLgoinsQRIFtHAYx6y1LJX8d3bLgNrKc4/vHrLqUVz7bAbfGOTll1/miSeewNXTg+j1UnrvPb5mjvC5HbtILyxSuPwm+Zl+ZvJL5GybQrgRX+9mvuRz0dVex08uvM3Thw9x745eSI/B9JnaZBHpgJa979Mrun21G6ZaNFCiqxM4QRDQg0GcPbsItHVTvX4VI7kELRsQtzVhimVy+Qu3/kDbQDDUhrgOYgC1xh6iR8JMV1HuRLKXix+1UhE5fOcJUhRFdm3aTms5wncnz/HubIVJezvuzb10J/wkAm58Lpkel0KzIrF0ZYFQa8e6xinH43j9YZoLIUaL81hhL2ahxOLQNQJqHbo5ha4vrcuVYjVUUhOYhkk2GMIvyoSlX4weG24n2RVk2U+wMYYpqQQqVea1ItmlaRK+jx5tMK1SragyUwUHBjGxtBK9apWJ6xdAMfC7vHjjXcQ7PjxJ+mWJDo/KeEXjMCuTfEkU6G5oJOabYTi8l/zsMIWrb9Gounn0qUfZu3vnhxa7/cksYfnOx1LTFpHlAJJ05wl5JSSCLq7N5TEs+8OEWHGD0kTUCnK1VMFp3k/EfpyQVUVU7/ycyFUMPKq0LoKd1A2GSlV2Bb34l7+fIAh87nOf48ej72ENTdL76OcYnhpEGXyPhZGLiHYtk1WviHS2NdPnTbLo0Rmw/FyeUzjj86IKHgyjiauLQaKqn39x5OEPE2yAahYU351bfAMbG4I0hT1Mpyv87MIMbllkcKHA4EIBgVqQsCvm52D8EGcXFKpyFKE0RKk0hICI29OCz9uFy9XwYQmaN1azaNXLoH64G+4NZLUswJ0j2TfQuAMEqeZGNf4OmBWYvQhzl2p9F8wq1PXg7t5Kwyuv8lQpS39zG0uGSa/XTVSVqVNkIor0geMl45bd5LT1N272aSU+++QX+W9XznJ1NMtoWWbz9v08sGcj/hWKxedSc7x0/CWq41U6fZ38w288yYQyQciEg4370XSFdElHt2zCHoWIV+X+jTYvX5mnzu+it375fpNdiB43Via77rF+EIIgUHL7qTS2EOyOEUz4cUwTbWSUyoULKK0fs+VVoAFUH6RHViXZfpeMJApkK+tsL6LlcSkmrvY66mJ1N4uNBfHDQbOqYTGcLNIV8+FVZbxEONR8iJNzJzk6dZSwK0zFrJC38nzjG9/ghRde4NixY1y8eJHHHnuM3oceonzyFOWzZxmvzjK7IcL2rg04dQ/x3unznBy/jAN87ku/xJ6NH/6OtmPjCA6ypCCvct8B4Dg1ki3KICk1FZTfXytkLNWyjk5Vq+mvl4tO7VIJBGFFdUBHRwfnL52nZJQIhoKcPn16XYf3N3/zN/nN3/zNdW37aWA9hY//L2Dfjei1IAhx4DXgf5LsD8D8QNHjWpgvzZPRMuyp3/OhwqcbiDR40cfyPLopznCugkeRiAdcRH0q0go3nRSpfbaVza5JsgHMksPddftZqB9mYcsCr/e/TigW4siBIyhNTfgfeIDS8eP4z7yLH1jy+Slu7CI4WWWDx0Vs6waaol1cvzDCS88/R33Yy33NJlz9KZTT4I1C52dqD6QPwL28wtfKBoFVOi7eQDmfxROJ4t2+HXd3N1Y+j9LYePN929YwjDyGppPXBXxNa8tEbocUcWPMlXAMe0XtsWv5eFaLBXyrkGwAu2Tgc3n5X77yBXqvDPDebJLP3LWdzoCbRpeCujzpZRfmWbQswvXri9IIgoDa0UH3zGWuMI3a1YU8dZHX33mdLz/wTbBqJO2TkGzLNCgsjmFZDllXlFaXG7fNp96I5gZudX0sAnG8Xi+G6iJUsSnoZVKpaRLtH51k21YZSfZhLlURXRLDxTKSVaZaEmFpArtORhHddOy9f7nA5sNodquMlDWyhklYWflxqchBFGmMBzfHiCtfoP/KFZ54+D6CgZXvv5xhkXCtnAlxHAddX8Ljaf/I3zcecHF1FlJFnYbQyvdTRJEwbYe8aRFSZERp9WdErmLcWQf7AZzIlmquB8H3E0yfz8f+x77M1Z/8B4LDOezNG1lK5djsxAlF6onEE7gDcVC92LaGpiXZWnERF8rsbooyUBzlheOX8OgOv//0Yfx3yCJRyd50Y1gNQbeCLFXpiPl4cFM9fpdMsqCRLGpEfSqdMR+WHeFK6hIpx8+u2HZMs4jH07y69My73ASjnFqVZGe0DD7Ft74W0A1ba0V2xXlo3Am+OFTStai9tw7qtyABciKOPTbGgS2b1yXpCqmhdZNsu1rFLlcI9PXxj+/6Db71g29TmZrl3Cs/Yu5yI3v37mXr1q24XC5M0+S9997jp+/9lJSS4mv7v8YDhx7g3NI58oU8B5sPUucNgreWCfogEgE31+bybGyo2aRCrb7Jyq1/QbAScuUawb0RVRZkGWNmGikUQgp89CxZbSdCrZvzwpVb2YUVNxMIe1QyJX19+61ka7+Xr+WVyPUNDC0UsWyHzcu+6gB1njoe7niY/qV+hjJDDKQHiLljPND+AE8//TR79uzhhRde4Ac/+AFdXV0cuP8elhavMe1qIJr2MX65wJW5P8E0TcLxeh5+9DNs6elY8fMtp2bhKa6nl4Glg2PXFibLEFUVUa1FrB3TxLZt7Gq1dmwF4X1ykpUgC7VnsmVb73Nn+puE9YxK/IA8JEWtLuJ/4gP4oLPIWriauopX9tIevPOEGkp4WBjPU0lr7OlaewKRgkEQhNrKv2XtApxKsUZwu5sOIO2T+Gnpp3z7vW8zaA2yu283CW+C2P2HqU5P0m9OsqBA1GjkkNRBfHMPqpoD22Sw5KCZNo9sTiBjgqhA236Ib4A7PPQlRURxSVRL5prjdByHci5HrLVW1Cf6fIi+90ecRdGFyxWnki0DWfyRj0ay5agbY7aEma2ixD88Sbq8XgRBoFpcufjxdtglE0EWEF0yT+3eylO7V94utzCPKMn461bvUnU71PYONp6p57n8AK6WJizvFYrTY2i2g+wEb8oNPi6qxSKl9DSGJFOVA8QD/loKUP3F3PYfbEgjiiKSP4C0lMKp6qSzH8/YyLTKuOQEVk5DafAxNjRFRKySH5zCRifklXD8DdS13DmS1bxMhmc1444kW5Zr8gzTzLNzQyc7N9w5qmU5DgXLok9emQSbZhbbMXC51i8VuYGYv6bLTha0O5Ls6PJ3yCyT7NXgOA75qkF9cO3F+mRFY6aqcyDiXzHK3LNjP9lzXVw5/y4b+36DqahNKdRIe91m3PItsiWKLjyeFmTVxrILnBw/w/yp0zQtVfj6L3+drvo7LB5tuyarCK69uLRth+vzBWJ+1039eludl7a6W/e8JEq0BdsYyY6wM74Tn2sd+nhvFBBqJDt852sqq2UJuVbXQr8PC1dqkev6rTXtb+jDtRuunh5K776HOTuL0rx28V7IFWI4O4zt2HcM8NyAlU4DIEUiuD1e/tk3f5PTU6e5dOkS+dE8zz33HC+//DJbt25lfHycdDqNv9fPkd1HuK/vPq6mrzJVmGJrbOvNbqZ3wpamIG9eX2QiXfNDh9p8agwOfqLGVNlKjeDeWDDalQpmcgn3bX7QHwvhdpi/DPmZGuG+02ZehZlsZX37XEX2dDss2+HafJ7GkIeI7/0LNkVU2JXYRbO/mfnSPEenjxJxR9ga30pdUx0Pf+1hjp8/ztuX3+aNv3qD1tZW1CUVa8FClQV2btvO3rv307CGRMd2apWJkrCOAIxRAUGEFRaXgizXfhQFstmafESWa79XWTSKgoiAcJPs/03Eekj2S4IgvAz8xfL/vwq8+Isb0t9eWNksost1Z/uf27BQWiBdTbM7sXvVh5ysSATr3OQWyyQ6gjdX93eCIElIwdBNwr8a9KqJZdi4/SqSKHGg+QAbntrAn/zln3DhxAVERSQUrU0GoiwiKiK743upH1jCUG2UTftAlunv72dk6Qyb21vRPe04G+9bd4GcyydTLa6dRtNKJWzLxBtce3IqZqpIinhTjrJeSH4V0bUsGVmBZIuihOr13tFh5HbYZQPRu/bn55LzBOOJO0ZSVx6nj+bWdvzzXkaLS2xqaCAyMssrg2d4uC6Grs9g2+aanQLvhGo+h5ZPoYkqVQLEA7UoyS9KLiKKCqKgYlm3JiE5WoeZmiZQ0snkP/qiwXHsGmnXZXCg5JNYzBfpMkuYU4PoPpsYCsH27avuJ6TI+GWJ6arOZv/K97Wi3CDZhTV9rfOmhePUCitXwo3C1Y+ix745Dkkk7FVJFqvAyvdJZNl6L62bdHhWX4QWNRPbdtYVyT6ZKxGUJbbc4RghCGw79FmWfvynnHr1BAe+dIix3BgT+Qla/C10h7up89xaaBaMLGOFa6QGpgmnyjz99NP0dq/itqIXwLHWJCYAU5kyJc1kV9vq23aGOhnKDDGRn7jZiXNVSMpy8ePSHTcxLIOiXqQ9sM5MRTVX0/w27li1uE5pbkb0etCGh9dFssOuMLZjU9ALaxJ+M1MjffINW1pRZn/7fhrDjZzbcA49reNMOVy8eJFwOMyTX32Sy/ZlLMXihdEXsByL9mA7G6Mb1xxXS8RD0K1wdTZ/i2SHQmA72IXCh1y71ots2cDvkm/KnozpaQDUdQSiVoUvVotg52fXJNkjySJVw7plq3snVDI1WeUq5xtgbKm2vy1NwTtuk/AmeKL7CZ4dfpYLyQuM58dvEtL6znq+0fUNBs8OMn5lnERDgr2PbGCrOIJr4x4Ir51dtRwLURDXXKhhGWCbtSj2KtxAkKQa0bYsxHVk4gVBQBZlTHvtQN1fF9achR3H+V1BEL4IHKKmyf5jx3Ge/YWP7G8hrFxu3VHs4ewwLsm1ahT7BsL1PvJLVQqpCqEVyN8HIYXDmItrE5Mb5NYTuDWJ1vnq+J1f+h2+/e1vs/DmAgd/+SD4oWpW6Yv04XFkctMXUDvaEWSZQqHA888/T3NzM/c/+CATl86TnpleNTp4O9w+hWJGw7bsVfXT5XwWAG8ovOr+HMehlNXwr0N+shKkqBtjvoRj2R9qLVsbrx9tDZLtOA522USuX/1clfM59EqFpt61J58PwtvVRcvZKIupeR458hDjw3/C6OhF5H1fQWMaw0jhcq1d1LQS9Owc5UqVihzEkrw0hmuFvHdyXfk0IMleTOvWcfXUJzCGJIJlm0xpCcvQkZT1FyfdJOwFGUERua7rGNUSkXQaQ0sjN8iASGLDnjX31eRSmKzeOdUrST4EBAxj7ZR2zqxNcHfSZGt6EknyIstrTzArIR5wMbxYxLadFRfkqijilyXS5tqRn9yyhjS4Bsle1AxSusmRaOCmfddKcCW62bNzO1dOTJG8lOTRBx5lJDvCeH6cycIkEXeE3nAvmqVxKXmJ8niO9KLGVz7zCNu2bVt9sDdT7OE1v9fAfIGAW6F5BbnC7QiqQWKeGGO5sfWRbFgufrxz5iWn166RVYseb8fitZouO776M0IQRdSuLqr9V7AKhTUlEDeIdV7Lr0myrUwWKeD/UHFgR6iDiDvCe+p7lKIlvnjkiwTcAd6cepPr6evsjO+kJ9JDd7h73ZF7QRDY2Bjg1FiaTEkn4lMRl4m1lct9bJKdKes3pSIA+vQ0UjDwsfd324Ah0Ai5mVU3Cy+3G89VjLVJdjW7rut4eLFEyKOsKLu5Hc2BZjqCtXMVUAOEXWES3gQBtXaNHO48jP6EjqqqYJlwfqwm9QyvbQVr2db6otjmsgTkDpKa2yGoak2nbZp3dGm7HZIgodnammYPf124I6sRBKFHEISDAI7j/NhxnH/mOM4/BVKCIHT//22Ef0vg2Db2Okl22SgzX5qnM9SJtI4Ipi+sorglMvPldY1FCoexK+WbTRPuhErBAOGWNvoGvF4v3/jGN3CpLp7/q+dplBrZmdiJV/GiT8/gWCZqRwemafLcc89hGAZf+MIXiLW24w2Fmbl+BdtaX/rG7VPAAa2y+kq0nMsiCCLuNSaPatHAMh184Y8mFbkBOeoGB6zMysfO7Q9QLRVZrQGqUzFxbAfRu/oDorBU6+oXTHx0Mqy0tNDtilPIFTE64gheL9GlCSZzteP4Saz8Sktj6KZNwR1ENm3ql4/5L8pdBJa9rG+LZPsiYTTZja8MBbNMNjW7yl9/GJZVrnk4FyTkqJvBxRSWqeMdG6UqGjQGVQr4aWxeezHY5FaoWjYpfeVrVBBEZDmAaebX3FfWqN0XoTtMtLq2gOtjRLFvIO53YdsOqVX0n1FFImOsHfnJL9+Ta0WyRyoaogCda0TGCTQRT9Szf1MLJ06cYHFqkZ2JnXyu63PsSuzCsA1OzZ/iYvIilaEK5akkbZ097N5395pjXW+KPVvWyZR0+uo/3PBpJXSGOikaRRbL67yffDEwyrXixxWQqd7q9LgmTL3WWTDaBcra2VFXVxeIAtrw8JrbBtQAoiDeLMJcDVYmXfMFXwEhV4gH2x6kOdDMtew1Ts6dZKY4w47EDp7qfYrd9bs/mjQGaI/WIthTmWWf+2AQBD62LtuyHfJVk5CnRnRtXcdMJtcV8V8XQi21c15O33GT8A0bv/IaWVvbhmp+zdqCqmGxWKjSXnfnvg43oIgK9d56SkaJ3YnddIe7bxLsG1BvLKAked1WlI7jYDnrINmOU9NjS2pNLrIGbizmbH19GnZZlHFw/sZKRlb7xv8RKKzwenn5vf+J22AXCji2vS6SPZYfw8GhM3Rn7ebtEASBcL2Xck5HX4OMwi1N+FqSkUpRx+1TViysCIfDfOMb30DXdb7//e9TqVSwbZupy5c5VyjwFy+8wL/9t/+WwcFBHnroIWKxGIIg0LJpK3qlwuLYyLq+m+s2h5HVUM7n8AQCa8oqisvk2P8xSbboVxAUseZIsQLcPj+2ZWFU76yvs8q1cyStIVfJLy3i9vlR3R+9DbogyzQ3NaPqbkZSw7ibeglVcpwa7EeRQ+j6nVPWa6EwN4Jp2uQ9YRTTps7tRZAEBPkXV4ohiV4s81azJZ/fR9nlxl+BVLlIamnqI+3PskrYFRPRcSNH3YwtpoiV05i5eQyfTNjloazGiUTWjig2u2oP/Vntzg99WQ5imOuLZLslcUXdsmkWsGyt1r3zY+KGxjhZuPMCO6LIZA1r1YUirN9ZZKSs0epWca/lQCLJEGzkrr4GotEo3/ve9/jDP/xDXnr+JSrTFQ7FDnGo+RDRTJTh08Ps2NTNli1bSK+nYKyaBdW/Zop9IlVGEKA1unZGEKDZ34wiKozlxta1/a3ix5Xvv6yWxS278cjruOfTI7UU+xpR7BsQPR7Ulhb08QmcNYIcoiASVIM3I+t3wo2iR2mV+0QRFe5pvIcDTQfYUreF3nAv+xv3r6+wcwV4VIm438VkukayaxLIIFb245HsQtVYtrmtPY/N+XlweF/R/CfCjTqA/J2j2b5lqUqmvMa1XM3WigPXWCxOLR+btnVexy2BFipmhXT1zguBm/BGby1aV4Ht1JrMrEmyLaNGtNfw0b4BQRQRVLVm57fGMwpu6cEt+28fye5wHOfSB190HOcM0PELG9HfUqy36NF2bMZz49R76/Epa69CbyCc8IIA2cW1o9lSOPS+Ma0Ex3GoFg08gTs/COvr6/na175GOp3mv/23/8a/+7f/lu+fP8fxqSny+Ty7du3i61//OnfffSvSFIzFCdU3MDd8HUNfPZIOoLolBFFAK68Vyc6tKRWBmh7b7VeQP2bUVRAE5IgbK6PhWB++wV3LNn6r6bLtkgEiCO47T/iObVNIpQjEPn7UsmXjRvyGn+TMFP59e5Fth8rEFWwhgK4ncRx77Z2sgNz8MCYyZSWIzzRwC65fmB77BmTZh+3o2MvaOr/fj664cBtQqVTIZD5a8aNllbFKOpLspeQWmckWiC+Oo5lFQgkvliXgbexbVzQzIEsEZYlZ7c4LQVkJYZnFNY951jTvLBVZzj58lCY0H4RbkQi4FZLF1Ui2hOU4N6Urd8J6nEUWNIOiadHlXac8K9SGbFf5ta89xWOPPUYikaC/v58f/ehH/MEf/AHPfOcZ3n75bTo6OvilLz6BIAjrI9nrdBaZTJepD7rXTtkvQxZl2oPtzBRn0Ky1n2d4bit+XAFZLbu2dd8NJK/XbAF9H6EouqMDR9cx5tZu4hRyre0wYi3rsaU13JQAmvxNaLaGLMo0+j8ZgW2NekmXdIracsDiEziMZG86i9TmOmN2DkFVkWKr10+sG6qvdu3lV8+2hT3K2pHsZQ/1ta7lyXQZnyoT9a1vIdPoa0QURGaKq8taap8dBa1Qy6SsghuR4zWz8dZyAytp/TVSgqqCbeMYdz5e4+PjbN26taYJR8R01qfL/sEPfsD27dvZsmULv/d7v7fuMX1crEayV3tqfvTQ2//gsLJZBElCXEPOMF+ap2JW6Aqv30sbQHFJ+EIucsnKmqu7WvGld1VvUb1iYlsOHv/qF35nZydPP/00qqrS19jEYy0t/LN/8A/4h//wH/LZz36Wvr4PE5WWTVuxTJPF0bWj2YIg4F6j+FGvlDF1bU2SbRoWlcL67ABXg1TnxrEdrNyHJ1X3TRu/1Um25F05Q3ADpVwW2zIJ1H18kt24YQNe20MpmUHvCGDJfqKpKa6nitiOiWGsHY34IPRykXI2iSbJ6GqAsFvF0a1fqFQEPuww4vP5QBHRhVo77XT+o3V+NI0SVASUaICBVB69XCIwP07ZJbKhq5GFokWief02eU1uhVnNuOO9p8hBHBxMc3W9fs6wCN1Rj72IKKo3Cyk/LhJBF0sF7Y5jjS7rHDPGnUn2DWeRNaUi5ZpUpMOzzqjlsutGwMpwzz338Eu/9Ev83u/9Hn/37/5dHnzwQQKBAB0dHXzta1/D41IJepS1SbZtg5ZfU8e6VNQoaSYd60ix347OUCe2YzOZn1x7Y0mujaP0YZJt2iZ5LU/EtQ49dnGxRrhifR9prHJ9PaLbhT4xvua2QTVIxaysungwl51F5GVr2NVgOzbThWka/Y0o4kcrOv8gbmQaJlPLkpFQCLtUwlmnhOB2ZMo6AjXZk+M4GPNzKI0Nn65+N9gMhfmapvkOCHkVcpU1xl/J1CQVq0SyDctmLld9nxvOWlAkhYQ3sT6S7V2WBlVWj3rftO9bTQLyPqnI+o+3oCggius634IgIInSuiLZqVSK3/3d3+X111/nypUrLCws8Prrr697XB8Hq5Hs04Ig/L0PvigIwq8DZ39xQ/rbCSubRQwG17QYGs2N4pbdNPo++ko/lPBgVC3K+bUvPCkcXjWSXSl8uOjxTti8eTO/9Vu/xYOxGFv7+ggmVo+0efwBwvWNJCfHax2g1oDLp1BdZYVfXo5grOUsUsouS0U+onXfByEFVARZwEx/WDKiuj2Ikrw6yV6Hs8gNPXbgE0RTFEUhHgpDViBrzCPWteEplbl4dajWNUxPfuR9aqkpKuUyVdGFqfip87txNPsXWvQIt3tl1yQjfr8f3eXCQiVQskgXkhjGOiKJyzAKWUS7JhUZmFvAlV1EKqUQQwHiPg9p20/jR0gXN7lUNMtm6Q5aZlmuLa7NVSQjhu1QtuxV9NjJTxTFvoG434Vh2TcLFz+IyLJ1X3oVXfYNZ5HVih4dx2G0UpOKrNgcZiUonprXc/aW/EeSJFpaWrj33nv55je/yTe/+U3c7tpCOeJV106xa7l1pdgnUiVEUaA58tFiRCFXiIg7wnh+fH1/4K1bMZKd1bI4OITX4YBC8nrNBnWVJicrQRBFlLY2jNnZNTWtNyLqq0Wz71T0uBIWy4tolrZ+55RVEPIohDzKTcnIjQJFK7923cMHka0YBNxKrbtkOo2j6Z+eVOQGQs21a3CVoteIV0UzbSr6KnNiJQvuIKxyP81kKtiOs26pyA00+5spGaWbHUfvCM8yyV5FYw5g2/baziI3pSIfTTokCEJNMmIYOPbaGdnJsUkO3X2IU6dOrbrd6OgofX19xOO14NZDDz3EM88885HG9lGx2pPxnwC/JgjCUUEQ/sPyz1vA3wX+8S90VH8L4dq4Cc+W1T03bxY8BjvXtrxZAcE6N+L/r703DZLjPO88f29m1n13d/XdjcZNEiDZEEESFA9Jlm1K9lD0jOUVTe+Odtcx9jg0EZ5xrGnP8sMydscRXu6MtDseHzuzsizb40PHmNTQHsmSLN6kCJAEQRDEjb6v6uqj7iMr3/2QVY1udB19VB8A319EBxqJ7KynE1lZTz7v//k/umBxprHfph6JUEomkGb1D9JsqoimC5yetdm8mTMxrEwa58DAmvZvH9iHWcgzP9G4Yc3tc2CZkkKueqwVZxFPgyQ7NZe3rfsaVOcbITSBHnFTWsgtTdtaEa/fTy5V/WZv5U2kKdF8DZoe4zG8wRAO5+YeCLr7+ihmHBTjs7iO7EczdcSVq6RMk8IGmh+TU5fI502yTj8Cg7agF2laWy4XqVbJtnSdostLJC0xS3nGht5f8/GKiUV03YsecnFpJk7b9EUsSnTui0JesEhwXUn2cr/sahiGbaNVr/lxofxeDFfpmC+VMpil1Kb02BUquuyZGrpshyYIGnrdJDuRa9z0OFMw1ycVqRDqszXLhXTDXVt8TrKFUoPEpLxiU2eJ3bIko3NZesKeNU2vvJG9wb0s5hfXqGlts6cz5lYmryOJEXSh0+5t8H9s5mF+yB6tvo4l9grOgQGwJMXR+n0MlYbE+kn2fF099nJGEiM4deeaRrWvhf4WL7FkjlyxhFZexVyLNe2NLGaKhMpFj+LEJAgwmp1k+zvsSYZ1JCMVd5OFetXs7HzDh8WRuQxuQ6c9sL7PjkphbzLdQHrn9NoPw2uoZDfWYxfKUpH16/M1pxOkrCsZAbhw4QK/9MQv8Xv/7+/hC/gYHBys+rWwsMCBAwc4f/48Q0NDmKbJc889x2iD98lmqZkJSCmngY8LIT4FHC1v/lsp5T9saUQ3KY6Oxh+OleaZtTY83oimawTb3CRms3TuC9a1vNPDYZCSUiKBUaUzPJss4PY71rxkVhgaQjicOLrXNkkw0BbF7fMzM3y1oZ1fxc86nzFxVtExZxYXcfsD6HXsfKSUpOZz+CPupiwDGi1uzFiWUqKAcUMTpT/SwuzoMJZVWtWIaZUH62h1mh6tUonUXJzowPokQ9Xo7uvj9PvvI2cWyR3sRPwoTGgmzpWFFEHX+pPs1LUfkzU1kqEQDrNExGcnv1s1iKbC9ST7eiUbIO/105KYIWOWuDJymr0Hjzc8lpSSQjKBN7CHVMlifHaR2+ZGMb1e+ve3sjhZoOQM0lLDMaEaPkMn5NCZyBW4O1DNQ92Jrnnq2vhVNNDV5CLX9dgblw8txeoy8Dh1Ysk8hzqqy9ciDp35OprsyoS8oLv2dXw5k0MXYu1SkQrhPph4xx4XHq1vjRcpv4/mMgV6nDUq0NkFbJuk2g/hM8k8uWJp3dW/Cn2BPt6Lvce1xWu0uBtcN+F+GHsLZi9Br329lqwSo8nRpUbKusSv2J7f65SKVDAiEfRggMLwMK79tY3A3IYbl+6q6TBi5fNYmQx6Sx1/8jKmZTKeGqc/2L+hAlI1+lu8vD++yNh8hgPt9ljt9eqyS5YkmSuypyytKE5OYLS12QlcM9F0e6pxYgyo7oYTLr9P5tNFukJVruWSaWuhWw/UfJmSJRlfyLKn1bvuzzm34SbijjCZnuT21gYTdD0tDSvZJVnCpbl4bT5ZfYVPAoWU/fCRWlhXrG0OgwcjAYSuI/N5cFV/oIjFYjz++ON845vfoPdgLz7Dx+nTp+se+w//8A/5whe+gKZpfPzjH+fq1avrim29NHw3SCl/JKX8vfKXSrA3iCUtriWu0enrxOvY2I0eINTuxSpJklWkDMup5zAiLUkuXcTjX9uNRhYKFMfGcPb3rcm3EuzlnujAPtLzc6QX6muDXeWqby1ddiaxgLeBn2k2aVv3+Vs2VxmuoIdcCF1gzq5eNQi0RbFKJdLzq38vK23bImp1KoCp+Tksy9qUHrtCd/mhx5HQyBlJdF8HnkSBq9fGyRVTa/JuriAXx5kbv0TOcpJ1BXHmc/hc9rW6VSPVKwihoWvupUq2tzxd0wxEcJgSsjqTsWtkctUMj1ZiLmSwSnmc4TDnp2Po01dw5lI4O9rpdjoZSwq6urrWNgp4GT0uJxP5IlYNrbPhCGKateNLFOsk2YUYmjBwONbon9yA9oB7DQ4jZs3fpeIs4qzhKLMhqUgFT8QetrHQuIIU8VYSkzrVv9xCeYm99jU6FE/j0LWGnsK1cOgOegO9jCZHGw++cHrtRHv24pJGdyI9QdEqrmkuArMXbEmNd+0PgatCGBjAjM1SStVfLQi5QiTy1VdfliY9rqHpcTI9SUmW6A809lZeK61+Fz6ncV0yEl5/8+NitojEbnq0sllK8wvNl4pUCPbY9nv56vcAj1PHZWi1K9lLTY/hmi8xlchRLFn0RTaWQ3T5upjLzZEz6+cPSw4jNaQaa3IWkaYtFdnEuHNRGblewy0nFArR19fHm2+8iSEMLl64WLeSDfDYY4/x4x//mDfeeIPDhw9z8GDjh8jNsDuHvd+CTKYnyZk59rVvrnrpDTpxuHQWZuoPptF8XoTDWTXJzmWKINemxwaue2PvWZ/Wrq2vn/Hz55gZusrewdpDP3Rdw+HWqybZxUKeQjaLNxiu+1qp+RwI8Ic31/RYQWgCI+qhOJ3B6g+s0CQHWqMIIUjMxgi0rtRUlzJFNLeB0GtXGZLxWYQQBNYxSr0WHR0dCCHQCl7kwhxaTwjrogt9ZJb4bWHaCzNrbqSbu/QS8USaguYl6w7iyxbwuuykZKvlImDrspePVvd6vRhOH9awhrFQQgY1rl17lyO3P1L3OLnJOEIXOCMRzp6bwDt9BYco0X57FyGHj6tzi9y2f/0ftN1uB+dSWWYLJu2u1e8dhxEik6lt9bZglvAbOkaVhthCfganM4poUhUwGnAxHE+TyBWrVqMjDgNL2tX1SJXx6olcsa4ee7pgkjYt7g9t8KE21A+xD23NZh1JhEPXGjc/Zuev60irYJYsxuaz9EU86A0m5tZjb2gvw4lhxpJjDIQG6u8cvd2WfMxdheghRhIjeAxPY6lIcsqWmex5aMNxAjj7+8meeZ/iyDD6HXfU3C/sCnNl4UrV8eoVZ5G1ND2OJkZxG27aPE1y7CjT1+Ll4nSSYsm2xy0Mr6H5dBkLZT1/xOugOGlPeTQajArfMBUrv8VxaK9uuxjyOJdWiVaxNFCp9kPNSDyDoW38YbHb1825+Dmm0lP1r2FPxNaY5xaqPuwtjVPXdB6M1DB7yKfA1Oyf3+DqsnA6IZtFFgqIKpO0nU4nzz33HI8++ih+v58nn3yyYSV7ZmaG9vZ25ufn+YM/+AO+8Y1vbCi2tbK1a8CKJa4uXMVjeOj0be4NLoQg1O4hvZCnWEenKITAaGujOD6xymUgm7Df5GvVLheuXUUPhjDW2aSnGw5ae/uYnxhraOfnj7hJLdiTH1fEWml6bFDJTs3n8QSc6I7mXdKOTh9IMKdX2iYaDgfeUJjk7Go5hpUuNtZjz87gDUfQjc1px6Hc/BiNksaFfyHPYp8TIQO4YlkmZ6bI5abXdqB8kumhHzObcmLqOngDOCyBrzwEQ6zR8mwz6IZvhTuH3+/H6fdREE70+QwtrghXR96re4xSukhhYR495MRw+Dk/PE7LwiRGoIXWbheW6WSx5FqXHrtCd9kve7ymLjuAJYsrhuosZ9Gs7ixiWXmK5mLDkezroaLLnq1RzW6pjFevsswrpSTRwL5vw1KRCuF++0N8cazhrnWbHytL7HWqf5OLOcyStabBHfVo87Thd/rX1gAZ6LAT/9iH5MwcU+kp9gT3NF7ij12w9auRgU3Fqvl8GNEoheHhuvuFXCFKslS1mm3OzaP5fQ2bHgulAlOZKfoCfU2fuNff4sWSkomFLHoohCwWsdKNtfwVFrJFu6DhdlCcmETzejDWqDFfN56wvUJTxy877HWwUKMhmey8vRrjqj4mXUrJ6HyGnk08LIbdYdyGu7Eue8nvvbpkpJJT1JQGLbmKODacYEN5zLph1HUZ8fl8vPDCC3zlK1/h+eefb3jMX//1X+eOO+7gwQcf5Ld/+7c5dGhjsqy1opLsbSBdTDOdmWYgNNAUvVqo3QsSErH6DZDO/j6sbIbS7MrBCNlUAd2hVdU/34g5P48Zj+PctzEdefvAPizLYnZkqO5+wTbbNi91w6TFzOICQN1KtlkokUsVN+0qciOa28BocVOcTq/yzA62tZNemKdkXr9hyqKFLFh1nUVKpkl6YWFVBXwzdHV1MZ1K0W0FyXrzeJ1B9ATMT+aIJS+t6RiZiXdZmJ0hkzUoOtzobi9uSngMN8Kh1bUjbBaGEcAsXfea9vl8lEoF8m4/RirBQPcR5ucnmU/W1poXp9JYIo0ecJItuVm4/D5OM49n3166rCKzeRcSsaEk26trRBxGzaE0RnnFoNZQmoUaSXY+b78/Xa7mNIyB3bDocmg1mx8jdWz80oUSJUvWTLKllFzN5On3OHGuVypSwd8OhhsWG0tG6jY/VpoL61T/huMZ3A6djuDm7w97g3uZzc6SKKzB5aL9dsjOMzL1LhJJf7CBlKKYg4VhW5PbYKjOWnAO7KGUSC7Z8FWjw9uBQFS1divNz1ft57mR8dQ4lrToCzSenrpe2gMuXIbGyFwGvbzyV5xeY+EAu5IddBtoSMzp6a2TilQIdtsOIzVkFhGvk2LJIp2vIjnKLdhNjzWS0ljK7ivoW6c7zo10+bqYzkwvVaOr4g7ZMo8aQ2ksLHSh185nLNN+iF7DGPVGCJcLWSqtMnEYGBjg7NmzgD087+TJkzz++OMNj/eXf/mXnDt3jnPnzvHEE09sOr5GqCR7G7i2eA2BYG9wY4nqjbg8Bp6Ao+FgGkd3N0I3KIxcX2IrFS0Ss7k1J6SFa9cQur5mV5Eb8QSCBNuixIav1bXi8QbtKvTiDRroZHwWp8eLUaeaUknMA5HmSEWW4+jyIU2JGVt5rgNtUaSUJOPXrbpK5WXAepMeU3NxpLQINkGPXaG7u5t0JkOLvwdHMYtsdWGlnORnC8zNX2ro3UzJZHr4FWYXBI58ifnWDvyGgSEsvIZ7y/XYFRxLDh12vH6/n0wmTdYfwchlCTm7EJbkytV3qv68VShhzmaRkQKa4eTCzBze6as4NAeRY1Eiuo+xtIbD4aBtg9aJPW4Hk/kipSpa5qX4i6sTsFzJIl/Dvq9QmEYgcDo3Lx9aTpvfVVOXbWiCoKO6w0hF/1wryZ4qFMmULPY1GqNeDyHscdSLYzUTkgrLmx9XkSy7Ofiqv58KpsXEYpb+DTSKVaM/2I9AMLQ41HjnyF7QXQxP/JiIO0LQWb1CuUT8sp2YtDVHI+rs7UXoGoWh2tVst+Em6o0ymlr5sLPU9LiGqu9ochS/w9+4IXQDaJqgN+JlbD6LFgqj+X0Nq/PLWcgUCXudmLEY0jS3IcnusSVQ6eqFgOsOI1Wq2Zm5uisyo3MZe6ryBvXYFbp93ZiWSSxTx+JVCPvBtcZQpWryohWYeWB9A2hqhuKwj7HWMeu7DZVkbzGWtLi2uPmGxxsJRb3k0ya5dG17G+Fw4Ojppjg2tpTgzk+nkZaktcff8DWkaVIYHsHR07upbuzowD4K2SwLM7UHigghCLZ5SM1dl4xkFhdYjE0T7R+oe/zUfA7DuXnrvmroASe630FxKr1CduOPtKDp+grJiFX+v6jnLJKcjSGEhr+leQlVpSqbDbTSUjSYa9fQLA9izmJheprFdH0dY272Q+LxUeLzBmgG8+EeIk47IfFuw7THCte9pu3GIZ/PRyqVwurbhzAlF1/9AV3uDq6Nn61ahSlOpe2O9qCJYQR5/czbeNOLRFo68DtyBD0RrsULdHZ2rrvpsUK3y4lpSWKF1cmprnvRhFHVxq/iLFJt2mM+H8PpbEU0ssNaJ+0BN+m8SaZKrGAPpalWyR6dy+ByaLR4q7/nr2TyGJpgz0alIhXC/faScqr+oKGI14kQNZofF0btpW1ndSnI2HwGy1q/p3AtPIaHLn8Xw4nh+pVAAN1gIdTF4uIoA54GqxRS2o2S/o41Ta5cC8Jpu0EVRobrFjh6A72kCinmc9erloWhIcAeblOPrJkllonRF2x+FbtCf4uXYsliKpHDuWegbCfbePJxFTXl0wAAPPlJREFUIlcklTdp9TkpTkwgdK3h77NpAl32MJnF6pKRsNd29JpcuGEVOjkNxYz98zUYmcvQFXTXbEZeK1FvFF3oa5CMtFS18cuZOaSUGLUaGldIRTafYq53zPpuY0eSbCFEixDi+0KIS+U/q95VhBBDQoj3hRCnhRCntjvOZlAZx7s/XNtKaSOEoh57zPp0/ZuNs68PK5/HnJ7GsiTx8TS+sGvJNq8ehdFRZLGwYalIhXB7J06Ph9hQfaucGyUjk5cvohtGXas7aUlSC/mmS0WW4+jyYeVKlJZJWTRdx9/SSqI8VEaaFuZMBs2tI+rcBJPxGP4WO0FvFp3lRp5YqUSv0UrGZxHUJPmUh3Qsz3D83bo/PzP0EpmMpJjMkfcFSPnbiGjlaZzCueXTHitcT7LtJNXv92OaJv0PPELa6Sdz9l26Wm4juxhn8gZnClmSmDMZjBY3lpbGMAKMnjmFo2TRduwO2gs59EAvE1MzG5KKVOiu+GXnakhGjFDVJHu6YD+A3dhkaFkmxeIcziYMobmRii67VjW7xaGzaJoUl3nBF0sW4wtZ+iJetCoSoSWpiHsTUpEKgW57SXqh/kOgQ9cIuB3Eb0yyi1m7YhiqneANz2XwuQza/M27P+wN7iVfyjdOUoBhpwsN6Ms10BEnJ+2plRu07auFo38PMl/AnKr9INPj70ETGmNJWx8vSyXyFy5gtEcb6pfHkmNI5JZIRSp0hdzommBkLoNzjy25KazB2/jSdAoB7Iv6MCcnMaLRNbtjbRjDaa+q1NBluwydvoiHK7EUpeUzGOKX7KS0hhZ/IVMgmTOXJmFuKkTNIOqNMpVuMEXX02JXpPMrV0InUvbqUU0ryiWpSPNsEtcyZn23slOV7N8GfiilPAj8sPz3WnxKSjkopWxskLvLmMvN8e7Mu/idfjq8zX2C1h0agRa3PWa9ysCUCkZXF8LppDA8QiKWpVS01lTFBlsqogcCOBpMeGyE0DSie/aSmI2RTdbWMi6XjGSTCeYnx2kf2I/hqP1AkEkWsEyJfwukIhX0FlsyUZxcebMJtkbJJhMUcznyVxex8iVc+8I1j2MWCqQXm6vHBrvDurW1lelYjP49R3BKC7PFgUgaJNIeFiZeYyRRfYm1uDjO3NxlFmZ96LksU939+A2JV+q2jZ4U2yYX0TQXmuZcSlJ9Prs6eVtvC1N9ezAyGTJXEzilzpWrK4fOmrEM0pQYnW7MUppk0UCbGkVzhRCHXLToLha1MMVicemhZCO4dY1Wp1G3+bGabeKVTJ5Wp0Hwhkp2LjeORDZVj10h7HFg6BqzqepJ9h6PC0vC+fT1qtrEQpaSJWuObJ7Ml6Ui3iYkrbpha1jXaOW3qpJdqRaGq2udc8USM4nckkdys+jwdeA23A0lI5a0GMnN0hnZh3NuCOpNv529CLpr0w2PN+LoLt//R2o/yLh0F+3edkaT9v9DYXgYK5vDfXsDL2VsqUjYFW4shdkERtl6cXQug+b3o7dEGkpGSpbk8kyS3hYvrkKOUjLV/AE0tQj12DKLYvWeqcOdAfKmxVC8/OBVKsLctbK8qPpnXcXGsFkrMl2+LlLFFMlCHUvUGuPVx1JjtrFCrUp2qfw+3cAAmloIh91AuZYx67uNnUqyHwe+Xv7+68DP7VAcW8ZsdpaXx17GoTl4uOfhpnddgz1mvVS0SC3Udu4Qmoazt5fi+DizI4u4fMaaqr6lxUXM2Vmc+zY/MAWgrX8ATdOYqVPNXi4Zmbh4AU3Xad9XfwUgNZ8HAb7w1lWyhRA4unyUkkVKyetv8kCbrQNd+HAMcy6Hsz+IHqyjHZ+Lr/i5ZhKNRonFYoQO30aHCDEXtPCaGvmEF088wfuXv101KZga+hEFKZmfSlPQXcSjXfTpGfSShs9rJ7nbVckGW9e8vJIN4C7myd93H3mnweLJN+lwdDE2eYFC+WYupaQ4lUb3O5Ae+73wo9dP4cwXiLT34zUXCbnCzOTt/5vKSN2N0u1yMF0oYlZ5uHU4WyhZ2RWJdsIsMZ0vcqDKZMR0+iKG7sPlar6tmKYJWv1OZhLV7w8dLgedLgdnktklv+zheAaPUydao/J7NVuWirib9H4L74FiGtKzdXdr8zvJFUsrrfwWR8Dhq+knPTKXQUo27SpyI5rQGAgOMJWeIlOsvZI4nZ4mX8oz0POAPQFyfqj6jrELdjW/9UBdr++NIDQNZ38fxfHxulXAXn8vGTPDbGaW/Pnz6JEwjgYPo+limrnc3JZWsSv0t3jJFkvMpgo4+/dQml+oO2J9ZC5D3rQ43BGgWJ46vNZBapsm2Gv/WWP6Y2fQTdDt4NJ0OcGdu2ZXf+to8UfmMkT9LjxNuhdXpj9WqtJV8bTY1+OylaZ8KU8sE6vtjy2lXf3WnU2RilRY75j13cROJdkdUspJgPKftUqlEvh7IcTbQohf2bboNsl0eppXxl7Bbbj5RO8n8Dmae5OvEIi40Q3BYqMGyL5+UmmLzGR8zVXs/NWr9g16gw2Pq2Jwuoh09xIfG8Wsc7MPtrkpZNNMXRkiumdvw7HjqfmcXQHfpE6tEUbUgzAExcnry77eUBhnyUXmyixGqxtnV/3/58RsDE3X8a1huMN6iUajzM3NQThMn6ebXNAgaKUZz3SQLHayf/JdLp3/G67MX176mVI+ydzUaUqyk8JCnPlwK1nNwf1dIfLZAj739kx7XI5hBFdosgFSqRQP3XOCqfYQ1uIE7ukwZjLB8Kz9u5Tm81i5Eo4u39LPXjl9BoHO3vtuJ5JN4Q3vYWYusXSuNkOP29ZlVyQgy/F6BhBopFLnl7ZdTtuDHw7cUP0tFhfIF2L4fAe35CEcIOp3sZgtkq8x3fFY0EvSLHElkydvlphazNHfUr1JUErJlbJUxNEst5lgD7burb5kZE+rD5dD4/RoWTdcMu0kJlxHKhLPEPY66loRbpSB4AASyXCNFSKAocQQLt1FZ8fdti1b7PzKHcwCXPkRjLxha3G77mp6nADOPXuQZonCWG27xCXJyMV3KCVTa65iA9uSZPdGPAhRloz094GgbjX7wlQSv8ugK+TGnJxEDwbQ/Wv77Ns03hbbOaeGZEQIwYF2PzPJvO3jHb9ku3n4q6dBqbzJXLrQFKnIUogOLyFXqL5kRDcgepvdkJuz750TqQkkdfTYWyAVqbDWMeu7jS379BRC/EAIcbbKV2OPles8KKX8GPBZ4EtCiJpTKIQQvyKEOCWEOBWL1ema3WImU5O8PvE6fqefT/Z+sqnNjjciNEEw6iU5l6Nk1n66M9qjJIpeWJwj1NbY/sdueBzG0duLVmOc6UZoH9iHVTKZuXa55j7eoJPk7DC5tEnnvvpd9sV8iXza3FKpSAWhaxjtXsz5HFbObiSTBYuAGSabT+La13jgi63Hbl01ir0ZRKO228nc3Bx9PbfjNhzkfRbhZJ7nrIfwhvcwkJhg4r0/4+LMGQAmh1/CLOXJTropFnJMtnXSq6d5YPCTpFKppSR7u+QiYMstSlYOyyosVbJTqRSD4RYmbjtIzsggL4zjyXm4OmRrzYsTKTSXjt7iplhc5GpsDGJzmJ5OZH+BqNAh1Mfs7CyBQAC3e3PXS5fLgRAwUUUyoutuvN59ZDJXKZXs5PpiJkeny0HgBqlIKnURgYbX29x+jeW0B+vrsvvdTsIOndPJDOPzdkW7VuX3fDpHtmRxsEpFfsM43HazX4Mk22loHO0OMZPIMzafKdukmTX12LFknngqT3/L1hQ4/E4/7d52rixeqerSUCgVmExP0hfos9/v7bdDOna9Yp+KwYffsS0Me47DgZ9sit1ZNYy2toauHA7dQae3k/mzb6P5fDh6exsedyQxQqu7dUs/4yq4DJ3OoNuWjHg8ODo6ag6mWcwUmUnmONQRANOkODOz9a4iyxHClkElJuzKbhUOtPvRhODyyDikZupq8UfLUpFmJtlgV7Nns7MUS3WS1o6jdkV6yv7MGE+N43P4ajuLbIFUpIJwOEDTliQjQ0NDHD16dN3Hefrpp+nr61v6fKmQz+f5whe+wIEDB7j//vsZKjf/bpYtS7KllD8ppTxa5et5YFoI0QVQ/rOq342UcqL85wzwN8B9dV7vP0opj0spj2+2UrVRRpOjvDH5BkFXkE/0fgK3sfXJX7jdg7RgbqJ2Y00uXaTgbSFQiiPNxk+BxfFxZKGAc29zpCIVfOEIka4eJi6eJzZcfTJeMZelmI/h9HagO+q/UVPzdhKzlU2Py3F02h/YxSnboSV/aR6PL0jalyafrb+aUMznyCYTTbXuW07lmo/FYnh7e+k1osT8RQ6mEyTn8/xV6WNE9x6nW2rMv/unXBh+kfjoG2jhfqYvXyXhdJMMRflkr4dguJd0Oo3X6QFtewbRVDCWbPySeL32h0o6nSbkMGg7fIy5NhfpuYuEZluYGR9iYS5OKVXE0eVjMj3Jdy9/j3f//lUough1HcSVjRNyhiDcTywW23QVG8ClabQ5DMZrND8GArcjkaTTF5ktmCwUSxz0rbwXWFaeTPYaXu8Aur5112+rz4UmRM0kWwjBYNBLvGDy9lQCv9ugxbf6fZcpWbyxkKLL7WBvM/TYywn32x7BudVa9uXsj/oJehy8N7qINT8CmgMCqyUNxZLFj6/F8bkMDnZsXfXyjlZ7kuJLYy/x6virLOavxz+WHMOSFgPBAXtDy3473pkPYeosXPxv9vZDn4XOo5sa2LEWnAMDmNMzdRPtnqwHa26BzEB7w5WVxfwiiUJiW6rYFfpbvCRyRWLJPI7+fqx0GnN2tczo4kxyqVpcnJ4BS2J0bZNUpEKo19Zkp6p7ersdOntavcwNn8VEQGv1B20pJVdiKUKe5q/IdPo6kUimMnWq2U4vtB2G+GUK6VlmMjP0+Huq72uVwMw1XSqyHM3lsiUjNcasr4XHHnuMt956a9X2r371q0QiES5fvsy/+lf/it/6rd/aTKhL7JRc5DvAF8vffxFYNaZHCOETQgQq3wM/DZzdtgjXyXBimLcm3yLiivBIzyM4t+BJrhqegJNAi5vYSJLYSPUmhvh4Gke0jYC7SHGs9jSqCvkrV9H9fhwdzXc82HvsHkLtHQy/f5r42OpKxNSVS7h9DkLRgVWDaW4kNZ/HcGlrckppBppTx2j1YM5kyV9doJQqEjjShTQkiSrTH5eTjNsfBluhxwZoLQ9qiMVi6D43e0OHyXjBrVsMpid4b1TyVsFg4Pg/o9XXQeqDb2PmE0Q8dzE/N0E8EKY7CPfd+Qny+TymaeJzelaMk98OljuM6LrdfJlK2Q2n9x2+h/neVlJiHu9EGnM2x+Xz7zMn53kl92NeuvIDEj98De8VJ4nAIHseOEAgPY8/2It0BZqWZAPs87qZyheZrlLNNowAHncPqfRFLqXSaIJVntKZzBBSlvD5tnbamF7RZddIsgEOet04gXdnkjUbq15fSGFKySO1Rihvhorko0EDpKYJ7u4Lk8wWmB67bDeYVVkVem90gVTO5P69LTj0rfuIa/O08ZmBz3Bn253Es3G+P/x9Tk6dJF1MM5QYIugMEnaH7Z0Np51IzV2B8VN2Bf72z4F/ewpC7ttuw2iPkn7rLYo1nEZCo3PgdjHV2vicjSZHEQh6A40r3s1ib5sPr9PgtcuziM4u2wP8hoZOs2RxZSbFnhYvboeOOTmBMAyMaHObzRsS7genH4Zft6VNVTjU7sObGmKaNnBUX2E+O55gLl3gaE/jldL10upuxaW7mEw1cMnpvBOExuTwy1jSqv1/XihbqNaw02wGwukEISglEljZ3NL2q1evcuzYMU6ePNnwGCdOnKjqMPX888/zxS/aaennP/95fvjDHzbFMnCnkuzfBX5KCHEJ+Kny3xFCdAsh/q68TwfwqhDiPeAt4G+llN/dkWjXwGhylKg3ysO9D+NoggH7eui9LUKo3UNsJMnklcUVF0YhZ5KYzdK6P4oz6Kc4Wn9ZtpRIYM7GmtbweCOaprP/nvsJtkUZeu8d4uPXP1iLuRyzI0N0HdiLy+ddNZhmOdKSpBfy2yIVWY6jy4e0JOZsDke3D19fK06Ph2S8vkQpOTuLbhh4g82/WYLtMBKJRIjFYgiXTlfbAdzBAEkSnNCcuPI5/st5i7nSIvtP/DrhnntxRfYR+zBOwrJYaGnn0X6DQOQA6fLYYq/h3tamR1jtle33+5fiuTPcSqZrL5lWjUx8BF/CxYdjp3mdt4mPXMTzjVP0XsgwFDmC58T9+NszRC0LPTLA4uIixWKxaUn2Ub8Ht67x1mL1FSS//3ZKpQIfLI7T63biWZbsSSlJpS7gdLbidDZ/gMeN9Ea8zKcLS8vON6ILQbQomC+a+AKriwOjuQKX0zmOBX2rLAibgitgN1k1kIwA9IQ99LoyTM7OUfCv/rCfXMxyeSbF4c4A7cGtvzcYmsHhlsN8du9nORQ5xFhyjO8NfY+53Bx7gntW7tx+hz3Rr+8E7P/UluhWayF0Hf+DD6IHQ6Rfew1z2RAtAHNuDjkTJ3D7UcYyEw09wEeTo7R727dltbaC09B46EAbiVyRtyfSZQ/wkRWNcEPxDIWSxeHOALJQoDg5idHZgdis3eR60R0w8KC9OjNRfXhWhxXDr5ucN6tLWWZTeU6PLbCn1cf+aPNXZIQQdHg7mMpM1U8my9XssZkzeCTVhw6ZOVsq4vQ2vXl3Rcy6jh4MIhwOrHwOSiU+PHOGn//5n+drX/sawWCQwcHBql8LCwt1jz0+Pk5fn/3AbxgGoVCI+A3vk42wxaaR1ZFSxoFPV9k+AfxM+furwN3bHNqGOdF1AoFA38ILrBZCE/QcimA4dOLjKcxiiZ5DETRNLMlIWrv9mOk95M59gJXNonmqPzkXmtzwWA1N1zlw7wNceut1hk6/jaZpRLp6mLp6CSklnQcOMT9psjCTxSpZaFWqUZlkAaskt00qUkH3OTDa3GCBs9dOCINt7SxMTSKlrLnMmojP4G9t29KbfVtbm51kO3WcgTD7gr1cCZ7lrpLgHyXG+SvRzX9+7zK//sht7L/7nwLwp8//OinDINIV4Z4jDwIsVY49+vYNoqkghI6h+1YNpAHw6Tqd+44yP/Qh/ngK/2QKq1Vnz1ia7Mkh5MgiFw7uZ+jwx/hnx/eSm3uPkCsE4T3EJmJL56gZODTBsaCXN+ZTjOcK9LhXJkwuVzsLIsp8ZpqHoyt95vP5ScxSipbgnU2JpREH2/0MxdO8PTxPNODCXUX+48yX8LkNrhSLLF+4Ni3JK3NJQg6dY4Et1N6G+2HytL3EXqOqV+GuQJLzFpxL+xlctj1vlnjr2hxBj4O7esNbF2sVnLqTu6J3cSB8gHPxc8xmZ1ePUXcH4cjPbWtcyxFOJ/5HHib5w38g9corBH7iJ9CDtjwrf/48wuGg68ggI7NvE8vE6PBVt5WMZ+Oki2lub2ncHNlsOkNujnSH+GBike5QO8HRMcypqSXnkIvTSUIeB+1eg9TLL2Pl83gPNmeC5roJdtuNg9Mf2Nf3jdKm+CWikQhnrAjxVJ7WZY4+xZLFq5dm8Th0TuzbugfxLn8XI8kR4rk4bZ7a98Zi9DZmLn6LvbnVha93huIsLMzbEhFnCURt15e1EvY6+Vh/dYMAoevofj+6308sHucf//zP89d/+qfcefvtCKeT06dPb+g1qz1oNKMhXU18bBKGZuxIgr2cjr1BOvYGSc7mGPkgTiFnsjCdIdTmweHS7a5sahv5y1LJbnjs6UHbZHNYIyqJti8c4eo7p5gdHSY2fI2W7l7cPj/BqGfFYJrl5NJFJi8vIjSxpdZ9tXAfiOA+FEGUHRYCbVHMYoHM4kLV/QvZDPl0esv02BWi0aj95O2w4zo8cA8LIYNRWeSoCPHA7FXeHEnw7pith89NzzK6MEMyEORnDrnxhY8AXK9ka+5tl4uArcsuLrPxq8QDMLjvborhIMkIOOMJjiRC5N+PI+bSZPtaeG3/PRzb00dHKIU3HSfo6wRfK7Nl7WYz+zWO+Dz4DI2TNarZU9pehMzTJVaucqTSF9E1Fx5PdX/nZqNpgvv3tlAwLd4dWVj17+m8yXyqwPGuENeyeRaXjVp/J5EmYZZ4JBLAaJajSDUqXteLtR0wKgTzk4SiPVyctSf6VXh7eJ580eLEvlb0rYy1Dl6Hl+Odx/nM3s/gMRo3mW83mseD/5OfQAhB6qWXsTIZSskkhdExXAcP0BXuw9AMxlK1/x9Gk6PoQq+tzd1iBvvCtPicvJkyMDVjSTIyly4wm8pzsM1nV+tnZ/GdOLHpOQ+bovdee6Vm6FXbD7tCIQOLY0QH7kDXdS5Or5zBcGponkSuyEMH2nBVmRLbLDq9nQhEw8E0U8UEJX87vbkk5G+QpRazgLQfjrfxbScMg1A4TO+ePbzx1ltY6TTn33tvw5Xs3t5eRsu5kWmaLC4u0tKy+QecHalkK7aO1h4/ukNj4tICV9+NYZWuj1DXg0H0cJjiyAjuQyu1oLJYJHfhIlY+v2VSkRvRDYMD932cS2++ytB79pJa58HDwMrBNMFljigL0xkmryyi6YL+Iy3oW6i5XCvBss46ORuras9XkcRslR67QjQapVQqsZBO4Ab27DlG+L1vcE5M0eY8zv2xGcYZ4o9PBri9o593v/8DspaJszPEPbedQJSbVSqVY6/Ts+2VbLAlI4WyY8PySjbA0dZuXm7rYqEjQ2tKMjUew5lJoUVbePVgNw5/C08c7edK4j3ainlcrXYVKxaL4fV6l2wBmxKnJvhY0Mcrc0lGsnn6l+muLSkZKwXpd2nkM+fBZyeRppkil5sgEDjS9DHq9Qh7ndzRHeTs+CL9rV56wtffU6PztozkUz0RvjOf4Ewyy8MtAeaKJqeTGQ753Ksq9U3H22JrWBeG6/oFk09Cdp7+fR/jzBScGV3g4wfaGIlnGIlnONoTqtq4qbiO7vfje+QRUv/wI1Ivv4IeDCB0DdfBg2iaQbevm/HUOMfaj61ykVjILTCaHKXD17Htssil+DXBwwei/NczE3woAtxV9gC/OJ1Ek5Kuq2cpTk3jvfdenH3b15hZPVgDBh6GC38HYydhz8ft7fHLICXOjsPsLRa5Npvm+EAEh64xOpfh0kySI91BOkNbW+xy6A7aPG1MpCY42lbbqWM0NYq7ZT+tySRMngHKyaeZ52PdbnC02FKRbcbpdPL888/z6KOP4o9E+KVf+qUNV7I/97nP8fWvf50HHniAb33rW/zET/yEqmQrqhNu99J/RwtS2kNa3P7rN0Pnnj2Yc3OUyomLOTtL5uRJFv/rC+TOfYARjWJs45O/4XBw8P4H8UdaiPbvxeO3JRhCCIKtblJzeayShVWymLg0z8SlBTwBB/uPRfGFtr+KXQ2Hy40nEFzV/Cgti9Fz7zN+/hzBaDuewNZNRYPrVdrZuVmEIdBwcP+Bh8iWJvhe+u9JCsnHR0ewrlziL969yI/OnKJkwCfubsEXue7Ru1TJdnq2XZMNdpJtSZNSKYPf76dYLFIo2za5NI32vsMUgw6yQQN3Komns4OJg2HGPD3c3wutfi+ZuctEHP6lprpmNj0u5zafm4Chr6pmj+YK5C04EukjX5glX7Ar6en0JQB83gNNj6URd3QFCXsdnBqao7DM8nM4nqHF56TD7+Kgz8WFTI5MyeLluSQOTeOB8Db5C4f7ITG5suJ3I+XmSE/bALd1BhmZyzA6l+HU8BwtPid3dG3te+xWwYhE8D30IKVkgsLoGM69e5dWL/sCfRRKBWYy1+9nxVKR0zOn+eHIDwE4HDm8I3FXCHkd3DvQwrivlcl4iszoGFdnUhyYugyTE3gGB3Ht29v4QNtBoMNuHoxduD6lNH7Jlo+4QxzsCGBaFldjabKFEq9fmSXidTLY1/x5CtXo9HWSKCRIFVJV/920TKbT0/SE9yIqvtnSAsuymx01o6HEayvx+Xy88MIL/D+/93t854UXGu7/1FNP0dvbSyaTobe3l2eeeQaAX/7lXyYej3PgwAG+/OUv87u/+7tNiU9Vsm9R/BE3B463o+krn8ScfX1k33uP7DvvYGWylBKLCN3A0deLa98+jCZpVteD4XRy24OfWLU9GPUwP5VhbjLNYixLPm3S1ucn2h/YsuEdGyXYFiU2MoRVKqHpOmahwNV3T5KIzdA+sI++O+7c8pgreuNYLEZ/uBWrUOLBn/0iPfvu4vtv/DVv6yP0p0yODJ3h7byTYGIaWl08dPcn0LTrDyypVAqv24OmadvqkV1huY3f8oE0laW7o3uP8cqZlxnv0tkXPMiiP83rYi+RiJ9P98zx2sTr+NJxwt528HcipSQWi23IU7URuhDcE/LyYjzJtUx+yd7uciaPS9c4FNlPbPosqeSHOCIPkM5cwePuxTC2rgO/FpomuG9vK98/N8W7I/Pcv6+VRK7IfLrAYH8YgMGAl/OpHH8bWyBeMPlUa3BF0+aWEu6HmXP2EI9a48UXR+3mQXeQ27osrsRSvHZ5Fl0TnNjfirZDMpGbEUdHB74TJ8h9cA7X4duWtrd723FoDrti7e1gODHM+7PvUygV2Bfex5HWI9vmnlWPw50BxvZ0c/X8GbLvfIgrK+i25nDfM4j78Na69qyb7mP2tTv0Kux5wB7u0mm3nEUDLiJeJxenk4zOZSiWJI8cjG6b5Kk30Mu5+DlenXiVR3oeWeV7PpWeoiRL9Pp7IeyF2Qv2g3AxbSfbruCWW1BWY2BggLNnbcO5cDi8JmcRgGeffZZnn3121Xa32803v/nNpsYIqpJ9S+Nw6qvkFJrXi9HeTnFqCuF04D1+nNDnHsN33307kmDXoyIZmRlKYuZL9B9poX1PcNcl2ACBtnasUonUfJxsMsGHr71IcnaWPXcdo//o3dvS3e52uwkEAkvNjzJve4kO3H6MX/r8v+a+2z5F/O52CMTpmnwDgwz79rjxR46tOE46ncbrqUx73Lkku2gmlgYGLNdlH4kOoEXaSHslsy1ZzlpB8pE+Hu5Lcy1xjWR+kbucLXjbDoGmkUqlyOVyTWt6vJFDXjchh87JRBopJaYluZbNs8/jwqE78fkOks2Nkkqdw7IK+Pw7lwC0+Jzc1hnk2myaycUsI3FbKlKx7gs7DPZ6XcQLJt1uJ4d92+je42sH3VXbZcTMQ3JqaXXCoWvc1Wu79Qz2hQm6d0a+cDPj7Osj+JlH0f3XH/p0Tafb381EaoIXR1/k1PQp/A4/n+7/NMfaj+2KBLvCxw9EsTq7mb40ROvMKG133oHn6JGdDms1mg4Dj4CZhasv2u4jyx4kD3cGmM8UmFjMcnwgQsi7fdeyz+Hj4d6HyZt5fjT6IxKFlY2LY6kxXLrLbox0+uzBOVbRfj86vLYkRlETdXY+gvgeeABZKKAHtsDztokIIWjr9ZNeyNN1IIxjB6qqayXQ2ooQGpOXLpJemEc3dA4/8BD+ltZtjSMajTI7O4vm0jGT14eleIMhPvETn6frVC9n/EHy776KM6fx8H2PYxgr5QCpVAq/24swBELf/gcaXfcihI5pJvD5upZiqmBogo7e/RSmp/lwUeNq60E62n14im8gCfJpNIK6e6mZbiuaHpejCcG9IR8/mE1wJWs36pqWXBqj7vcfIpX6kETyLA4jiNu1eoDKdnK0J8T4Qpa3rs1haBrRgAuv8/pHwT1BH9mSxSORbZKJVNA0O4GeuwoOn73EvtzmLjEOSAhdbxjdF/XTFnCpBLvJ9AX6GE4MkyqmON5xnD3BPbuyuOFx6gx+/C7eH75K15FDeI4N7nRItfG1QtfdMHEaogdWJKd723y8OzJPm9/FbZ3bL3lq87Txid5P8Mr4K7w0+hIP9jxIi7sF0zKZSk/RF+i7/v/feSfMn7MfHHZQJnKzoJLsjyCaywVNHJe+lbT2+JcaN3czuuHAFw6TjMfwhcLsP34/Ts/2N4JEo1HeeecdcGhIUyJNC2HYVXSH08UdJx4mcC7CJSNBobhA/4GfXHWMVCpFd6hjR5oewX64MowAppnE7z+4FNNybh8YZObDt5n3BMmFQux3fkDb3Bh3OA4Q9Geg5x4I2z7FsZjdRLmVk2D3e1y84zQ4uZgmZOj4DI1ul5346boXj2cPmezQlg+fWQu6Jrhvbws//HAaKUsc7lyp/WxzGvxcx/boQVfRc9weRT39vq397D5mN0IKYeuxDQ/4Vq5IqAS7+XT6Onmw+0FaPa27qnJdjb49nbT82n+PL7T7PycqEhFaV/ZkOHSNxwd7cBk7Jy4Iu8N8qu9TvDL+Ci+PvczHuz+OaZmYlmlLRSo4ffb7cIdkIjcbKslWKJpE96HbScZn6Tp4GE3fmQQ1Go1SLBZJ5tO4AVkoLSXZAELT6D96Fw7fF8hmJvD5V48bTqfTeNu2fxDNcgw9QLE4TyTsW4ppObd1HObNgJdCJk437/DQ1Hv06E48/YOw59MrKiyxWAyXy0VgC1duhBDcG/TxvdlFFosl7gp4V1T+gsE7EULH690e555GtPldHO4Mcmk6SW9k+x8Ga+Jww96Hof12GH0LRl6H2Hn7oSkxbj84qQ/2baHLX31Iym7kpkiwwV6t6T5W9Z+q+ddvN36nn0/2fZJXxl7h1fFXCTqDOHUnUe8NBQpN39KhM7cSKslWKJpEMNpOMLqDnqxcr9bGU/P0EMYqWGhVcqiuvfcA96zans/nKRaLeA33jjQ9VjAcQbK5UTRN4PF4VlWyNU2jq28/xtgH7CvOsrf7DlIBDX3g06CvXMKsOIts9XL3Xq+LqNMgVjA56Fu5UmQYASKR+7f09dfLYF+Y2zoDu+LDfRW+NrjtZ2DuGoy/DZe/b28P77Alm0Jxi+MxPHyy75O8Ov7q0uTSG60cFWtHJdkKxS3Eko3f4hw9jjAybwJrlwZdH6m+M/Z9FRzl5sdSKb1qIE2Few59inNmnuO3fZqcMY/IXEXXV2sEY7EYhw5tj0zjkZYAw9kCUefNIWHYlQn2clr22tr66Q8gHYPA6pUXhULRXJy6k0d6H+HC3AX2BPfsdDg3NerxRKG4hfB6vXi9XmbnZkGALFiNf2gZS4NoXJ4dmfZYQTdsaUexmFg1kKZCe0s/n3zoV3C37cc0k0uuJMvJZDKk0+ktcxa5kajTwfHQ9tvz3dJoOnTdBQc+rZwMFIptwtAMjrQdwe/cnVKcoaGhDdmyPv300/T19S05V1V4+eWX+djHPoZhGHzrW99qVpgqyVYobjUqDiPCqWOVbfzWSqVi7NuhaY8VHOUk2yzb+FWrZC/HNBMYxmrN9VY7iygUCoXi5uGxxx7jrbfeWrW9v7+fP/mTP+HJJ59s6uupJFuhuMWIRqO2V7ZDIAvrS7KvV7K9OyoX0TQXmuZcGkiTSqWQUlbdV8oSZildNcneDmcRhUKhUOwcV69e5dixY2saSHPixAm6ulY39Q4MDHDXXXehNXmmhVp7UyhuMaLRKLlcjoyVx2uuz35renoap8Np+2Q7dvYZ3GEEMc0EbW1tFAoFFhYWiERWW8uZZhKgqlwkFothGAahUGjL41UoFArF9nLhwgWeeOIJvva1r+HxeBgcHKy634svvkg4HN7W2EAl2QrFLceSw0hmAbdoRUq5ZmeNyclJOiJRNJeB2OER1YYRJJeboKvrtqXY6ifZ1SvZ0Wi06dUJhUKhUGBbbWbmmntMbwv03ddwt1gsxuOPP863v/1tjhyxJ32ePn26ubFsEvXJo1DcYlSa/OKpeZAgi2trfiyVSkxPT9MZjqI5d/7WYBgBSlaOaDSCEILJycmq+5lmYmn/G4nFYtvW9KhQKBSK7SMUCtHX18drr70G2FXtwcHBql8LCws7EqOqZCsUtxiBQACXy0U8MQ9+eyANa9BXz87OYpom7YG2HdVjV6jIP4TI0d7eXifJTqJrbjRtpTQmn8+TSCSUHluhUCi2ijVUnLcKp9PJc889x6OPPorf7+fJJ59UlWyFQrG1CCFsh5H5OAByjQ4jExMTALR7W3bUWaSCseQwkqSrq4uJiYmqzY+2s8hqPbZyFlEoFIpbG5/PxwsvvMBXvvIVnn/++Yb7P/XUU/T29pLJZOjt7eWZZ54B4OTJk/T29vLNb36TX/3VX12Sn2wWVclWKG5BotEoFy9eBMBao1f25OQkDoeDiDe0ox7ZFYxlNn5dXV2cPn2aRCKxqomxaCbwuFdPAlTOIgqFQnFrMjAwwNmzZwEIh8NrchYBePbZZ3n22WdXbb/33nsZGxtraoygKtkKxS1JNBolnU6TM/NrtvGbnJyks70DTWi7opIthI6h+zDNJN3d9qS/GyUjlpXHsgo1nUU0TavaLKlQKBQKxVajkmyF4hakUr2dyy+uSS5iWRZTU1N0tnUA7ApNNti6bNNM0tHRgRBiSdJSoZF9X1tbG7q+O34XhUKhUHy02JEkWwjxC0KID4QQlhDieJ39PiOEuCCEuCyE+O3tjFGhuJlZchjJLWJlzYb7z87OUiwW6Qzbybm2CyrZYEtGTDOB0+mkra1tVSW7kX2fchZRKBQKxU6xU5Xss8A/AV6utYMQQgd+H/gscAfwi0KIO7YnPIXi5iYUCuFwOJjL2km21UAyUkleo+4WNJ+BMHbHIpdhBLCkSamUpbu7e1WSXVyy7/Ov3F4ssrCwoPTYCoVCodgxduSTVEr5oZTyQoPd7gMuSymvSikLwF8Bj299dArFzY+mabS1tdle2UBpMV93/8nJSQzDIIwPPeTajhDXREUGUml+TKVSJJPJpX83zSSG7keIlbeyeDyOlFIl2QqFQqHYMXZHuao6PcDosr+PlbcpFIo1EI1GmZ2bRTi0hkn2xMQEHW3taELD2FVJti0DKZaTbGCFLts0ExiO6npsUM4iCoVCodg5tizJFkL8QAhxtsrXWqvR1WY6rzbJvf56vyKEOCWEOFX5gFUoPspEo1ESiQSmB0qLhaoe03C96bEjHEVoAi3grLrfTqDrPgQaJTNJZ2cncF3aIqW0K9k19NhCCFpbW7c1XoVCoVBsPUNDQxw9enTdP/f000/T19eH379SYvjlL3+ZO+64g7vuuotPf/rTDA8PNyXOLUuypZQ/KaU8WuWrsVu4zRiw3Py2F5iosS9Syv8opTwupTyuqlcKxfXmx3krhSxaWJnqDZBzc3MUCgU6vC1oQSdCq/Z8uzMIITCMAEUzgcvlWtH8WCplkLJU01kkEolgGGoUgEKhUChsHnvsMd56661V248dO8apU6c4c+YMn//853nqqaea8nq7WS5yEjgohNgrhHACTwDf2eGYFIqbhsrD5nxuEYDSQnXJSEV+EXW37io9dgXDCFIszJNKX6KnRyM+d5ZU+hLptN3W4agx7VE9bCsUCsWtz9WrVzl27NiaBtKcOHFiSXq4nE996lN4vd6lfZo1mGZHyjxCiH8M/B4QBf5WCHFaSvmoEKIb+P+klD8jpTSFEP8C+B6gA38spfxgJ+JVKG5GIpEIuq4zOx/ncEefrcvu8a/ab3JyEl3XafWHMUK7RypSwelsI5sbZWHhJK2tcaZnrjE9/Qoul9seWGOEV+xfKpWIx+McPnx4ZwJWKBQKxbZw4cIFnnjiCb72ta/h8XgYHBysut+LL75IOBxe0zG/+tWv8tnPfrYp8e1Iki2l/Bvgb6psnwB+Ztnf/w74u20MTaG4ZdB1ndbWVmZmZtAPuShOpZElidBXykEmJydpD7dhuB1oXscORVubQOB2vN69gKSQH+bFF/8cs3gvA3sOIISBpq2MOR6PY1mWqmQrFArFFnN65jSL+cWmHjPkCjHYPthwv1gsxuOPP863v/1tjhw5Ysdz+vSmXvvP//zPOXXqFC+99NKmjlNBCRYViluY/v5+3n33XXI/UUKXUErmMcLupX+3LIvJyUlu69y/K6UiFXTdjrm7ewDLMpienufwYU/Vfc+ePQtAX19f1X9XKBQKxc1PKBSir6+P1157jSNHjnDhwgW+8IUvVN13LZXsH/zgB/zO7/wOL730Ei5Xcz4PVZKtUNzC3H///Zw6dYp3z7/Hcd9hSouFFUn2/Pw8+XyeDn/brrLuq4Xb7aalpWXVePUKxWKRU6dOcfjwYVpaWrY5OoVCofhosZaK81bhdDp57rnnePTRR/H7/Tz55JMbrmS/++67/Oqv/irf/e53aW9vb1qMu7nxUaFQbJJoNMqBAwc4eeok0qevan6sOHV0BNt2dSV7OV1dXasmP1Y4c+YMmUyGEydObHNUCoVCodhufD4fL7zwAl/5yld4/vnG5nVPPfUUvb29ZDIZent7eeaZZwD4zd/8TVKpFL/wC7/A4OAgn/vc55oSn6pkKxS3OA888AB/9md/xoWZq9zm2YNVKKE5dcBOsjWhEe3oQDhujmfu7u5uPvjgAzKZzFI3ONi+2W+88QadnZ0MDAzsXIAKhUKh2FIGBgaWpIHhcHhNziIAzz77LM8+++yq7T/4wQ+aGl+Fm+NTVaFQbJh9+/bR3t7OW+feQUq5opo9MT5BNNCCq6W6vnk3Um3yI8Dly5eZnZ3lgQceQIjd4/WtUCgUio8mKslWKG5xhBA88MADzMRmGF2cXBqxLqW0nUWCbRjhm0MqAteT7BslI2+++SZ+v3+py1yhUCgUip1EJdkKxUeAO++8E5/Px9sj7y+NWF9YWCCXz9EZiqL5d58/di08Hg+RSGRFkj09Pc2VK1e4//771ZRHhUKhUOwKVJKtUHwEMAyDe++9lysTQ8wuxLHSxaUktaune1eNUl8LNzY/vvnmmxiGwT333LODUSkUCoVCcR2VZCsUHxHuvfdedF3nnWG7mj0+OoYmNLr6u3c6tHXT1dXF/Pw82WyWVCrFmTNnGBwcXNEIqVAoFArFTqKSbIXiI4LP5+Puu+/mg4lLpGYWmByboNUfwdXq2+nQ1s1yXfapU6colUrKtk+hUCgUuwqVZCsUHyFOnDiBWTJ559x7TM5M0RGJonluPg1zd7ddfR8dHeXkyZMcOnSItra2HY5KoVAoFNvB0NAQR48eXffPPf300/T19eH3+1ds/6M/+iPuvPNOBgcHeeihhzh37lxT4lRJtkLxEaK9vZ39A/s4ee09svkcXZ1dOx3ShvB6vYRCIV5//XXS6TQPPPDAToekUCgUil3OY489xltvvbVq+5NPPsn777/P6dOneeqpp/iN3/iNpryeSrIVio8YDzz4cfJmAYCe/p4djmbjdHV12SPhOzrU8BmFQqH4iHL16lWOHTu2poE0J06cWJIbLicYDC59n06nmzZr4eZbJ1YoFJti/4H9tIVaiC/O072vb6fD2TDd3d2cP39eDZ9RKBSKjygXLlzgiSee4Gtf+xoej4fBwcGq+7344ouEw+G6x/r93/99vvzlL1MoFPiHf/iHpsSnkmyF4iOGEIKf/czPMDYyhtN78wyhuZG77rqLfD6/IV2eQqFQKDZP5p13KS0sNPWYejiM92PHGu4Xi8V4/PHH+fa3v700hOz06dMbft0vfelLfOlLX+Iv/uIv+Df/5t/w9a9/fcPHqqCSbIXiI8je2w+w9/YDOx3GpgiHw/zUT/3UToehUCgUih0gFArR19fHa6+9xpEjR7hw4QJf+MIXqu67lkp2hSeeeIJf+7Vfa0qMKslWKBQKhUKhUKybtVSctwqn08lzzz3Ho48+it/v58knn9xwJfvSpUscPHgQgL/9279d+n6zqMZHhUKhUCgUCsVNh8/n44UXXuArX/kKzz//fMP9n3rqKXp7e8lkMvT29vLMM88A8B/+w3/gyJEjDA4O8uUvf7kpUhEAIaVsyoF2E8ePH5enTp3a6TAUCoVCoVAobik+/PBDbr/99p0OY0eo9rsLId6WUh6vtr+qZCsUCoVCoVAoFE1GJdkKhUKhUCgUCkWTUUm2QqFQKBQKhULRZFSSrVAoFAqFQqFYM7diP18jNvI7qyRboVAoFAqFQrEm3G438Xj8I5VoSymJx+O43e51/dwt6S4ihIgBwzvw0m3A7A687s2MOmfrR52z9aPO2fpQ52v9qHO2ftQ5Wz87fs6i0ajxO7/zOwMDAwMeIcROhrImLMvSNE2zNnMMKSVDQ0PZp59+eigWi5k3/PMeKWW02s/dkkn2TiGEOFXLxkVRHXXO1o86Z+tHnbP1oc7X+lHnbP2oc7Z+1DlbPzt5zpRcRKFQKBQKhUKhaDIqyVYoFAqFQqFQKJqMSrKby3/c6QBuQtQ5Wz/qnK0fdc7Whzpf60eds/Wjztn6Ueds/ezYOVOabIVCoVAoFAqFosmoSrZCoVAoFAqFQtFkVJLdBIQQnxFCXBBCXBZC/PZOx7MbEUL0CSF+JIT4UAjxgRDi18vbnxFCjAshTpe/fmanY91NCCGGhBDvl8/NqfK2FiHE94UQl8p/RnY6zt2CEOLwsmvptBAiIYT4l+o6W4kQ4o+FEDNCiLPLttW8roQQ/7p8f7sghHh0Z6LeWWqcs/9LCHFeCHFGCPE3QohwefuAECK77Hr7ox0LfAepcc5qvhfVdVbznP31svM1JIQ4Xd7+kb/O6uQWu+J+puQim0QIoQMXgZ8CxoCTwC9KKc/taGC7DCFEF9AlpXxHCBEA3gZ+DvjvgJSU8t/uZHy7FSHEEHBcSjm7bNuzwJyU8nfLD3URKeVv7VSMu5Xye3McuB/4n1DX2RJCiEeAFPCnUsqj5W1VryshxB3AXwL3Ad3AD4BDUsrSDoW/I9Q4Zz8N/IOU0hRC/J8A5XM2ALxQ2e+jSo1z9gxV3ovqOrOpds5u+Pd/ByxKKf93dZ3VzS3+R3bB/UxVsjfPfcBlKeVVKWUB+Cvg8R2OadchpZyUUr5T/j4JfAj07GxUNy2PA18vf/917BuKYjWfBq5IKXdiMNWuRkr5MjB3w+Za19XjwF9JKfNSymvAZez73keKaudMSvn3UsrKYIo3gd5tD2wXU+M6q4W6zqh/zoQQArsw9ZfbGtQupk5usSvuZyrJ3jw9wOiyv4+hkse6lJ++jwE/Lm/6F+Xl1j9W0odVSODvhRBvCyF+pbytQ0o5CfYNBmjfseh2N0+w8sNIXWf1qXVdqXvc2vifgf+27O97hRDvCiFeEkI8vFNB7VKqvRfVddaYh4FpKeWlZdvUdVbmhtxiV9zPVJK9earNFFUanBoIIfzAt4F/KaVMAH8I7AcGgUng3+1cdLuSB6WUHwM+C3ypvJSoaIAQwgl8DvhmeZO6zjaOusc1QAjxNGAC/7m8aRLol1IeA34D+AshRHCn4ttl1HovquusMb/IysKBus7KVMktau5aZduWXWcqyd48Y0Dfsr/3AhM7FMuuRgjhwH4T/Gcp5X8BkFJOSylLUkoL+E98BJcH6yGlnCj/OQP8Dfb5mS7r0Cp6tJmdi3DX8lngHSnlNKjrbI3Uuq7UPa4OQogvAv8I+CVZbnIqL0XHy9+/DVwBDu1clLuHOu9FdZ3VQQhhAP8E+OvKNnWd2VTLLdgl9zOVZG+ek8BBIcTecvXsCeA7OxzTrqOsJfsq8KGU8svLtnct2+0fA2dv/NmPKkIIX7mRAyGED/hp7PPzHeCL5d2+CDy/MxHualZUfNR1tiZqXVffAZ4QQriEEHuBg8BbOxDfrkMI8Rngt4DPSSkzy7ZHy423CCH2YZ+zqzsT5e6izntRXWf1+UngvJRyrLJBXWe1cwt2yf3M2KoDf1Qod5X/C+B7gA78sZTygx0OazfyIPA/AO9X7IeA/xX4RSHEIPZyzRDwqzsR3C6lA/gb+x6CAfyFlPK7QoiTwDeEEL8MjAC/sIMx7jqEEF5st5/l19Kz6jq7jhDiL4FPAm1CiDHgfwN+lyrXlZTyAyHEN4Bz2JKIL33UHB+g5jn714AL+H75ffqmlPKfA48A/7sQwgRKwD+XUq61AfCWocY5+2S196K6zmyqnTMp5VdZ3WMC6jqD2rnFrrifKQs/hUKhUCgUCoWiySi5iEKhUCgUCoVC0WRUkq1QKBQKhUKhUDQZlWQrFAqFQqFQKBRNRiXZCoVCoVAoFApFk1FJtkKhUCgUCoVC0WRUkq1QKBQKhUKhUDQZlWQrFArFTYIQolUIcbr8NSWEGC9/nxJC/MEWvN6fCCGuCSH++QZ//kfl2I43OzaFQqHY7ahhNAqFQnGTUB6hPAgghHgGSEkp/+0Wv+xvSim/tZEflFJ+SgjxYpPjUSgUipsCVclWKBSKmxwhxCeFEC+Uv39GCPF1IcTfCyGGhBD/RAjxrBDifSHEd4UQjvJ+9wghXhJCvC2E+N4N465rvc6fCCH+vRDidSHEVSHE58vbu4QQL5er6meFEA9v7W+sUCgUux+VZCsUCsWtx37gZ4HHgT8HfiSlvBPIAj9bTrR/D/i8lPIe4I+B31njsbuAh4B/hD26GOBJ4HtSykHgbuB0c34NhUKhuHlRchGFQqG49fhvUsqiEOJ9QAe+W97+PjAAHAaOAt8XQlDeZ3KNx35OSmkB54QQHeVtJ4E/Lifvz0kpTzflt1AoFIqbGFXJVigUiluPPEA5GS5KKWV5u4VdXBHAB1LKwfLXnVLKn17PscuI8uu8DDwCjAN/JoT4p834JRQKheJmRiXZCoVC8dHjAhAVQjwAIIRwCCGObPRgQog9wIyU8j8BXwU+1pwwFQqF4uZFyUUUCoXiI4aUslBuWvz3QogQ9mfB/w18sMFDfhL4TSFEEUgBqpKtUCg+8ojrq4gKhUKhUFxHCPEnwAsbtfArH+NF4H+RUp5qVlwKhUJxM6DkIgqFQqGoxSLwf2xmGA2wDyg2NSqFQqG4CVCVbIVCoVAoFAqFosmoSrZCoVAoFAqFQtFkVJKtUCgUCoVCoVA0GZVkKxQKhUKhUCgUTUYl2QqFQqFQKBQKRZNRSbZCoVAoFAqFQtFk/n+/frb4Kp1+7gAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 864x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Make figure showing the sums depending on k\n",
|
|
"ref_impulse = impulses[0]\n",
|
|
"my_impulse = impulses[1]\n",
|
|
"\n",
|
|
"# remove 'already determined' offsets\n",
|
|
"if True:\n",
|
|
" # $t_\\phi$ offset\n",
|
|
" my_impulse = time_roll(my_impulse, samplerate, -t_phi)\n",
|
|
"\n",
|
|
"if True:\n",
|
|
" # $\\Delta A$ offset\n",
|
|
" my_impulse = time_roll(my_impulse, samplerate, +Delta_A)\n",
|
|
"\n",
|
|
"best_k, (ks, maxima) = beacon_integer_period(samplerate, f_beacon, ref_impulse, my_impulse)\n",
|
|
"print(\"Best k: {:0g}\".format(best_k))\n",
|
|
"print(\"Maximum: {}\".format(maxima[np.where(ks == best_k)][0]))\n",
|
|
"\n",
|
|
"\n",
|
|
"# Make figure\n",
|
|
"fig, axes = plt.subplots(1, 1, sharex=True,figsize=(12,4))\n",
|
|
"if not hasattr(axes, 'ndim'):\n",
|
|
" axes = [axes]\n",
|
|
"\n",
|
|
"axes[0].set_title(\"Coherent sum of impulses with $kT$ offsets.\\nBest offset: ${:.0f}*T$\".format(best_k))\n",
|
|
"axes[-1].set_xlabel(\"Time [ns]\")\n",
|
|
"\n",
|
|
"if not True:\n",
|
|
" i=0\n",
|
|
" axes[i].set_ylabel(\"Reference\")\n",
|
|
" axes[i].plot(time/ns, ref_impulse, label=\"reference\")\n",
|
|
" axes[i].plot(time/ns, my_impulse, label='impulse')\n",
|
|
" axes[i].legend()\n",
|
|
"\n",
|
|
"axes[-1].set_ylabel(\"Coherence Sum\")\n",
|
|
"\n",
|
|
"best_maximum = np.max(maxima)\n",
|
|
"axes[-1].axhline(best_maximum, alpha=0.7)\n",
|
|
"\n",
|
|
"for i, k in enumerate(ks, 0):\n",
|
|
" sample_offset = int(k*1/f_beacon*samplerate)\n",
|
|
" augmented_impulses = np.roll(my_impulse, sample_offset)\n",
|
|
" \n",
|
|
" summed_impulse = ref_impulse + augmented_impulses\n",
|
|
" if True or k%2 == 1:\n",
|
|
" axes[-1].plot(time/ns, summed_impulse, label='k={:.0f}'.format(k),\n",
|
|
" alpha=0.1 + 0.9*1/(1+2*abs(best_maximum-maxima[i]))\n",
|
|
" )\n",
|
|
" \n",
|
|
"axes[-1].legend()\n",
|
|
"fig.show()\n",
|
|
"\n",
|
|
"if True:\n",
|
|
" fname = 'figures/08_beacon_sync_coherent_sum'\n",
|
|
"\n",
|
|
" # Dump figure\n",
|
|
" fig.savefig(fname +'.pdf')\n",
|
|
"\n",
|
|
"del ref_impulse\n",
|
|
"del my_impulse"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. Solve it\n",
|
|
"\n",
|
|
" 1. Find $t_\\phi$\n",
|
|
" 2. Find $\\Delta A$\n",
|
|
" 3. Find $kT$"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### 1.1 Beacon Phase Delay ($t_\\phi$)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Beacon delays [ns] \\pm k*14.285714285714285ns: [0. 8.57142857]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/tmp/ipykernel_1809896/665080263.py:1: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
|
|
" abs_beacon_time_delays_tmp = np.array([\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"abs_beacon_time_delays_tmp = np.array([\n",
|
|
" beacon_time_delay(samplerate, beacons[0], beacon)\n",
|
|
" for beacon in beacons\n",
|
|
"])\n",
|
|
"\n",
|
|
"\n",
|
|
"abs_beacon_time_delays = abs_beacon_time_delays_tmp[:,0]\n",
|
|
"t_phi = np.array(abs_beacon_time_delays % (1/f_beacon), dtype=np.float64)\n",
|
|
"beacon_time_delays_err = abs_beacon_time_delays_tmp[:,1]\n",
|
|
"\n",
|
|
"print(\"Beacon delays [ns] \\pm k*{}ns: {}\".format(1/f_beacon/ns, t_phi/ns))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAYAAADtt+XCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABi6klEQVR4nO2dZXhc17Ww3zUjZgsNsswkM8dx4sRxGBxyuKFCUkh7237tbUq3ub2FtL23kDYNtWEmh+M4nDhmO2aSSbYslmxZDDP7+7FHiSxLo4Ezc2bs/T7PfmbmwD7rzJk56+y1F4hSCoPBYDAY/MVhtwAGg8FgiE6MAjEYDAZDQBgFYjAYDIaAMArEYDAYDAFhFIjBYDAYAsIoEIPBYDAEhFEgBoPBYAgIo0AMBoPBEBBGgRh8RkQeFZHf+LjtfhE5O9QydTmeEpFGEfltkP18ICItIrLMKtm69X9QRKaGom+DIdwYBRJCPDfRZhFpEJHDIvKmiAy2W64TmMlKqZ8H04FS6izgmxbJcwwi0g8YAGzvY7tbROTMXtbdISJrRaRVRB710scojyJ8spf18SLybxEpFpF6EflcRC7osn6oiLzl+d2Wi8g/RCSmy/qPPP03eNrOLusaujWXiPw9WPmNzMfKHAkYBRJ6LlFKpaBvHBXA322Wx2AhInKXiNzl4+YTgd1KqZZe+rpdRC7/8qPc1uVzJ6XAb4CH+zjWvcAaL+tjgIPAGUA68EvgeREZ6ln/T6AS/bud4tnu2936uEMpleJpYzoXdlmWAuQBzcALFshvZO4icyRgFEiY8Nw0XgQKO5eJyEAReUlEqkRkn4h8r8u6O0Vkj+epZVvXG4mIDBaRlz371YjIP7qsG+d5ajkiIltFZGGXdftF5EcisklE6kTkORFJ6E1mEZkqIus9MjwHJHRZ16vsPfTj7Vx+LCIvddv+7yLyV8/7n4jIIc++O0Vkgbfv2ddzDbTfIJkEbPEcP0lEnvZcxxTP+oeBEcD3gd8BbuDVrh0opV5WSr0C1PR2EBG5FjgCvN/bNkqpRqXUXUqp/Uopt1LqDWAfMN2zyTDgeaVUi1KqHFgCjPfzfAEWoW+QnwYrv5E58jAKJEyISBJwDbDS89kBvA5sBAYBC4Dvi8h5nl32AKejn1r+G3hSRAaIiBN4AygGhnr2fdbTZ6ynz6VALvBd4CkR6frUcjVwPvqHOwm4pRd544BXgCeATPTT2JU+yt6dHs/Fs+5J4HwRyfD0HeP5np7wyH0HMFMplQqcB+zv5Rg90eO5WtBvoEwCNovIMGAZsBO4UinV0GUb1eXV1eWzT4hIGvBr4P/5uV8eMBrY6ln0N+Baj6IbBFyAvrl15fciUi0in0kvJjfgZuBx5WPWVn/kNzJHAEop00LU0DelBvSTSQd6KDzRs242cKDb9j8FHumlrw3ApcAcoAqI6WGb04FywNFl2TPAXV3k+UqXdX8E7u/lePM88kqXZcvRQ/k+Zfcc62xv59Ll89vANzzvLwa2ed6PRD8Jng3E9vFdK2Bkt+P3eK599YtWNMu8HOsNzzU9ArR4WufnN7zstwK4H/0EemkP628HrvAcf77n82W99PUb4NEelv8N+Inn/V3Akz78TmOB94AHuiwbB6zz/G4V8Gi338JsIBWIR99w64ER3fotQCvBYVbLb2S2//6mlDIjkDBwmVIqA/0DuAP4WET6A0OAgR5T0xEROQL8DG1/RURuEpENXdZNALKBwUCxUqqjh2MNBA4qpdxdlhWjRwmdlHd53wSk0DMDgUPK8yvu0hd9yd4dL+fSyWPAVzzvv4Ie9aCU2o0259wFVIrIsyIysBd5e6LHcw22X6XUxUqpDM91vRu4u/OzUurinvYREUGf9+VoRfZq922UUg8opV7+8qN6QGnTiU+IyBS0UvyLH/s40N93G/r32bnsHeBlIBl9rfoBf+gi6yqlVL1SqlUp9RjwGXBht+5vQivifVbKb2Q+TmbbMAokTCilXJ6bgws4DT2xtq/LjSdDKZWqlLpQRIYAD6F/aFmeG9UWQDz7FUgXT40ulAKDPT/MTgqAQwGIXAYM8tz4uvaFN9m7d9LHuXTyCjBJRCagRyBPda5QSj2tlDoNrbQUXf5cwRCqfr0wzPN6NvD/RGSGF9keVUp9FMAxzkSbNQ+ISDnwI+BKEVnf08aea/tvtOK/UinV7lmViX5Q+YfnxlUDPIL3G5fi2GsK+mb8mJXyG5l7lNk2jAIJE6K5FP2EsR1YDRz1TOYmiohTRCaIyEz004hCm6oQkVvRT6949isD7haRZBFJEJG5nnWrgEbgP0Uk1mMvvQTPHImfrEAPq78nIjEicgUwq4sMvcneHW/nAhzjYPA0sFopdcCz7RgROUtE4tFmoma0Ag4KK/tVeoL0Lh82nQRsUkptBm4DFneZB/IZz7VIAJyA03P9Ox8mHkRPwk/xtPuBN9FzPD1xH9qEcolSqrnLOVWjzWzf8hwvA20+2eiRIUNEzus8tojcgDZ5vtNFzlPRI98X6IIF8huZu8hsO3bb0E7khrbDN6PnQerRT943dFk/ED1HUQ4cRk+wn+1Z91ugFqgG/gx8DHzds64A/dRe41l/T5c+x3u2rQO2AZd3k+fsLp/vwouNHJgBfO6R/TlP+01fsnc/lrdz6bL9aWhFc2uXZZPQyqres/8bwMBeZO1pDqTHc+2rX/qeA3nbc017am/3ss8vgfu6fV4FJPj5m7rLc65d211etn2ym9w/87zvHHm1dJP/Bs/6KcBHnmtbjb6p5nrW5aDdVevR8z4rgXO6HfsB4AmL5Tcyd5PZ7iYeQQ0GWxGRAmAH0F8pdTSA/VuAVrQy/WUQcrwLnIIeCYXDtddgiFqMAjHYjmfO5s9AmlLqq3bLYzAYfKOniViDIWyISDI6Qr8YHbNhMBiiBDMCMRgMBkNAGC8sg8FgMASEUSAGg8FgCAijQAwGg8EQEEaBGAwGgyEgjAIxGAwGQ0AYBWI4YRCLytoaIhcJcclhg38YBWIIKaKLNk0J4yEnK09ZWxHJFJHFHqVSLCLXh1GOgJE+ypz2sH2PZU/FS5lWz/qASrVKH2VafTmHQGVWISw5bPAfo0AMIUNEstGFrbzWAA8h96LTZ+cBNwD3iUg0VHvzpcxpd44re6q8l2mFwEu19lWm1ddzCERmQwRhFIghJIjISPRNxgHUiC69G7bMB54I9yuBXyqlGpRSy4DXgBvDJUMQhKLM6TFlWiHwUq2q7zKtVp3DcTIbIgujQAwhQemiTT8CXvQ8UWapnotgHYeIvCFdilV1a2/4KMJowKWU2tVl2Uaio960L2VOu9NX2dOb8aNMK/heqlWOL9MK1pRq9VtmQ3gxCsQQSiajy9ceg4h85G0n1aXiXw+tx4p/PZCCTmnflTp0edBI52O0ojsKlABr0en7e+MnwHB0LYsHgddFZETnSk+m4zPwr1ASwP8A/1ZKHextAxGJRRcAe0wptcOPcwiVzIYwYhSIIZRMwVMcpxMRyUTXPQg1DUBat2Vp6NoKEYv4UOa0O6rvsqd+lWn1yDGFPkq1Sg9lWn09h1DIbAg/RoEYQoLnJjKBLiMQEbkdbc+eJSL3e9n37R68cTrb2z6KsAuIEZFRXZZN5lgzSyQSSJnT7nQve+pvmVboo1SrSK9lWgM9BytkNoQZo0AMoSLR0xwAIjIVmA/8C/guugZ6ek87KqUu6OqN061d0NM+PfTRiH4C/rXo0r9zgUvRT8wRi+qjzGl3pI+yp9JLmVbPumBKtfZYptWXcwhGZkNkYRSIISR4buD3A9tEpAS4Av0UOgU9KulAVxAMJd9GK7FKdPndbymlvhiBeEY6PwuxDIFwBbo2ShWwG/1d/aBzZTe5Y9GuuFVo0+B3gcuUUjs9628GXlZK9WS6+wXaTfZO4Cue978AUEo1KaXKOxvaJNiilKoSkSHA7ehrWd5ldHiDj+cQjMyGCMLUAzGEBRH5C9oL5070DeMupdQii49hSVlbQ+QipuRwRGEUiCEsiMhktE27AD0P8k2lVJm9UhkMhmAwCsQQNkRkInCbUuq7dstiMBiCx8yBGMLJGGBHn1sZDIaowIxADAaDwRAQZgRiMBgMhoAIW3K7SCA7O1sNHTrUbjFOSPZWNQIwPCfZZkmihOoi/Zo9yvt2BkMEsG7dumqlVE735SeVAhk6dChr1661W4wTkmseWAHAc7fPsVmSKOGRi/TrrW/aK4fB4AMiUtzTcmPCMhgMBkNA2DoCEZHz0WmfncC/lFJ3d1s/Fh29PA34uVLqf7us249OjOcCOpRSM8Ilt+F4vnuWMcX4xbwf2S2BwRA0tikQEXGiK52dg073vEZEXlNKbeuyWS3wPeCyXrqZ78m7Y7CZ00Zl2y1CdDFivt0SGAxBY+cIZBawWym1F0BEnkUnu/tCgSilKoFKEbnIHhENvrK1VJfeGD+wx/yIXmlvb6ekpISWlharxYpcXG361RlnrxwGQxcSEhLIz88nNjbWp+3tVCCD0CVPOykBZvuxvwKWiogCHlBKPWilcAb/+PXrWu8HMoleUlJCamoqQ4cORWcJPwkwXliGCEMpRU1NDSUlJQwbNsynfeycRO/pTuFPVONcpdQ0dKnM74jIvB4PInKbiKwVkbVVVVWByGkIMS0tLWRlZZ08ysNgiEBEhKysLL8sAXYqkBJ00ZlO8oFSX3dWSpV6XiuBxWiTWE/bPaiUmqGUmpGTc5wbsyFCMMrDYLAff/+HdiqQNcAoERkmInHAtcBrvuzoKRCU2vkeOBfYEjJJDQaDwXActikQpVQHuo7yO8B24Hml1FYR+aaIfBNARPp7ihH9EPiFiJSISBq6jOYyEdkIrAbeVEotsedMDCcqt9xyCy+++GKf2y1ZsoQxY8YwcuRI7r777j63N0QGvl7fr371q+Tm5jJhwoQwSBVd2BoHopR6C3ir27L7u7wvR5u2unMUXd/aECH85/lj7BbBFlwuF9/5znd49913yc/PZ+bMmSxcuJDCwkLvO6YOCI+AhqC55ZZbuOOOO7jpppvsFiXiMJHoBkuYPiST6UMy7RYjYB5//HEmTZrE5MmTufHGG79Y/sknn3DqqacyfPjwHp9WV69ezciRIxk+fDhxcXFce+21vPrqq30fMD5FN0NYCPT6AsybN4/MzOj9bYeSkyoXliF0rCuuBbBEibyw9uBxy0bnpTJ5cAbtLjevfH7ouPWFA9MYPzCd5jYXb2w61hfjqhmDj9u+K1u3buW3v/0tn332GdnZ2dTW1n6xrqysjGXLlrFjxw4WLlzIokXHVuE9dOgQgwd/2X9+fj6rVq3q+yRbG/TryahEPn/q+GW5Y2HQdHC1w6bnj1/ffyIMmARtTbB18bHrpt5w/PZdCOb6GrxjRiAGS/jjkp38cclOu8UIiA8++IBFixaRna2j6bs+bV522WU4HA4KCwupqKg4bt+e6un45MlSX6abIeQEc30N3jEjEEPE4W3EEOt0eF2fGOfsc8TRHaVUrzf9+Pj4Y7brTn5+PgcPfjliKikpYeDAgX4d/6TD24jBGet9fVxSnyOO7gRzfQ3eMSMQw0nPggULeP7556mpqQE4xsTRFzNnzqSoqIh9+/bR1tbGs88+y8KFC0MlqiEAgrm+Bu8YBWI46Rk/fjw///nPOeOMM5g8eTI//OEPfd43JiaGf/zjH5x33nmMGzeOq6++mvHjx4dQWoO/BHN9Aa677jrmzJnDzp07yc/P59///neIJI0+Tqqa6DNmzFCmoFRoCKag1Pbt2xk3bpzVIkU2JheWIULp6f8oIut6Kplh5kAMlvBfl/QR92A4lrRBdktgMASNUSAGSwgkjftJTVyS3RIYDEFj5kAMlrCsqJplRaa2l8+0HNXNYIhizAjEYAl//0Db9E1lQh9p8MQcJKTZK4fBEARmBGIwGAyGgDAKxGAwGAwBYRSIwdALJ0o691deeYVt27b5vV9Kyomdp+tESedu5/U1CsRgCILOdO5vv/0227Zt45lnngnoz9wbSincbnevn30h0BuMQXPLLbewZEloyg1F+/U1CsRgCb+7YiK/u2Ki3WIETKjTuVdUVHD55ZczefJkJk+ezPJtJZA+mD//+c9MmDCBCRMm8Ne//hWA/fv3M27cOL797W8zbdo0Pv3002M+Hzx4kD/96U/MnDmTSZMm8atf/arX81i+fDmvvfYaP/7xj5kyZQp79uxhz549nH/++UyfPp3TTz+dHTt2ALBv3z7mzJnDzJkz+eUvf2nxN2wvoU7nftz1Xb4c4IS/vsYLy2AJI3KsM3d0RrVbRV/R8eFI5/69732PM844g8WLF+NyuWhoaGDdpq088sgjrFq1CqUUs2fP5owzzqBfv37s3LmTRx55hH/+85/s37//mM9Lly6lqKiI1atXo5Ri4cKFfPLJJ2RlZR13HpmZmSxcuJCLL774C9kXLFjA/fffz6hRo1i1ahXf/va3+eCDD/iP//gPvvWtb3HTTTdx7733BvOVe+eRi6zra8r1EZHOvcfru27dCX99jQIxWMJ727Rb6tmFeTZL4j/hSOf+wQcf8PjjjwPgdDpJj4dlH77L5ZdfTnJyMgBXXHEFn376KQsXLmTIkCGccsopX+zf9fPSpUtZunQpU6dOBaChoYGioiI2btzY63l00tDQwPLly7nqqqu+WNba2grAZ599xksvvQTAjTfeyE9+8pNev7NoIhzp3I+7vunpLFu27IS/vkaBGCzhoU/3AtYokEDyaQWDLencGypRLfWAs8fVnTednj4rpfjpT3/K7bfffsw299xzT5+1SNxuNxkZGWzYsKHH9T7VMgmWW98M/TG6YFc6d2/9nSjX18yBGE56wpHOfcGCBdx3332Anng/Wt/AvDkzeeWVV2hqaqKxsZHFixdz+umn93nM8847j4cffpiGBl3V8NChQ1RWVvZ6HqmpqdTX1wOQlpbGsGHDeOGFFwB9s9q4cSMAc+fO5dlnnwXgqad6qBoYpYQjnftx1/foUebNm3fCX1+jQAwnPeFI5/63v/2NDz/8kIkTJzJ9+nS27ihi2uTx3HLLLcyaNYvZs2fz9a9//QuzhTfOPfdcrr/+eubMmcPEiRNZtGgR9fX1vZ7Htddey5/+9CemTp3Knj17eOqpp/j3v//N5MmTGT9+/BeT/n/729+49957mTlzJnV1dT5/B5FOONK5H3d9t25l2rRpJ/z1NencDZZg0rn7iUnnbohQ/EnnbkYgBoPBYAgIM4lusIS/XDPFbhGii4whdktgMASNUSAGSxiYkRjU/t48ZU5IYuLslsBgOA5/pzRsNWGJyPkislNEdovInT2sHysiK0SkVUR+5M++hvDy+sZSXt9YGtC+CQkJ1NTUWO5GGdE0H9bNYIgQlFLU1NSQkJDg8z62jUBExAncC5wDlABrROQ1pVTXpC61wPeAywLY1xBGnlxZDMAlk32IgehGfn4+JSUlVFVVWS1W5NJQqV9Tcu2Vw2DoQkJCAvn5+T5vb6cJaxawWym1F0BEngUuBb5QAkqpSqBSRLrnPuhzX0P0EBsby7Bhw+wWI7w84hlQhzmozmCwEjtNWIOAg10+l3iWhXpfQyTT1gQnkCnrpDLLGWhpd+FynzzX3E4F0tOMqa/fvM/7ishtIrJWRNaeVCaSaKShElb8A7a/Bn6mtI5ElFK8vaWc5XtMrfiTgdYOF0+uLObZNQdoaXfZLU5YsFOBlACDu3zOB3ydhfV5X6XUg0qpGUqpGTk5OQEJaggDSsHu9/T7im1wwNqMvHaw5dBRdpbXE+d00NTWwf7qRrtFijxa6sDVbrcUlrBm32HqWzqoaWjj1Q2HaOuI/oegvrBzDmQNMEpEhgGHgGuB68OwryEE3PeV6cF1UL0LDhfDqHNBBHKjOzK9uqGVj3ZWMiQrielD+rFkSzl7qhq4YfYQ+iXHwdWP2y2i/SgFW14GVxuMuRAyBve9TwSTkxrPjKH96J+WwJuby9h8qI7pQ/rZLVZIsU2BKKU6ROQO4B10StKHlVJbReSbnvX3i0h/YC2QBrhF5PtAoVLqaE/72nIiBgAyk4OMa0jKgoFTdXN4BsauDq1Y8gqDFzCMtLvcvLW5jPhYB+eN74+IcNqobPbXNLFkazlXzxiMMznLbjHt5chBSMmD4WfAziWw4SkYNB2GnRG1MTJj+qcypn8qANckxNA/zXd32GjF5MIyWMILa7VPw1UzLHyKPLhGm7VGnAUFs63rN8QcqGni1Q2HuHTKIAqykr5Yvquinjc3lXHK8CzmHPWUSO2jGNIJSXsLrLwXssfAuIuhow32fQwlayExAyZdA0neKwBGEgdrm6isb2HK4H44HcdOz9Y1tbOx5AinjczG4YjeQFmTC8sQUl5cV8KL60r837HlKGx/Xb92Z9B0yB0Lez6AQ+uDFzJMFGQl8dXThh2jPABG56UybkAqq/fV0rbuSdjwtE0S2syhdVpp5M/Un2PiYNQ5Wpkm50B8ml4eBQ+3Lrfiw52VbDxY16PH3f6aRtYVH+b9HZUnpEeeUSAGe9n7EVTuANWD14rDAeMWQtZIKFoK5VvCLp4/1DW1U1Sh6zIkx/dsHT5zTC7jB6Yd96R60tDRBiWr9TVN7VZ8LKMAJi4CZwx0tMLnT0LNHnvk9JFNJUeoaWhj3ugcYpzH304nD85g9rBMthyq45Oi6hNOiRgFYrCPuhKo2AqDZ0FiL5ONDieMv0zfXPa8r28sEUhzm4tn1xzg3e0VXl04E2KdnF2Yh1ME5bPX+glE6Xptwhpyqvft2hqhowU2Pa9HqO3N4ZHPD0oPN/P06gMUZCYxIie51+3mjMhiakEG64sPs2JvTRglDD1GgRjsQSkoehfiU6CgjxoizliYcCVMuQFi4r1vaxM/fH4Df32viFlD+5EQ23OZ2q64lKKqvpV9J5trb30ZZA6D9D7ifpMyYfqtMHSudute/RBU7QyPjD7y81c28+K6EkbnpXhNBCoinDE6hwmD0imuaaLD1c29V6mIfTDqC6NADPZQvhnqy2H4fN+8bmLiITlb/9mKl8ORA6GX0UeeXX2At7eUc8qITGYM9c27yiHgVvDutnKa206OoDMAxl8O46/wbVtnDAybB9Nv0Q8ah9ZFzLzIttKjfLyrigsnDGBifkaf24sIC8bmcuW0fGKcji9NWW2NcM9UWH5PaAUOEUaBRBJF70VtBPajt87i0Vtn+b5D1ggYfibkHV/+1Suudj0XsvkFOFrm374hoLimkf9+fRt5aQn849q+y5V2Ije8iOPGF2hpd/Phpr2oN/7flwkWT0RcHdCq54f8dtNNzYNpN0PhZTpGqOWoNn3apEyUUvz6ja2kJ8byu8sn+ryfwyHExThod7l5ZcMhtpUehbhkSBsEG56JGOXoD0aBRAr7PoWnroQlP4nKH1JinJPEuL5NN18QlwxD5ugbgj/ExMHkayEmETY9Bw32padxuRV3vrQZt1Lce/1UkhNifd85LonczExOHZFF894VqPWPw72zYONzUXn9+6RiM6y8DxoDnANwOCHO49V2aC1sew22vNSz916IeeSzfazcW8v3zx5NepIf19yDAC43LN1Wzu7KephyHdTugYOrrRc2xBgFEikMPQ3m3AGrH4T3f223NH7zxIr9PLFif98bNtXC+icCv5EAJKRpJeJwwsZndJ82cM/7RazYW8P/XDaBGUP9jFtY/RCsfohpBf1wDZ/PW3NfQGWNhMW3wdPXQN2h0AhtB243HFipU9dbEd8x7EwYuQAO74M1/4LSDWFTuvUt7fzt/d3kpSVw/ayCgPqIcTpYOHkg/dMSeGtzOcV550BsEmyMPrduo0CCpb4C3BbYsEXg3N9oe++yP8On/xd8n2HkjU1lvLHJB5PS7vehoSL4yfCkTJh8nX5fXx5cXwHw5uYy7nm/iLPH5XHVdN/rJ3zB1ldg6ys4HMJFEwdw7hnzkK++A+f9DvZ9Ao9dErXmzOOo3ArNR2DIXP9HnD3hcGjPvRlf00pp59t6Ti0M/M8b26hrbufnF44lNibw22dcjIPLpg4iMzmO13ccpXHEhTqtSwR6m3nDKJBgcLvhmWvgWYvScInARX+GiVfpUciqB6zpN1Ko2QM1u/VoKz4l+P6Ss2H27V+mOgnTU2jtxjd586VHyUiM4Q9XTgy6FG9yfIy2jSuhePQtcPGftUmjZI01AtuJ2w3FK/SNPmuktX0nZWrPvFHnQL/Q15gvqqjn5fWHmDo4g4VTgq8ekRDr5Ippg8hLS6B94nXQehR2RFd9GKNAgmHjM1D6ue9eJb7gcMJl98GYi+Dt/9TBVCcCbpcefST2g0HHZUQInM6RTPVuWP9YyJ/g3B3tNL36Y+5wP8NfrplCVop1bsWf7a7m1Q2lVOWfAzEJ2sYf7dSXQnOtdaOP7ohA/gxISLe+7668+18UPfYdQPHbK3yfOO+LpLgYFk3PJ2PcWaj0fJrXPGFZ3+HAKJBAaTkK790F+bNg0tXW9u2Mhase0S6ur30Xti62tn87KN8ETTXadu0MQQ5Ph1N7MW16LqQ+9a88fR/57kNsGfkNzhyb1/cOfjB7WBYdLjd3vLSbjhHn6Ovu6rD0GGEnPR9m3QY5Y0J3DKV0rEj17tD033IU16p/0Vxfy9UzCygckGZp9yICDgcfxi8grvhjtm7fbmn/ocQokED59H+hsRIuuDs0T1Yx8XDtU1pBvfR12LXU+mOEk7yJULjQejNGJ5nDdIxBfQVsfjEkNSa2lBxm/O4HOeAYzKIbvmV5/4lxTvL7JbFqXy3/PjJV/76Kl1l+nLDRqfySMkPzH+lERNePKf4sJN27NzyNs6ORNxMu5hcXha7MQM5pN+MUxdLn7mFnefi9ywLBKJBAqNkDK/6p7a+DgqyD4Y24ZLjheR0r8fyNcGBV6I4VJM/dPofnbu8lotzt1qOOvPGhvZFkj9LZXesO6klqC+dEGlo7ePbJBxnjOEi/8+7EEewo6tY3e6yHfvXMwZw1Npc/Fw+n3ZkUvWYspWDDkzrbQDjIGw9HS6H5sLX9ut0c+fifbHCP4MLzLyIpLnQVMCZOmk5dznQuUR9z3YMrqTjaErJjWYVRIIHwzs/1CGHBr0J/rIR0+Mpi/frZ30J/PKupr4BV94cv6C9vvC5KldgP3NaZf775+FqubnqWltQhpM641rJ+e+Kv10whIzWV99QM3Nte0wkIo43D+/Q1Tw5TFdCcsfq1coel3R7Z+i6ZzcW8mXAxV0wNfuK8L9JPuYmRcojBzdv597J9IT9esBgF4i+734Ndb8O8Hx+fTTRUJGdp88zu976M5o0wHvxkDw9+0i1zqlKw+11dcS4xI3zCDJoGo87Wc0kW8Pf3i3Du+4BJjr0kzP+RNXM4n92jWw+kJcby4E0zeKl1No6WIzqdfbRRvBziU6G/dRPOXknM0Pm1KrdZ2m3xkr9SrdI47bJv4HCE4XY5/nKISeDGxOWs3hf5iReNAvEHVzss+RlkDodTrLeBe2XcQnC16rTmEcj72yt5f3u3VBxVO3TluWHzIDYxvAK53frYQZqxNhw4zD0f7OLHCa+i0gbBJItGH7ve0a0XJg/OYMK8yziikin64FFrjhkuDhfr775gjnZuCBe5hdrbr90a08/WrZuY2LCCZWkXcUZhmMrtJqTD2Iu5yLGcHSXV1DREdpJFo0D8Yc2/oHqnDvYKd1bYglMgOVencIgGXO36yTklFwZMCf/xKzZrF+gg8ks1trTzrafWM8exnQnuHchpPwhrudVvnzWOT2JOZWD5B+w5FEV5skrW6Pm7AZPCe9yB02DWNyDWmlKyO17/C26EGVf+0JL+fGbK9SR2HGW+rOeVzyM7I4FRIL7SWA0f/h5GLIDR54f/+A6nniAuWgptTeE/vr9UbNWuzqPO+bLGeTjJGqkn7KsDTwH+08VbKKtr4Q+5S3X97qlfsVDAvomLdTL+3FtJllaefvIhXN3TgEcqYy7UphiLTIg+43Doa+7qCHrk+fHWYhY0v8OerDPIHzraIgF9ZPiZqNSBXB/3Kc+vOxjeY/uJUSC+8sFvoL0Rzv99aD2JvFF4KbQ36cJKkc6AyfqGmxFYvqCgiUuG9MEB15BobnOxdFs53xpRzYCaVXDq98JvhgNGzDyfhtgsZjR8yG/fioL4AKV00sOMMJl8unO4WKdGb6gIuIvmNherXnuIDGlk+IVhHn0AOJzI5Gs4lQ0criiJaG8so0B8oWwTrHs09AFRfTHkNEjMhG2v2idDLyTEOr8spNTeopWsXTeRTnLG6pFjY7Xfu35SVEVLu5tvqMX6O59xq7WyxSb4ZmpxOEmeuogFzg28umoHzW0RHFhYX66zAQSTKDNYUnK1+TSIyfS7397ORc2vUZ82mtgRp1sonB9Mvh4nbhY6PuPZNZFT+6Y7RoH0hVKw5E4dDHXGT+yVxRkDYy+CnUsiroLZY1+dxWNfnaULPa34R2QUfMrxmB6qd/m965Mri5keV0xm6Ycw5zt6RGMlX3lJNx+QiYuIo50z3KtZtc+ezMM+UbxcZ0a2+rvyh9hE7eRSuT0gM9bB2kZ2rnmP8Y5iUud9yz5rQ85o1KAZXBP7CUu3hD9ZqK8YBdIX217REa5n/TK8rqi9UXgptNXDng/tluR43G7tahybCKkD7JZGu5FOuwkGz/Zrt7Z2F2v21/KfSW9AfLqemLWT/Jmo9MFcFruSpdsCN82ElIYqbS4cNN2ySeyAyR2n59/qSvze9WeLt3CDLKEjLhUmWpyiyE9kynWM4iDOis3URqg3llEg3mhrgqW/1Gk4pt1ktzSaYWfom9r2yPLGuuf9Ip557Q0dODh8fvgnUHsjfZDfrqRvbSlncMcBZrd8prP9hiJR38d/1M0XRJAJV3KqbGbZxh2ROZl+YLm+5vkz7ZZEZyRwxOhRiB98squSHUVFXOhcTcy0G63JGB0ME67E7YjlcsfHfLrbfzNsODAKxBvL/67TYlzwh/D6s3sjJg7GXKDTPocg31OgrC4qxbXnIz3vkRu6fEF+o5R2Jy7d4PMur28q5Y6YV1GxyaGL99n7sW6+MuFKYnBxWvsK3tsRYS69TbX6Zj1w6pdVA+0kJh5Gn+tXEKMuU7udm+M+xIkLZn49hAL6SGI/ZOxFXB6znKWbItMby1YFIiLni8hOEdktInf2sF5E5B7P+k0iMq3Luv0isllENojIWsuFc3XA5ue1O+LQuZZ3HxSFC6HliC48FCH07zhEnGqDkWfbZzfuCRE9H1P6uU+bu91uyvdt5WLnCmTW162poGcF/SfS0W8klzhX8NqGUrulOZb4NO2u7aepMKQMmAxpvptRl2wpp7jyCF9N+AhGngNZI0Inmx/IlBvIoB73rnc40hR5KW1sUyAi4gTuBS4ACoHrRKSw22YXAKM87Tbgvm7r5yulpiilLCww4cEZA7d/Ahf+r+VdB82IsyAuJaLMWAdjh/F28qWQ2t9uUY4nZ6z2EGo+0uem6w8e4eaOl1GOWF1iOFIQIWbyVcx2bKdoTxHuSKpW6IzRcx92m3y6U1fic6XCl9aXcF3qBpLaqrW3ZaQw4ixa4rO5XD7mpXX+z+mEGjtHILOA3UqpvUqpNuBZ4NJu21wKPK40K4EMEQnf7Gxcsq56F2nEJuqEgdvfsKacrkU0OSLsBtJJtu/eWOs2bOBy5zI6ptykXUIjiQlX4kBxWuunrD9wxG5pNPuX+Ty6Czuln+tswH3UVDna3M5HO6u4JWYp9BumR9GRgjOG2KnXMt+xgc82WZso0gp6VSAicrSPVi8i/vtHfskgoKthr8SzzNdtFLBURNaJSAQ9MoSJwkuhqVq7TkYA/ZLi6JcUvjQffpGUqZVBVd9/wCkHH0dESDjjByGWqZ9u/pA9ipbsCVziXHF83jE7aK3X5WptqEnvE7mF2t39sPestm9vKWOM2sfw5i3a486OzAlecE69gVhxMbz8bRpbImfeE7yPQPYopdK8tFSgMYhj92Qo7+647W2buUqpaWgz13dEZF6PBxG5TUTWisjaqqqqwKWNNEadAzGJERNUeP+N07n/xhDWRgmW/hO1N5UX08+RigNMr3mDurFXa++tUHLNk7r5ScKUq5jq2M3uXVtCIJSfHFwFyq3ztEUi/YZql+I+ggr7JcXx20HLUbFJMOX68MjmD3mF1KYXcpl8wssRlhvLmwK50of9fdmmN0qArqHK+UD32cFet1FKdb5WAovRJrHjUEo9qJSaoZSakZMTptoE4SAuWacs3/6615uiwcPgWXrU5uXpsuXjv+JQbuLOtCF9ha9MuAKAUZVL2V8dzPNbkLQ1ahNRXqGuvRKJOJx6/qu6qFePRbdbUVp2iIm17yKTro7Yc0mdfRMTHPvZsyWyisr1+m9SSu3ta2dftvHCGmCUiAwTkTjgWqD7rPBrwE0eb6xTgDqlVJmIJItIKoCIJAPnAhHwSBZmxl2qvbFqQlQL2g/+sGQHf1gSeTba42ip63l5YzXZO55i/6CLSO0/KvRyvHeXbv6SUUBD7nQucq7k6dU2RvuXrNHzbwWn2ieDL+QW6piQXtLZlB9tYfjBV3C6WyNr8rwbsZOvpkNiGHboNdo6IueBsc/KOCJSz5dmozggFmhUSgVVWV4p1SEidwDvAE7gYaXUVhH5pmf9/cBbwIXAbqAJ6ExIlAcsFu0uGgM8rZRaEow8Ucm4S3RMSAR4v6wvtriUaCg4uEYnojz1u8el22j99B7i3K3Uz/he+GQJkJQr/84PHtwGOyv52YU2xdykD4YhTl3sLJLJKNDXu5c4rniHYmb1y7gL5uLIGx9m4fwgOYstp93LX96F/jsqOW9CZHg79qlAPHMdXyAil9GLuchflFJvoZVE12X3d3mvgO/0sN9eYLIVMkQ1dqeMiDYyCnRgYfUuHfTWiasD5+ePsTtrPvmjwlzDIhDyxjN6RCtvbS6j4mgLeWk2/A6yRkRMrIRXRECc+rordZwJM6vsY2gsgQt/a5OAvjN23iKaPnyXJ1YWR4wC8dvdQCn1CnCW9aIYDCEmJVfbuLuneD+4ipjWI6TOvJbM5Aj1JOvGZVMG4lbwoh2xAZXboTkKRpydtNbDyvug4lgrd2NrB63L70OlDtRJSiOchNgYJuens674MG3tkeG+36cCEZErurRFInI3x3tLGQyRj4hOx3+4GNqbv1y+8y1wxtF/6oVIJEXRe2H+mFxS4mN4L9zJFTtateNGpMZ+9ERcir723XJj7dv+OfHFH9M65ebIyd3WBxdOHEBzu4s3t5TZLQrg2wjkki7tPKCe4wP+DCc5A9ITGJAeBSa1nLHa9bS66ItFDbXlHBlwGh0xYUxDnjZQtwBxOh0sGJfLjvJ6WsL5NFq7V0+eZ4XB0cAqRHR+tsP7tfeYh/gND+OSWBJmf80+2fzkymn5xDgkYtLZ+DIHYnElHcOJyF+vndr3RpFAan8Yf5mOOPbw0fj/ofxwI19zhHH0ceVDQXdxxbR8Xt1QyvI91Zw1Ns8CoXygukhnQkgLcZyM1eQW6qDHqp0waBpNrW1kVqygduhF5KREj3t/WmIsEwels3pfLe0dbmJj7A169MWElSAi3xGRf4rIw50tHMIZDJbT+TTqcUBod7nZX93I8Ly0qDFfdTJneBb90xJYX3wkPAd0u6F2j643H2HR2n2SnKPTEnmCCvdWN/PklKd1ieoo48rp+aQlxlIerlK3Xgpz9TkCAZ4AdqDNV78GbgCioDizIZz89+tbAfjVJRHsCtmJqwNK10NyNgdcubS7FCNywuwK/bYn+fQFdwfcRVyMg/+6eBwHDzfjdiscoR5BNVZCR5uutxFtiMCweSBa8e2vaSQ5KYHs3AgofOYn180q4IbZBeF74PFyHF8UyEil1FUicqlS6jEReRodu2EwfMG20qN2i+A7DqdOw5E2kD0yl/hYB/n9wlzHwscssX0xMi+VnRUNlB1tYVBGoiV99kpqf5j7PXBEx4TzceSM+eLteeP7U9fcHnWjTgCnQ6iqb2VXRT2njsiy9Rx8GYd25gA4IiITgHRgaMgkMhhCjQhkj4Gavbg7WhmZk4IznPMfFjIkKwmnQ9hd2RCeA8Ym6vTt0UpTLRxaT6zTQXZKvN3SBExVfSur99WG3ozVchTWPtLral8UyIMi0g/4BTq1yDbgD9ZIZzDYRM4YcHdw/oAmzikM0wR0CIiPcVKQmcSeygaUF1t10DRWw+dPQUMEZAEOhuoiDq1+hQ27gsnCZD/Dc5JxOoSiihA/ONQUec223KcCUUr9Syl1WCn1iVJquFIqVyn1gKVCGgzhJn0wrphEqNoZlWaMrozISSE2xkFLewhzJFUX6cqOMVHgqu0Fd/YYyuqaaS6J7tR5CbFOBmcmsjvUDw7Vu71W5fRWD+Tivvr2ZRvDycHwnGSG54QxjiJIlAjv1/RjR2mtVy+TkGFhKpAJg9K48ZQhJMb1nO/JEmqK9BxIQlAp8GynvC2e2pg8hrmL7RYlaEblplLX3E5VfWtoDtDRCkeKtdddL3gzZv5JRA7Rc02OTn4HvBGgeIYTiN9fEQU5pLpQVd/K1qRTGFjY354a7gvvsayrzhFUh8tNjDME7rVtjXC0FIaeZn3fYWZPVQO1ySPIlm3QUAVRFAPSnRE5KXwWV01dczu5ociH1hk06sXrzpsCqQD+3MchivpYbzBEJLsrGxCH6FGTqz1qUln0xu7KBt7ZWs5XThlCeqLF51KzW4/Soin6vBf2VjWSPrCQmNbd0FAR1QokMc7JN04fHjr37dgkHTOVlt/rJr0qEKXUmaGQyXBi8tOXNwHRMxLZU9XAoIxEksrXwoGVMOeO8HoXveZJG2/RSCQrOY62Djd7qxqYWmBxUaTYJO10EGk14v2k3eUmIymW4dn9YMD3o/6hAcDhEJRSuBXWexL2G6KbF6LYH88QSeytsrE6np8cbmyjuqGNM8bkQFK2Tqx4pDi86clr9ljaXb/kOLJS4thdGQIFkj0qOoMHuxHrdHDplG4pWNzu6Iuq70KHy81Tqw4wOi+VOSMsrM3S4onr6mPOK3q/OYMhQBJinZw5JodRuSm6bnZMHFRFQTXFPhiZk8KhI800t1mYXLG1HtrDlDIjxDS1dXz5QSntlrz3A/sEsoAYp4PEOCe7qyx25z24GlY90Gsp4E6MAjGcdCTGOZla0I/UhFhttsoapYtMuSOjxkKgjMhNQSnYW23hzWT/Mlh1n35Sj2Ka2jp46JN9bDx4RC8QgZh4qNxhjxeehYzMTaG6vpXDjW3WdKiU9rrrN6RPM58vyRSTROSXIvKQ5/Mo475riFYaWzvYWlpHa0cXZZEzRj9lH7GxxrgF5KbGc+qILAakW5TSRCk9gd5vaFSbeUCbWN1KHVtyIHecHmHVHbRPMAsYmavzuBVZlY2gsRqaj/hktvTlV/EI0ArM8XwuAX4TsHCGE5LCgWkUDoz8GIE9VQ0s3VpBfUsXc0bmcBhxls7WGi76T9TNQkSE2cOzrKuqWF8GrQ0nhvdVdSOpCTHkpHZJX5I1So9AK6M7N2xaQiwD0hOsS2dTvUu/eon/6MSXSfQRSqlrROQ6AKVUs0R76K7BcqIiCy9agWQkxZLV9SbrjIWC2eEVJIgsvN5wuxUHaptIinMGHxtQXaSz10ZD7XMvtLvcHKhpZPzA9GOzDsTEaSVSuR1GnhPVo6xZwzJxuRVKqeAzK9QUQdoAiE/tc1NfFEibiCTiKWMrIiPQIxKDIapoaXdxsLaZqQUZx//JXB1QvVPXjYhid1UFvLWljBE5KZw3vn9wndUUQXq+TqAYxRyobaLdpXrOlDBoOmQU6CqVUTwlPNzKcgQTrjymcqM3fFEgvwKWAINF5ClgLnBLwMIZTki+/6yukR3JlQn31zTicvdS+0O5YMdbMHAKjDon9MK89A39akFlwq44HcLw7GRt8w+2Rkjh5eCyaGLWRgakJ3BOYV7PKfszBut2AlDX1M7Bw01MGJQeXEfxqT6NPsC3ZIrvAleglcYzwAyl1EdBiGc4ASmra6GsLrLdPSuOtpIc7+y5dntMPGQO0yVPw+GVc7RUtxAwMjeFlnYXh440B9dRcpY2ZUQ5SXExTBiU3nugXXszlH6uR6FRzM6Ket7dVkF9i3fXW6/sX6Y903zEWzLFaZ0NGAKUAaVAgWeZwRA1tLS7eHJlMYUDvJSuzRmrvXJCdGMPFwWZycQ4hD3BxAYUL7c82NEONhw4zNOrimls9XJTPVoKO5fo3E9RzCiPN1bAk+kdbbpufF2Jz7t4G4H8n6fdC6wCHgQe8ry3LhOcwRAGPttdzbvbKnB5G1xkjdTVCqM8qDAuxkFBVhLlgY4I21tg36dR79YM8K9l+/jFK1toaPUS49NvqJ7n8dRLj1b6JceRnRIXuDvv4X3g7vAr60CvCkQpNV8pNR8oBqYppWYopaYDU4HdgUl4LCJyvojsFJHdInJnD+tFRO7xrN/UdeTT174GQ1ceXb6fxFgnc4Z7SfcQm6BvJo3VYZMrVJxb2J9rZgZo26/dqyeVT4D0JSv31jA8J4U8bx5pDqeOCakp0k/hUczI3FRKjzTT2BqAOa66SP8H0ntPntgdX9wOxiqlvijgrJTaAkzxX7pjEREnenRzAVAIXCcihd02uwAY5Wm3Aff5sa+hk22vwqf/F9JDTBvSj2lDLM7BZBHtHW7W7j/M+IFpxMX08ZMvvAwmXxN6oQbP1C1EJMY5kQMr4b3/9n/nmiKIS4LUgdYLFkY2HDisc56N9iHjbs4YPQcS7WasvBTyj6yjbckv/NvR7dZBo5kjtEL1EV8UyHYR+ZeInCkiZ3gi0q2IvJkF7FZK7VVKtQHPApd22+ZS4HGlWQlkiMgAH/c1dLLvU/j4Tz675gXCT84fy0/OHxuy/oPhnW3lNLe7OH+CD26tMZ74kFBPpJ99l24hpGTrMlj2Z//mMtwuvX3WyKiOiwB4+fNDAFw53Ycn6vQCrTQbei/fGg1kJcdxaf9q+n1+H9Tu833HtgZISIfs0X4dz5dfyK3AVuA/gO+ja6Lf6tdRemYQ0DWHQIlnmS/b+LKvoZPCS6GjGYretVsSW3htQylOh3D5NB9/IgdWwvrHoj5HUu2QCwBo2bjY951aj+r07SdA9PmKPTX0T0ugcIAPGRIcDpj9TRh+ZsjlCiUiQuz4S/SHHX7U+ktIgxm36pGYH/jixtuilPqLUupyT/uLUsoKf82eXGG6/2N728aXfXUHIreJyFoRWVtVVeWniCcIQ07Vacu3vRqyQ3zziXV884l1Ies/UNxuN6v21TKmfypZyfF97wDgjIOjZdAYwt/Lc1/RLYQMGTaGspTxuLa+4vtOif1g9u1RP/9R09DKnqoGrpzux3NljOf3EeUPDi0pgzmcNobGjT7+35X6Muuun1HsviRT3Ccie7s3v47SMyVA11m+fLSbsC/b+LIvAEqpBz0OADNycqK3+lhQOJww7mIoWqp93kPA4aY2DjdF3gTklkNHqWtu54Lxeb7vlD1a/5GqdoZOsKbDuoWQ9KRYSgedR3LNZji8v+8dlNK2cBF7yvxayAc7KnErOH+8n3EsO96EnW+FRqgwER/jYF/2fJIq1kJDZd87NNXCsr9Ctf++Ub6YsGYAMz3tdLQL75N+H+l41gCjRGSYiMQB1wKvddvmNeAmjzfWKUCdUqrMx30NXRm3UNs590R3/QN/qf7g78xzbOb62d4rqx1DfIr2RIlyd14AGaenBts2+2DGaqyG5X/zz3YeoTy5sph+SbFMGORvgk/R1z2KgwpFBDXmYgRF+zYfzFg1Rdp9N4Dyvr6YsGq6tENKqb8CZ/l9pOP77QDuAN5BT8o/r5TaKiLfFJFvejZ7C9iLdht+CPi2t32DlemEZtg8SMiAbSeRnm1vZs6+v3N9xhayUnw0X3WSM1bfUBtrQiNbmBg8Yhx1/cbj2O7Dda/ZrWNAkiysbGcDjbs/Y175Y5wyKNb/xII5Y7Qr7+HoVqIDx0ynLn4gLZt9uO7VuyA1T0+i+0mfubC6RZ070CMS3xKl9IFS6i20kui67P4u7xXwHV/3NXjBGQtjL4Ltb+g/SExc3/tEOfvXvMVQWqkaFMDzTvZoaKkLb530EJCTGs/mvHOYuOOvOjAwo6D3jWuKILV/n2VMI53Sjx/hdufrLBkfQHhYv6E6FqJqR1TPA/VPT+TdhFOZf/BVXZ62t2va1qgj8YfMDeg4vpiw/q9L+z0wDbg6oKMZ7KXwUmitC4kZa+7IbOaODGM9DR+oXvcq9SqRGfMu8X/nhDQYuSCgpzKfGH6GbmHgI+epADRtfKX3jVob9I0kim+aALjdZB36gGVqEhdM9aIse8Ph9FSoLIp6M9aWtHnE0k7TtiW9b1izW899+em+24kvCuRrnVHpSqlzlFK3AZE3W2rom+HztZfN5hcs7/p7C0bxvQURdPNxuxla+wmrnVMZNzhA5wm3W08+Nx+xUjLNGf+pWxgYNmYiW91DqF/v5brX7tE3kih333UdWk+mu4Yd6aeTHO+9HGuvDJgE+TN1huYoZv6Ci6hSaVSvfan3jdIHw4j5AZcw8EWBvOjjMkOkExOnI613vhXSoMJIoGzHCrLVYcr7BzFd194EG5+Fso3WCWYD547L411OIa9uE9Qd6nmj1AEwdG5U10IBKF+zmA7lIHNKEFW3Mwpg2OlfuvVGKVOGZLEyZhbZZR9DRy8lnJIyoeCUgL3uvGXjHSsiVwLpInJFl3YLEGSpM4NtTLxK3xh3vm1ptzc/vJqbH15taZ/BsP+zF+lQDkbNvTzwTuJTtE28cpv1sQFPXqlbGIiLdXKgv65x0r61l9iAlFztaBHl7ruxu5ewVo3h0jlBlgt2dWgzljt6RyEiQumAs0lSzVRseOf4Deorgj5HbyOQMcDFQAZwSZc2DfhGwEc02EvBHEgbZLkZq6XdRUt75PzZBlV+xCbHOGaMGx5cR7mF2oRldYr39hbdwsSUqTPZ7h5M3doejAcNVXqC3e0Omzwh4fB+cpt2U5RxOulJAZqvvuhrH2x+0bf4mQhm+pmX0qASOLSyh+t+aB344p3nBW/ZeF9VSt0KXKyUurVL+55SanlQRzXYh8MBE66A3e/pAKITkIbyPRS076Vm0AIcweZzyh4NjpioT/V9+dRBvOOeTWbteqjvlu/p0FrPA0V0R2AfWqlt/UcKzg6+s37DtMk3lMGkYWDGyIGsdE5jaPVHx440lAooeWJ3vJmwOmf4rvekVD+mBXxEg/1MWKQDh0KY2sRONn3wLACZ0xYG31lsAmQNhyPFUZ3iIjUhlorB5+NA4e4aC6SUNmNkDg/qRhIJtG59k13uQSyYOyf4zpwxOqFk9a6oNmMBVOefSyZ17Pu8i/fl0VI9Dxqk1523x7POjLtrgXU9NEO0MmCy9rbZ4sU7I4pJ3LuUvWoQkyZNt6bD0efD9K9G/fzAjBlz2OUeRNOGLte9vkzfSKLc+4rmwwxp+JzlMbN9S57oCznjdOqfKC+sNe3sq2lVMZR2NWNV7wJx6BFIEPQaJaWUet3z+lhQRzBEHiJ6Mv2j3+snkbTg6z4sGBcZ3jsHSsuY0L6ZjzKvYnhftT98JS7Zmn66Mvo86/vsgwXjcnl88WzuKHtF50hKydWjD3FAVnA3Ers5vOEt+uHmcMEC6zrNHKYDcA/v0++jlNEFg1gXP4VhNR/pEaeIfnDIKNAj7CDoVYGIyOt4MYoqpSywDxhsY+Ii+Oh3sOVlOPWOoLu7bV5k3IBWLn2Oq8XF4DmLrO24cgcUL4Npt1gTnT73e8H34ScZSXHsyDwLx9GXcW19Defsr+un6/R8XdI1iqlev5gOlc7UUyyY/+jEGQszv6ZTAEU57SMvYOC2/2HfttUMGz8bJl9nSWJVb/+E/w26d0PkkjUCBk7Vk6cWKJBIwO12k3rgfY6QxtgZQadrO5aYOO2tVLvH75oJkcTMWXPZs3QAyaufp//sr8OU66M/Jqijjfzqz3jHcSoLR1s8Ek6MzCqb/jJq3tW4t/6GHR8+rRWIiC6gFSTevLA+7mzACuAwUAus8CwzRDsTFkHZhoDSOHfnmgdWcM0DK4KXKQg2HazmVNdaDuacbv2EcMZQ/YersChn5yMX6RZmrp01hHc5hZyaNTpZpMMZ9bmv2vZ8TKJqon7o2cF73fXE7vdgb3Tf8rL6F7A9ZizDqj/EvWUxFFvjSOtLPZCLgD3oNO7/AHaLyAWWHN1gLxOuAAS2nBiJBTYse4d0aWL43BCkanM49KRqzZ7eo3qjgMQ4J5WDz8eJm4Z3fgMH19gtUtAUL3+RZhXHgKkhui21HNXZCKI8TuZwwXmMpZgDGz74soBUkPiaTHG+UupMpdQZwHzgL5Yc3WAvaQNh6GnajBXFLqoAzW0unEVv0y6xJI+z0A7elbxC7f5cvSs0/YeJs848i2J3Lq5d7+oaMdGMUmSWvM9nahJzxoSoqnXuOE/W2pLQ9B8mxi+4DoD6kq0BJ0/sji8KpFIp1dXGsRfwocyVISqYuEgHFEV5vqfn1xzgdPdaqrJP0SlIQkHaIBg0HRIzQ9N/mDhtVC47EyeT2nIIkqO7Sqfr0EayXFVsTz8t8OSJfZE5QgeTRnlQYb/8sVQ5cshoPkhbgjXX3RcFslVE3hKRW0TkZuB1YE1nbixLpDDYx7iF4IgNSYbecLJ6zQqGOirInRFE7qu+EIHR50J6iJ50w0i/gvE4UOzb9KndogTFrk+ew62E1IkhnE+KidPBpFU7onuk7urAlTGUQVSyYqs1ytAXBZIAVABnAGcCVUAmOi9WECkvDRFBUiaMPFu78wZh47140gAunuRn/WmLKDncxJBqPckZMy4M03ON1b1ntfWV8ZfpZgduF+Nyk6hWaTR8/rI9MlhE3J53+JzRXDVvamgPlDdRB1u6oriShauNrOmX4xCoWP2KJV326dDuyYdlOJGZuAh2vQ0Hlus5kQC4cc5Qa2Xyg493VXGOcz0NWRNJsSAosk+2LoaYBJh2Y+B9zLIxH2lHCykDx7Ay8RTmNb1Pc10NienRV8a24sAuRrj28GrO7UxPCJH5qpOc0bpFM3FJxJ76bWo/uofc0veob/lPUoP83nzxwhomIn8WkZdF5LXOFtRRDZHFmAsgNklnHw2Q5jYXzW325AxK6ahlihSRMilMsa1546GuJLhCU21NutlBXDKMvww17WbixMWad560R44gyTz0IQCzL7ghPAdUSmduiEYzllJfJNGsyT+HOWxi8YodQXfriwnrFWA/8HeOLW9rOFGIS9b10re9ouulB8Atj6zmlkfsqQdyUcJmBKUVYTjIHadfK7d7384bT12lW7hR6osszGfOv4AysogreiP8cgSJy61wbXsDlTWS/iMmh+egldth3WPWp/YPB/XlsPYRqNzGsNOuIV46KF8f/HX3RYG0KKXuUUp92C240HAiMfEqPZleu9duSfwmZtcSXZozb0J4DpjYT7tAV1oUVBhOGqth1QNQvoXYWCc7+p3FmLZtFFdGV2r/fSWlxJYs56gVqdt9pTNjcVXwT+5hp3qXdgLpN4yYYadS70hn5JHPqKoPriaNLwrkbyLyKxGZIyLTOltQRzVEHiPPhh9uh9yxdkviMy634qVVRbj3vK9HH+HMlps3HpoO6yCzaKKmSL/2GwLAwIW/YE7r33lr22EbhfKf6g1v4VQdpE6+NHwHjU3QFSqrdkafGaumSOc8i0sCh5Mt5zzJne1f56lVwWUa9kWBTERXILybL81XJk/WiYbDaU2SwDCyv6YR5/5PcHS0hM981Un/iXDqd6MvDUh1EaQNgPhUAMYMG8rEof15Yd1BVJTcFGsaWkk/8C7t8Zk4CmaH9+A5Y6Cl7viiXJFM82Gdx61Lyv7Zs08jOSmJd7YEdx6+KJDLgeFKqTOUUvM9zeJMdQaD/2wvO8qUqldRif1gSGDeYwETEx90Kuyw01Cp7ffZxyaDvGjiAPZWNbJ0W4VNgvnH5oPVDDuyHBlzXviLYGWP1unvq6MoqLBmj37tUjzK4XCwaHo+OyvqqaoPPDWPLwpkI7ouusHQK4um57Noen7Yjtfc5uLI/k0Mrf4Ymf1NHewVbhqrYd2jgcWETLlet3ByaJ1OUT5wyjGLL5kykBiH8OSK4vDKEwBKKVp3LyOho56YceFPRklsIky9IfwPLMEwYDJMvlbHfHXh6hmDcSt4c1PgTgG+KJA8YIeIvGOVG6+IZIrIuyJS5HntMWeyiJwvIjtFZLeI3Nll+V0ickhENnjahcHIYwieq2YM5qoZg8N2vJ0V9Ywvexl3bBLMui1sxz2GuBRtGgikXvrUG3QLJyMWwKSrj6v9kZUcz8yhmazaV8uRpsgOlBMRznGuQznjYYRNhpD0/Ogy9zpjeyyINSovlaFZSTy6fH/AXfuiQH6FNmP9DuvceO8E3ldKjQLe93w+BhFxAvcCFwCFwHUiUthlk78opaZ42ltBymMIktrGNmobw3fzyUyK48jp/4XjljePe7IKG5310iu3+x/F31ijW7hQSo/SMgp6XH3DKQW0udw8EcGjEKUUbpcbx663keFnhqZSpG+CwP7P9Igu0qnZA/s+7TX77tyR2eyvaWLrobqAuu9TgXR13fW473YAwebLvhToLJX7GHBZD9vMAnYrpfYqpdqAZz37GSKQbz25jm89Gb4/VEFWEvML82GQzQ6BueN1ptYjft54n79Jt3DQ2gBr/+21tveFE/ozIieZsrrgq9SFirK6Fh5evp+ay5+HBf9lnyAi+rssWRv53ljlm6B0vU4G2QNfOWUI/dMS2FgSIgUCICJTROSPIrIf+A0QRAQVAHlKqTIAz2tPZcQGAQe7fC7xLOvkDhHZJCIP92YCM5yYHKxtor7FmnoGQZM1Qj/ZB2LGChclnuJRcb1nKXY4HPzt2qksmjE4Yr2xNpUcobXDTeqgMdA/TDE/vZEzRgdkNlbZK4c33C4d15U1qlcX93ED0vjhOaNxBZgHr1cFIiKjReS/RGQ7upDUQUA8Xlj/6KtjEXlPRLb00HwdRfR0xp2/7PuAEcAUoAwvJjURuU1E1orI2qqqCL7YBp9wuxVLtpTzwY4IqSjgjIUhcyFjiN2S9Ex7i34CzRnTp6lvwqB0phX0Q8IZT+MjzW0udlU0UDggjbiYEFQd9JecMfqmHMlBhUeKdWaJLt5XPTGmfyrVDW0BeWN5mwnaAXwKXNJZD0REfuBrx0qpXkNERaRCRAYopcpEZAA91xcpAbrOyuYDpZ6+v/A3FJGHgF5j8pVSDwIPAsyYMSMyH60MPnOgtomG1g7mD4ygOhYFp9gtQe+Ufq5vIgVzfNq8rcPN3uoGxuSlRpQi2Vpah8utmJifbrcomrhkPZ9UtROGzbNbmp6p3K4n+/sN9brZqLwUKutbiXH4f729qfIrgXLgQxF5SEQW0POoIBBeA272vL8ZeLWHbdYAozzJHOOAaz374VE6nVwObLFILkOEs63sKIlxToZlh6hoVKC0NX7pbx8puNq1+SpzGKT292mXfdWNvL25nIO1kTMXopRiU0kd+f0SyU6Jt1ucL8kt1GltAswfF1KU0q3/ZD1K9kJSXAznFObRL9l/V/heRyBKqcXAYhFJRk9y/wDIE5H7gMVKqaV+H+1L7gaeF5GvAQeAqwBEZCDwL6XUhUqpDhG5A3gHcAIPK6U6kw/9UUSmoE1a+4Hbg5DFYAFfOSX0JpyWdhd7KhuYMCgdZwBPSyFl/2e6quPc7+kgw76Y+dXQyyROGHUOxPseLT8iJ5n4WAdbS+soyEoKoXD+MX9sLrHOCLvmA6ccF1MTMYjAuIt9nuRXSlFZ30p8jIOMJN8ViS/1QBqBp4CnRCQTfbO/EwhYgSilaoAFPSwvBS7s8vkt4DgXXaVUEIUYDKHgksmhr8NRVteCSykKB0Zg+pC8Qu3WWb1LpznpiwlXhl4mh+PLzME+EuN0MLZ/KlsPHaWl3UVCbJgjvXtARBiWbZPLri+0HI2slDZHy3SEfkquz/nh2lxunl9zkAmD0pk/tiefpp7xazZKKVWrlHrApDIxdKf0SDOlR0Jr9hiWncw3Th9ObmoEmTE6SRsECelQ4aM3Vl2JbqGiapceFbk6/N51/MB0OtyKXRX1IRDMP+qa2/m0qIrGVv/PIyxUbIUV94Y3pscbSunicFte8is2KT7GybCcZHZV1ON2+z5VHAHuDIYTgR88t4EfPLchZP13upYmx8dE1OTuF4jop/3D+/V8SF+8fLtuoUAp2P+Jdi0OIFdUbmo82SlxlNUFl+rbCrYcqmNd8WFcEepaTLrHzydSvLHKN0N9hZ7Yd/h3ex/bP5WmNhcHD/te6MwoEENUsGJPDYs/L/Hr6Sjs5I0H5fYasBcWavfqFCsFpwSU4l5EuGrGYM4b79vEe6jocLnZcqiO4TkppIW6ZG2gJKTp1CaRoEBc7bDvE51tObew7+27MTRLz3/tKPd95GkUiCHicbsV28qOIgiOSJs870pKLsz5tt/zDpZTvFzf2AK4iXTSOfdhp8LeXdVAU5uLyZHiutsbOWN1puMmm4tyHVwNrfU6R1gADw4xTgcjc1I4WNvk83U3CsQQ8ZQcbqa+pSMyJ8+7k2Dzze7IQT23Mnh20KnONxw8wqPL9+OySYlsOlhHRlIsBZmR4w3WIzmj9avdoxARPQruJd+ZL8wdmc3Npw71+UEtilJKGk5WtpXVER/rYHgke+J04nbB1sX6Tzx4VviP74zTVSUHBF8nPDUhhrrmdvbXNDIiJ7xxNy63IjUhhlF5KZE559WVhHQYfzlkhC8bdY8MOTXo3FzJ8f6pBKNADJbwjdOHh6Tf1g4XuysbGDcgjRhnFAyYHU5ob9KTmd4UyKl3hOb4qXn6ZmYBQ7OSSYpzsrX0aNgViNMhXDBxQN8bRgp2loJurIbmIzovmwXKtrimkWW7q7lyWn6fbtxR8I80RANnF+ZxdmFeSPqeMyI7clJY+EJuobaJN1b3vs2YC6wvw1u2SZcvtQinQxg3II19VY00tYXPjba1w0V1Q+BV8mxBKTi0XqcPCTe734ftr0GHNd9ZXIyDyqOt7Klq6HNbo0AMlrCnqsGnH5y/xMc4mT6kH7mpUVQ+NmesfhKs2Nr7NtVFullF82HY+Za+iVlI4cA03EqxvSx8MSE7yup5YkVxdCkREZ2J4OCq8B63dq9uQ+ZaVmK5f1oC6Ymx7PTBG8soEIMl/Ozlzfzs5c2W9lnX3M620qO0uwJLNW0b8Sk6gV3ltt5t0q9/XzerOLha1+q2eN4lOyWeeaNzwhYJrvNeHSEvLYGsAHIz2UrOWB0F3nwkPMdzu2HPB5CYAYOmW9atiDC2fyoHapv6DOA0CsQQsWwtrWPptnJa2l12i+I/g6brlCbuMMje2qDNV3kTID7V8u6nD+lHZphu5oeONFPd0Mak/PTInzzvTs4Y/RouM1b5Jh3vM/xMy0vsjumfilJQVOndqmAUiCEicbncfLyzioLMJFIjNYjMG9mjYOhp4amdXbIGlCukaeUP1jaxtTSwqnX+sHx3DfGxDsb0t14RhpykTOg3BPZ/Gp7MzM447UKcY/0EflZKPFMGZ9Avyft/zygQQ0Ty5uYyHvhkL3XNEVJ5MBBcHTonVYDV3nzG7dIT9yGsDb/lUB0f76qiI4TmxNIjzfx08WbK61qIjQaPu54Yf7l+eEjODv2x8gp1Us4QjdTmj81lSJZ302WUXiXDic4zaw4S53Rw5bR8u0UJnJrdOqmdv/XS/WXU2TDukpAeYvzAdFrb3eypbLDM26c7L68vweVWXDPT5niKYIhN1EokIV0/OIQiYWZrPZSsC4t59GhLO2V1vSdJNXEghsBwu49J1vbds7yXzfSHhpZ21u0/zKxhmaQlRqH5qpOu9dIzhx27bt6Pgu/f1a5dhdMGhOwptJPBmYmkJsTg/uj30LgWvvKipVH3HS43T686wNyRWYwfGEUu294oWQN7P4SxF1tbw33fJ9rDL2u4LmgVQpZsLqe1o3dFZUYgBv9obYAHzoCV/zxm8WmjsjltlDXD9ne2VtDmcnPH/BGW9GcbzljIHqPLnnZPqz5ivm7BUL4J1j0K9eXB9eMDIkLhwDR2yxBU6Xp4/DJLY06eWX2A0roWrojmEWd3Bk7VGQl2vKFdfK2gvkIHqQ6aFnLlAV/WS+8No0AM/hGfoqOtP/o9LPvLF+aMraV1lk2yvrDuIEOykpg9PMuS/mwlb7z+jjY+A21d0mSXbdItUNxu7bqbNhBSQhPA2Z3xA9IpH3gu1Rf+Gyq2wGMLLUsg+NSqA6TEx3BJNEWf90VMHEy8Srt077AgRkcp7bYbE6/jPsLAqLwUr9U/jQIx+M+iR3S9gffugntnwfY3+PVrW/n16z4WU/LC9rKjrNxby/wxudHnxtkT/YbqiPPYRN1A266X/FS3QKnaruMNCuaE3HzVSXpSLF8/fRg5My6Da5/RI6tHL9aupEGwueQIO8rrOX9Cf+IioAKipThjYcIiyBoJe97X8xeBUrtX15sZctqXv6UQkxQXw+VTB/W63igQg//0GwLXPQM3LoaYRHjuBn5R+1MGt+8LvE/PhODDn+k+ro7midSuiOi62RMX6fdtjbDqfmg9CgSY+E4pOLBCe/pkWzf35AsigtutaBk6H65/Tt/UHr0oKDPaPz/agwh8+8woN1n2hjMGJlwBU74SXJxOTLx22x00zTrZfGCwl2zIRoEYAmfEWfDNZXDh/zK0fQ9/rP4OvPFD/8t7KkXHQ+ew5Zlf8O7WCkbkpFA4IApStweCu0ObnJoP66jlql3+Z1BtPqzrcAdYMCoYlFI8uaqYj3dV6Tmcr7yoPY0evQiOlvreUXszrLyP+oZ6PtxZyZT8DIaHOWFjWHE4tbMDQOnnumaLv6Tna7fdINP0W4lRIIbgcMbArG/wH7kPsyTpEj2p+/epsOKf2kuoF2oaW3luzQHufns7v/7rPcSUreOxLa0cbWnn66cP63W/qCchXY9GUnJB0G6+G5/1r3Z5UibM+U5QBaMCRUQYkJ5IUUU9v1i8mb8U5bL29H+h6svhkQt8r8a44l5YcidrP3uflnY3XzvtBL7mXVFKK9y9H8O+T317eOhohb0faaUbYRg3XoMlNDpSeSz9W1x4y8/gnZ/BOz+FtQ/Deb+D0edS3dDC0q0VLNtdzaaSOg4daUYpnfH1teTnqYvNZfYF3+LOCYPISo63+3RCT0wipCbAqHOhqfrLiHVXu7ab90Z7M8QkaHOGTcwY0o+q+hb++dEemtpc/A2YIv/JE21303TPAu7J/z8y88cwYWA6UwsyyE3rluSvoVI7YIy5iL/tzmF4TjsXTTqBJs+9IQJjLgIE9i/TGQSGneF9JHlgJRSvgOzRYZv78BVRkVqsPgTMmDFDrV271m4xTkjWFWtvnOlDMkEpDm98A8fSn5PeVMy62Onc2XgtRe5BOEUoyEpicn4680blcG7aflKeugjO+70uB3uycMCTtbVg9pfLGqpgw1Paw2bQtJ5NFZteAHc7TLk+PHJ6ob3Dzfbyo+wqr6eivpWW4vV8ff8PaFJxXNf2c/YrrRQyEmOZMCidkbkppMTHcFX5nykofpF1F77Noher+PlFY/nG6Sfo/EdvKAW7lkDpBp0As7cytC11sOpBPfdReGnYxexERNYppWYct9woEIMVtLS7eG7NQZbtrmbLoTrK6lqIpYNbYt/l+zEvk0AL+4ddT+7CX5GakfPljs9cpyeEv79FuwifzDTVQtFSqN0HSVkwcoEORuykoRLW/Ft7wA0Njxun35RvRj1+KR04WTLtQVbVZ1NR30rF0RZ2VzYwsL2Yd+J+wuOuc/mN+xYEWH7nWcePUk4GlIKid3X9+t7ymG1/HSp3wKxv6Ky7NmEUCEaBhJLlu6u56eHVAAzNTmbq4AxOH5XNgrG5JLvq4MPf6vmRhAyY/zOYfitU74L75sCZP4Uz77RV/rDT0wgE9E2lZo92+Wyq1V5WnfmOtr2qa4jM+U7EmTKOoXK7jhFBwU2v6ZxN6ASZzY9dSVzpGv4y7lk21sYwraAfPzpvjL3y2olSX448mmp1cGDn5/pyWPuIVi7BBp0GSUQpEBHJBJ4DhgL7gauVUseFtYrIw8DFQKVSaoK/+3fHKJDQcc0DKzja3M6L35pDcnwvNvzyLbDkTp2tNLdQP2UfWg8/2BLSRIARySMX6ddb3+x5vdsFh9Zpr60hp2rPq5X3a3PHyAXhkzNQqovgsUv0BPBNr8KASbDnQ3jiMjjn1zD3P+yWMLJoOQpr/qVTwo++QKcJaqrV8ySjzrWsWFSg9KZA7PLCuhN4Xyk1Cnjf87knHgXOD2J/QxhJS4ztXXmAzgd08+twzZO6bvj+T2H6LSef8vAFh1MriyGn6s+H9+tXiwtGhYzsUXDLmxCbpBVJyTpY+kud2mPW7XZLF3nEp0L+TJ2dYMcbOtNAUiYULrRdeXjDLgVyKfCY5/1jwGU9baSU+gToKVeCT/sbIhARnTn2O6vhqke1OcvQN+mDYeoNISkYFTKyRugRVkIaPHwuVGyGBb+K6BuibYjAsNP1/FbFVvj4D5aliQkldimQPKVUGYDnNTfM+xvsJiZep70+2SfOfSU5Wz+9Rxv9hsItb0HGEO1dNuFKuyWKbIbO1fMd4rA0WWWoCFkciIi8B/TvYdXPQ3XMXuS4DbgNoKAgCv+ABkO0kzFYjziVO+yR81FJwSm6JLK3eKAIIWQKRCl1dm/rRKRCRAYopcpEZABQ6Wf3Pu+vlHoQeBD0JLqfxzH4yH9dEv6o6Kjm/N/bLUF4CUdp3xOJKFAeYJ8J6zXgZs/7m4FXw7y/wWLGD0w/cQoBhYMBk3QzGKIYuxTI3cA5IlIEnOP5jIgMFJG3OjcSkWeAFcAYESkRka95299gH8uKqllWVG23GNHDng91MxiiGFvGlUqpGuA4Z3alVClwYZfP1/mzv8E+/v5BEYBlVQlPeD75X/1qc4CYwRAMJhuvwWAwGALCKBCDwWAwBIRRIAaDwWAICKNADAaDwRAQxjnbYAm/u2Ki3SJEF5f81W4JDIagMQrEYAkjTuR61qEge5TdEhgMQWNMWAZLeG9bBe9tq7BbjOhh59u6GQxRjBmBGCzhoU/3AnB2YZ7NkkQJy/+hX8dcYK8cBkMQmBGIwWAwGALCKBCDwWAwBIRRIAaDwWAICKNADAaDwRAQZhLdYAl/uWaK3SJEF1c8YLcEBkPQGAVisISBGYl2ixBdpOfbLYHBEDTGhGWwhNc3lvL6xlK7xYgetrykm8EQxZgRiMESnlxZDMAlkwfaLEmUsOZh/TrhSnvlMBiCwIxADAaDwRAQRoEYDAaDISCMAjEYDAZDQBgFYjAYDIaAMJPoBku47yvT7RYhurj6cbslMBiCxigQgyVkJsfZLUJ0kZxltwQGQ9AYE5bBEl5Ye5AX1h60W4zo4fOndDMYohijQAyW8OK6El5cV2K3GNHDhqd1MxiiGKNADAaDwRAQtigQEckUkXdFpMjz2q+X7R4WkUoR2dJt+V0ickhENnjaheGR3GAwGAyd2DUCuRN4Xyk1Cnjf87knHgXO72XdX5RSUzztrRDIaDAYDAYv2KVALgUe87x/DLisp42UUp8AtWGSyWAwGAx+YJcbb55SqgxAKVUmIrkB9HGHiNwErAX+n1LqsKUSGvzi0Vtn2S1CdHHDC3ZLYDAETchGICLynohs6aFdakH39wEjgClAGfB/XuS4TUTWisjaqqoqCw5t6InEOCeJcU67xYge4pJ0MxiimJCNQJRSZ/e2TkQqRGSAZ/QxAKj0s++KLn09BLzhZdsHgQcBZsyYofw5jsF3nlixH4Ab5wy1VY6oYfVD+nXWN+yVw2AIArvmQF4Dbva8vxl41Z+dPUqnk8uBLb1tawgPb2wq441NZXaLET1sfUU3gyGKsUuB3A2cIyJFwDmez4jIQBH5wqNKRJ4BVgBjRKRERL7mWfVHEdksIpuA+cAPwiu+wWAwGGyZRFdK1QALelheClzY5fN1vex/Y+ikMxgMBoMvmEh0g8FgMASEUSAGg8FgCAhR6uRxTBKRemCn3XL4QTZQbbcQfmDkDS1G3tBi5O2dIUqpnO4LT7Z6IDuVUjPsFsJXRGStkTd0GHlDi5E3tESCvMaEZTAYDIaAMArEYDAYDAFxsimQB+0WwE+MvKHFyBtajLyhxXZ5T6pJdIPBYDBYx8k2AjEYDAaDRZzwCkRErhKRrSLiFpEZ3db9VER2i8hOETnPLhm9EQ3VF0XkfM93uFtEeisOFlGIyH5POpwNIrLWbnm601M1Tl8redpBL/JG7G9XRAaLyIcist1zf/gPz/KI/I69yGvrd3zCm7BEZBzgBh4AfqSUWutZXgg8A8wCBgLvAaOVUi67ZO0JEbkLaFBK/a/dsvSEiDiBXeicZiXAGuA6pdQ2WwXrAxHZD8xQSkWk37+IzAMagMeVUhM8y/4I1Cql7vYo6n5KqZ/YKWcnvch7FxH62/UkZB2glFovIqnAOnRhu1uIwO/Yi7xXY+N3fMKPQJRS25VSPQUPXgo8q5RqVUrtA3ajlYnBP2YBu5VSe5VSbcCz6O/WEAS9VOP0qZKnHURb9VClVJlSar3nfT2wHRhEhH7HXuS1lRNegXhhEHCwy+cSIuCC9MIdIrLJYyaIiCF1F6Lpe+yKApaKyDoRuc1uYXzkmEqeQCCVPMNNJP92ARCRocBUYBVR8B13kxds/I5PCAUSYPVD6WGZLfa8PuT3ufqiTUTM9+gnc5VS04ALgO94TDAGa4n03y4ikgK8BHxfKXXUbnn6ogd5bf2OT4hUJt6qH3qhBBjc5XM+UGqNRP7hq/x9VV+0iYj5Hv3BUzoApVSliCxGm+I+sVeqPgmqkme48adyqB2ISCz6ZvyUUuplz+KI/Y57ktfu7/iEGIEEyGvAtSISLyLDgFHAaptlOg6J/OqLa4BRIjJMROKAa9HfbcQiIsmeiUhEJBk4l8j7XnsiqEqe4SaSf7siIsC/ge1KqT93WRWR33Fv8tr9HZ8MXliXA38HcoAjwAal1HmedT8Hvgp0oIeEb9slZ2+IyBPo4akC9gO3d9poIwWP6+BfASfwsFLqt/ZK5B0RGQ4s9nyMAZ6ONJlFV+M8E51xtQL4FfAK8DxQABwArlJKRcTEdS/ynkmE/nZF5DTgU2Az2ksT4GfoeYWI+469yHsdNn7HJ7wCMRgMBkNoOJlNWAaDwWAIAqNADAaDwRAQRoEYDAaDISCMAjEYDAZDQBgFYjAYDIaAMArEYDAYDAFhFIjB4CMiktUlbXZ5lzTaDSLyzxAc71ER2Sci3wxw/w89ss3oe2uDwX9OiFQmBkM4UErVoIO2wpmq/MdKqRcD2VEpNV9EPrJYHoPhC8wIxGAIEhE5U0Te8Ly/S0QeE5GlootWXSEifxRdvGqJJ58RIjJdRD72ZAN+p1tKit6O86iI3CMiy0Vkr4gs8iwfICKfeEZDW0Tk9NCescGgMQrEYLCeEcBF6NoSTwIfKqUmAs3ARR4l8ndgkVJqOvAw4GsqlQHAacDFwN2eZdcD7yilpgCTgQ3WnIbB4B1jwjIYrOdtpVS7iGxG5wdb4lm+GRgKjAEmAO/qHHk40am4feEVpZQb2CYieZ5la4CHPYrpFaXUBkvOwmDoAzMCMRispxXAc6NvV18mnHOjH9oE2KqUmuJpE5VS5/rTtwfxHOcTYB5wCHhCRG6y4iQMhr4wCsRgCD87gRwRmQO6zoOIjA+0MxEZAlQqpR5Cp/yeZo2YBoN3jAnLYAgzSqk2zwT4PSKSjv4f/hXYGmCXZwI/FpF2oAEwIxBDWDDp3A2GCEVEHgXeCNSN19PHR8CPlFJrrZLLYOjEmLAMhsilDvifYAIJgeFAu6VSGQwezAjEYDAYDAFhRiAGg8FgCAijQAwGg8EQEEaBGAwGgyEgjAIxGAwGQ0AYBWIwGAyGgPj/A3J9XPBRrWMAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Make a figure showing the corrected beacons\n",
|
|
"fig, ax = plt.subplots(1,1, sharex=True)\n",
|
|
"ax.set_xlabel(\"Time [ns]\")\n",
|
|
"ax.set_ylabel(\"Amplitude [au]\")\n",
|
|
"ax.set_title(\n",
|
|
" \"Beacon delays [ns] $\\pm$ $k*{}$\\n$t_{{\\phi}}$ = {}\"\n",
|
|
" .format(1/f_beacon/ns, t_phi/ns)\n",
|
|
")\n",
|
|
"\n",
|
|
"for i, _ in enumerate(beacons):\n",
|
|
" l = ax.plot(\n",
|
|
" time/ns, beacons[i],\n",
|
|
" label=\"ch {}\".format(i), \n",
|
|
" ls ='--', \n",
|
|
" alpha=0.5\n",
|
|
" )\n",
|
|
" \n",
|
|
" # indicate start of uncorrected beacons\n",
|
|
" ax.axvline(\n",
|
|
" t_phi[i]/ns,\n",
|
|
" color=l[0].get_color(),\n",
|
|
" ls = '--'\n",
|
|
" )\n",
|
|
" \n",
|
|
" ax.plot(\n",
|
|
" (time-t_phi[i])/ns,\n",
|
|
" beacons[i],\n",
|
|
" label='ch {} corrected'.format(i),\n",
|
|
" color=l[0].get_color(),\n",
|
|
" ls=(5*i+2, (20, 20))\n",
|
|
" )\n",
|
|
" \n",
|
|
"ax.legend(ncol=2)\n",
|
|
"ax.margins(y=0.3)\n",
|
|
"if True:\n",
|
|
" ax.set_xlim(time[0]/ns - 10, time[2*samplerate//f_beacon]/ns)\n",
|
|
"\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### 1.1.2 Beacon Synced traces"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEWCAYAAABi/I8SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACDpklEQVR4nOzdd1hUV/7H8feZofcOigoqAnbs3agxppnEVJNN2WRTNhuzm7Itu9ndZDdlSzZ1TftlU002zTRNs0XssaMUAVFUrCBIrzNzfn/coSkgyMAAfl/Pw6Ncpny43Hvme88991yltUYIIYQQQoiexOTsAEIIIYQQQjiaFLlCCCGEEKLHkSJXCCGEEEL0OFLkCiGEEEKIHkeKXCGEEEII0eNIkSuEEEIIIXocKXKFEKKHUEo9rpR6v5Pea5pSKqMDXveAUmq2o19XCHH+kSJXCOF09sKmQilVqpQ6pZT6RinV19m5RPO01uu01nHOziGEEM2RIlcI0VVcobX2AXoBJ4D/ODlPj6aUcnF2BiGE6EhS5AohuhStdSWwGBhSu0wp5a6U+rdS6pBS6oRS6jWllKf9Z4FKqa+VUnn2XuCvlVJ9Gjw3SCn1tlLqqP3nXzb42d1KqSylVIFSaolSqneDn2ml1L1Kqb32572slFL2n8UopdYopYqUUieVUh839bsopTyUUu8rpfKVUoVKqa1KqXCl1PVKqe2nPfbXtdmUUu/Y3+8bpVSJUmqzUmpgg8cOVUqtsOc+oZT6Y4OXclNKvWd/XqpSamyD5x1QSv1eKbUbKFNKuSilrrQ/rlAplaiUGnza43+jlNpt/10/Vkp52H82Qyl1uMFjf6+UOmJ/3wyl1IX25Sal1CNKqX329fCJUiqowfNuVUodtP/s0ea2CyGEaCspcoUQXYpSyguYD/zYYPE/gVggAYgBIoG/2H9mAt4GooB+QAWwsMFzFwFewFAgDHje/j6zgL8DN2D0Hh8EPjotzlxgHDDS/riL7cufAJYDgUAfmu91/ingD/QFgoF77fmWAP0bFpTALfastW4C/mp/jyzgKXtuX2Al8D3Q274+VjV43pX23yPA/j4N10Xt615u//kA4EPgQSAU+BZYqpRya/D4G4BLgP7ACOD2039JpVQccD8wTmvti7GeDth//CtgHnCBPe8p4GX784YArwK32n8WjLE+hRCi3aTIFUJ0FV8qpQqBYuAi4BkAe+/p3cBDWusCrXUJ8DRwI4DWOl9r/ZnWutz+s6cwCiqUUr2AS4F7tdantNY1Wus19ve7GXhLa71Da10F/AGYpJSKbpDpH1rrQq31IWA1RpENUINRVPfWWldqrdc38zvVYBRuMVprq9Z6u9a62P5+H2MUtiilhgLRwNcNnvu51nqL1toCfNDgvecCx7XWz9rfu0RrvbnB89Zrrb/VWlsxiuaRp2V6SWudo7WuwDiY+EZrvUJrXQP8G/AEJp/2+KNa6wJgaYMcDVkBd2CIUspVa31Aa73P/rOfA49qrQ/bf+/HgevswyWuA77WWq+1/+zPgK2ZdSmEEG0iRa4QoquYp7UOwCiW7gfWKKUiMHoYvYDt9lPqhRi9mKFg9PwqpV63n/IuBtYCAUopM0YPaoHW+lQT79cbo/cWAK11KZCP0Utc63iD/5cDPvb//w5QwBb7qf6fNfM7LQKWAR/Zh0v8Synlav/Zu8BP7EX8rcAn9kLvbO/dF9hH805/nodqPP42p8H/T18HNvvPW7MO6mitszB6gx8HcpVSHzUY+hEFfNHgb7cHoygOt79/ToPXKcP4GwghRLtJkSuE6FLsPZ6fYxRCU4GTGKf4h2qtA+xf/vaL1AB+DcQBE7TWfsB0+3KFUUAFKaUCmniroxgFmPFgpbwxel2PtCLjca313Vrr3hg9la8opWKaeFyN1vqvWushGL2jc4Hb7D/7EagGpgE/ofFQhZbkAAPP+qgW4jf4/+nrQGEU0WddB2e8qNb/01pPtb+exhhiAkbeSxv87QK01h5a6yPAMfv71b6/F8bfQAgh2k2KXCFEl6IMV2GMRd1j7118A3heKRVmf0ykUqp2fKwvRhFcaL+g6bHa19JaHwO+wyhCA5VSrkqp2iL4f8AdSqkEpZQ7xhCIzVrrA63IeL2qv7jtFEZRZ23icTOVUsPtvcrFGMMXGj7uPYwxs5YWhjyc7msgQin1oDIuyPNVSk1o5XNP9wlwuVLqQnsP86+BKmBjW15EKRWnlJplX4+VGH+P2t/zNeAppVSU/bGh9r8vGBcYzlVKTbWPA/4b8rkkhHAQaUyEEF3FUqVUKUYx+BTwU611qv1nv8e4+OpH+5CElRi9twAvYIwjPYlxsdr3p73urRjFZTqQi3FaHa31KowxoJ9h9CgOxD7OtxXGAZvteZcAD2its5t4XARGIVeMcZp+DdDwZg2LgGG0vhcX+7jji4ArMIYS7AVmtvb5p71WBsa44P9grL8rMKZyq27jS7kD/7C/xnGMC/xqZ3x4EWMdLVdKlWD8jSbY3z8VWIBxwHEM44DhMEII4QBKa332RwkhhHA4ZUyDlguM1lrvdXYeIYToSaQnVwghnOcXwFYpcIUQwvHkjjdCCOEESqkDGBfHzXNuEiGE6JlkuIIQQgghhOhxZLiCEEIIIYTocTpkuEJISIiOjo7uiJfulkpL9wDg4zP4LI90rsrKSgA8PDycnKRlktOxWspZXp4BgJdX3Bk/62w9YX12Nd0lq+R0LMnpWJLT+bZv335Sax16+vIOKXKjo6PZtm1bR7x0t7RxozGF5eTJm8/ySOfKzMwEIDY21slJWiY5HaulnDt3zgBg1KjETkzUtJ6wPrua7pJVcjqW5HQsyel8SqmDTS2X4QpCiGbZtCa/tIrKmjPucyCEEEJ0aVLkCiEAuP/++4mKimq07FBBOVl5pfzz+3QnpRJCCCHOTYfMrjB27FgtwxWE6D6ys7O54ooryM/PJzMzE19fX9Zk5rEnZRZuZhN/2/Q0H9w1gSkxIc6OKoQQQjSilNqutR57+nLpyRVC8Nhjj/GnP/2JIUOGkJqaSmF5Nb9bvAtPVzPD+wQwIMSb33y6i6KKGmdHFUIIIVpFilwhznOpqamkpKQwf/58Bg8eTGpqKn/5KpX80moGhvngYlI8Nz+B3JIq/ro01dlxhRBCiFaRO551ApldwbEkp2M98MAD3HvvvSilGDx4MEtW/8iuPhH8dKgH//77PkpLLaxcGcCCmTG8tGovc4aEc8mwXp2es7usz+6SE7pPVsnpWJLTsSRn1yVFrhDnsc2bN7N+/XrS09N5+umnKa+opMInklkP386ffzKJ5GFx/Pa3Ru/tL2fF8EP6Cf7weTKjowIJ8+15cy0KIYToOc5puIJS6v8cHUQI0fn++Mc/8vrrr/PDDz+QnZ3NBY+8TUXuAZ6/YSQu5sbNg6vZxPM3JFBWbeUPnyUjtwQXQgjRlTVb5Cqlgpr5CgYu68SMQogOsGLFCqqqqpg0aRIAH2w+xNYTNtx0DQHm6iafMyjcl99fEs+q9Fw+2ZbTmXGFEEKINmlpuEIecBBQDZZp+/dhHRmqpwkLu9XZEVolODjY2RFaRXI6xkUXXcRFF11Efn4+J0uqeOKrbZjXvs7Sr77k66+/JikpiUOHMsnIKOXvf/87f/jDHwC4Y3I0K9KO87elacwZEkGgt1un5O3q67NWd8kJ3Ser5HQsyelYkrPranaeXKXUXuBCrfWhJn6Wo7Xu29yLyjy5QnQvn2zN4bef7mTc4c/46tP/4ePjw1NPPcWkSZ8AZ97Wd1dOIVe9vIHn54/k6lF9nJBYCCGEMJzLPLkvAIHN/Oxfjgglzi+vv/46vXr1IiEhgZiYGObNm0d1ddOnxTvCG2+8QUJCAgkJCZhMprr/P/zww52Woav6bsdeDr8wn2+++IShQ4cSHh7OL3/5S66/fmuTjx8e6U+Ijzur0/M6OakQQgjROs0OV9Bav9zCz/7TMXF6pqyshQDExNzv5CQty8/PBzrulMbu3bt5+umnueOOO7DZbMTGxrJ7927Gjj3j4KtF55rz7rvv5u677+bIkSNMnjyZpKSkNj2/rTp6fTrK8dw8Nu49ycSrbmX/+qUUFhZSVlbG0KFDufHGpm/+YDIpZsSFsiLtBFabxmxSTT7OkbrL+uwuOaH7ZJWcjiU5HUtydl1yM4hOkJu7iNzcRc6OcVb5+fl1O0FHSE5OZtSoUQBkZWWhtT6n+fqaynn99ddz//33M3XqVKKioli/fj233XYbsbGx3HnnnY0em5KSwvDhw8/9F2lHzq5oze79lBYX8sgf/oi/vz9ubm64uroybtw4Lr00vNnnzYwLo6iihqScU52Ss7usz+6SE7pPVsnpWJLTsSRn1yXz5IpOk5qaym233UZNTQ2HDx/mm2++wc/Pr8XnTJs2jZKSkkbLqqqq+P3vf9+oQE5OTmbSpEksXLiQv/zlL9x5550kJiYSHBxMeHg4r7zyCu7u7nWPHTZsmON/wW5qS3YBLibFzKF9WLJkCYMGDcJisXD48GEKC+9o9nlTB4VgNilWp+cxJiqoExMLIYQQZydFrugUOTk5hIWFsXv3bgDee+89nnjiCV5//XWeeuopioqKWLx48RnPW7du3RnLau/aUquyspLCwkIefPBBADw9Pbnzzjvp1cu4K5eXlxdubvUzAKSkpHDRRRc56lfr9n7cn8+IPv74uLvUHTi4urrSv39/du5s/nn+nq6MiQpkdUYuv7k4rpPSCiGEEK3TquEKSqlApdR4pdT02q+ODiZ6lt27dzNkyJC670eOHElubi4DBgzgzTffbPZ506ZNq7tArPbrqquuYuPGjXWPSU1NZfTo0ZhMxua8a9cuJkwwbqV8+PBhevfujVL1Y0alJ7fe4VPlHMgvZ8KAcxujNTMujNSjxZwornRwMiGEEKJ9ztqTq5S6C3gA6AMkAROBTcCsDk3Wg0yevNnZEVqlI+9nnZyczODBgwHQWvPuu+8ye/bssz6vqZ7cpl575MiRdd/v3r2bESNGAEbBW/t/AJvNxt69e4mPj2/rr9Bm3eH+4IkZebgGRXLj7Ann9PyZ8aH88/t01mTkccO4ZmcVdIjusD6h++SE7pNVcjqW5HQsydl1taYn9wFgHHBQaz0TGIVxowghWi05OZl33nmHUaNGMWbMGCorK3niiScc9toJCQmAMXShoqKCwEBj9ruGBS8YF7z16dOnbnzu+S4xI5e+QZ4MDPU+p+fHhfvSy9+D1Rm5Dk4mhBBCtE9rxuRWaq0rlVIopdy11ulKKRmA1065ubl4eHic9cKrnuKDDz5ocnl+fj6PPvooO3fubHRXrbZ49tln6/7v4eFBdnZ23fenv15sbCxpaWltfo+eoqKigoKCAiIjI6mssbIhK5/rx/ZpNJyjLZRSzIgLY+muo1RbbLi5yIQtQgghuobWfCIdVkoFAF8CK5RSXwFHOzJUT7Nx4wQ2bjROBx85coRf/epXxMfHs2XLFicnaywzM/OMi7o6WnBwMK+99hr79u1rdYHrjJznoivmzMzMJCEhgdtvv53PErdRUWMlxr2kXTlnxoVSWmVh28ECByY9U1dcn03pLjmh+2SVnI4lOR1LcnZdZ+3J1Vpfbf/v40qp1YA/8H2HpuqBDh+u5JprrmHlypVceuml/Pe//8XFxYXExERnR6uTk5MDwNGjXfsYRnK2z9tvv81nn33GnfNmY46IxWPMH4Bznxx8SkwIrmZFYkYekweGOC6oEEII0Q6tmkJMKWUGwoHa88ARwKGOCtUTff/9Sb78MpnQ0FBycnJ46aWXnB3pDBUVFYAxBVdXJjnbz2KxoF09KN+/g48/+pCEkSPO/qRmeLu7MKF/MKvTc/njZYMdmFIIIYQ4d62ZXeGXwGPACcBmX6yBc/9UPA/ddVcfnnxyK//85z95//33ueOOO3j00UfrLpDqCmpPY3T1KzAl57mrqKjgmWee4cWXXsK17yiefONRrhrZu92vOyMulCe/2UNOQTl9g7wckFQIIYRon9bOrhCntR6qtR5u/5ICtw3Cwm4lLOxWevfuzYsvvkhycjJaa3a2NNO+EwQHB3eLe1pLznOXmZnJsWPH+M3CTwm5/EHmzxrvkJwz48MASMzsuIlXuuL6bEp3yQndJ6vkdCzJ6ViSs+tSWuuWH2CMw71Ia21p7YuOHTtWb9u2rb3ZhBAd5NY3N3O0sIJVv57R4uN27jR+PmpUYouP01pzwTOJDArz4c3bxzkmpBBCCNEKSqntWuuxpy9vzZjc/UCiUuoboKp2odb6OQfmE0J0kvJqC5v3F3DbpCiHvaZSiplxoXy8LYfKGisermaHvbYQQghxLlozXOEQsAJwA3wbfIlWyspaSFbWQmfHOKv8/Hzy8/OdHeOsJGf7bMzKp9pqqxti4KicM+PDqKyxsTm7Y6YS66rr83TdJSd0n6yS07Ekp2NJzq6rNVOI/bUzgvRkubmLAIiJud/JSVpWu/F39TE7Z8tZVmXh/9buJ/14MS4mEy5mhYvJhKtZ4WJWzIgNY/aQcKfndJbVGbl4u5kZFx0EOC7nxAHBeLiaWJ2eywWxoe3Oebquuj5P9+WP6Ww7UIBfeBQWm8Zis2GxamqsNob29ufu6f3xcmvVxDYdrrusU8npWJLTsSRn19Wa2RVigd8A0Q0fr7We1XGxhGg7rTXfJB/jqW/2cKyokkFhPti0xmrT1FiNYqO82sr7Px5iXkJvHr9yKAFebs6O3am01iRm5DF1UIjD707m4Wpm8sAQVmfk8jhDHfra3UFBWTV/+SqFLxJT8XE3E1jkhdmkcDUrzCaFUorlaSf4eOsh/jx3CJcMizjnO80JIYQ4u9Z0J3wKvAb8F7B2bBwhzk3miRIe+yqVTfvzGdrbj4U/GcWYqKAzHldjtfHK6n3854e9bNiXzz+uGc6Fgzu+V7eryDxRypHCCu6fFdMhrz8zLpQf0nPZn1fKgFCfDnmPrmhZ6nEe/SKZoooa7pzanxvH9WXI4PgzHrclu4C/fJXCLz7YwdSYEB6/cigxYefPehJCiM7Umq4ci9b6Va31Fq319tqvDk/WRe04dIq0o8UUlFVztpkp2ixnC6x71vi3K+tCOUsqa3jy6zQue3EdaceKeWLeMJbcP5UxpqwmM7oe3cYD7ktYfr0Hwd5u3PnuNn79yS6KKmo6P3xz67ED1+8P6bkAzIwLa90TqkqgKKfVGWfYX7f2fTqNE9YlQGF5NQ9+tJOfL9pOmK8HS+6fyi0To3AxN920ju8fxNe/nMrjVwxh1+FCLnlhLe99/AlVq5/pEvtTs7rQPt+sdmbUWpNfWkXa0WKycksd377XctK22iaS0TG6Q8aWdJecLWjNFGKPA7nAFzSeXaHZq0t68hRi0/+1mkMF5QC4mU2E+bkT7udBhJ8HEwYEMXdEb4K8W3EKPGcL7F8Dfr3AUgV7l0Hmcoz7bCgYPBfir4C+46A0Dw6uh+hp0Hd8h/5+Z2Q8sA6ipoJnAOxPhNQv4NAm4+fKBEOvhgEzIDTeKIiOJXVazrWZefz+s90cL67kxnF9+e2cOILKs2Hzq7D9XUAbGaOmQvhQsNbAznfBZgWzOzW3fMlLmYG8kriPUB93nr1hJFNiHHtb2qOFFfznh71s2pfPrPhwrhvThyG9fCHpA1j6ANgsRsY+48GvN1SXQtYq0DZwcYefLnXourzhtU2UVVv45lfTzv7gQ5vZuWMqoBm1yw/6TwN3XyjJhSNbjYwmV7h5MQycUfe0Oc+vIdTXnQ/umuiw3C06uAneu9L4+5rMEHMhxRU1VOXuI7jqIArA5Iq65XMYMN1hb7s2M4/ffLqLgrJq7p8Vw4KZMbg2U9wCcGAD7FkC3sZ45crjGZzK2kpEVTYo0MqMafZfYdzPwM27fv/rzP2+9j17jzK2yyPbje3x4Abj58oEI2+EIVdDn7GQn9X5GRvm7DvB+D7pf7DrQ2ObRBnbatQUCI0DSzUUHjTaKXvGk6VVfL3rKFsOFHCiuIrjRZXklVRRbbXVvUWglytjo4MYHx3EuP5BDO3t1/LftyXWGjiwHra9CXu+pq5tGnih0TZZqmHbf+1tkxv8dEnnrs9alirY9DL88ISxLpUJ+k0y2qaqEshaAbaOaZvOptpi41BBOdkny6jMXM2luxZg1hY0Jk6GjMPdOwDvmnxcju0wspvd4LYlEDWp0zI2krMF3r3CWKcmMwy+CkwmY585mgRoMLnA5c/B6NvAmUOXslbBnqXgFQzaamQ8ttvYb8DIecWLMPIncGRbs/u81tppQ7Cam0KsNUVudhOLtdZ6QHPP6clFblJOIUcLKzhRXMnx4kpy7Q3k4cJycgoqcDEpZsSFMm9UJLMHh585lZLNCuv+DYn/sDfIdq5eUFNe/73ZDazVjZ9rdofbv+6chqWucDgtg0cAVBbWf29yMQq1hjo4Z0llDU9/u4cPt+RwReAh/hyVQphbjfGBnJ915hO8gsBSA9UljZePvRPmPsfuw4U89HES+0+W8fDsWBbMjMFkat+OerK0ildW7+P9zQdJIJNrgrJZUxBIf32EG9030s+WU3s4Y/AJB3c/KD0BVcX1LxQ+HC5/1liX7Ww8CsurGf3EChbMjOHXc+Kaf2B5gVGEr3uOnXE5AIxK8gbPIPCNgIoCKDle/3iTCwy7FkbeBC4eJK74ipezI3jrzwvw9XBtV+YWVRTCjvdg7b+hqggwDhHL8STbFo43lUSbjtetY4tywRp7Ge7DrzZ+l6Pbz6k4s9o0L63ay0s/7GVQmA/P3ZDAsEj/5p9QWQQrH4dtbzVe7tsbzG7owgMoQGvjT6zNbqiwIXAixf5h7d45RU/WKvjfDWfuz55Bxt+8jsJY07X/p3OLnqyV8L8bwdbw7EvDTNjbqaJGy7TJhc3jXuT/TsSxJjMPq03TL8iLyABPIvw9CPfzINzPnQg/D0qqLGzNLmDLgQIO5hvtspebMeb82tGRzBochrvLWabJ278Wdi6CilNweKvRbppcG+d29zfa/dN/l6kPwuzHz2XttE3OFsheZ7SRx3dDyueN23cA7zDjoKvsZOM2NHo6XP0a+Ed2SLTKGisbsk6yPPUEP2bnk1NQziAO8RPzKuabV+OhjO1UayjQvuQSSAAlRJhO1e3zNjc/TBPuNoqzioLOOyDLy4Qv7jXamFomV+NgwWaB4iONH+/XBwZfASGDjO2l//TO2ZfyMmD5n2Dv8vplygxBA4zG6OReGu1X7v5GR0yDThjdZxzJR4r4fMcRVqSdYNlD0/Fx7/wLa8+5yD0XPbnIbcmeY8V8ufMIXyYd4URxFb7uLlw6PILLhvdiUn9/3Pd8YXT9n8xs8CwTTL4f4ufCe1cZRaXZDW79wug1S3wa0r+pe3SVbz92JDzBTtNQck5VUFZlZUhvP4ZH+jOstz/+Xu0sKmxWo7f2u99D+cn65fFzYc6TUJYH717ZOKdvOBUrn8YjbTHKvkPkuUTwVsCv2KhHUGXVjIkKZGZcGJNjgtt1Zfn6vSeN3tuiMt4asI7pR/6v7j3pPQoSbjYaksV31mesLRD2JcKHNxi9JrXP6TsBJi2gwi2Ylcu+5O3DkfjHTuH5+QnndFFaUUUNb6zdz1sbsqmssfJw/CkWHHwIZauuK2pTXYawtnIAd5iX4aqsmFzcUbUZc7bUr1+FUeDUlEP4MIi5EFw8jX/PoQH8KukID3yUxOf3TWZ0v9NuJ601bH/bKMRy040P3bCh7Oy9FYBRKcH167FhRpMLxMw2eqmqisD+16jSLuyc+R6TZlzW5pwtytkCaV9BYY5R7NSUoSOGYz2RDjYrNbjwl4CnGTHxIuaFHMH342vR1mosmFhlGclY015CVJH9b6HaXJwVlFXzwEc7Wbf3JNeMjuSpecPxdDut2KntZQwbYpz12PpW4+JAmWD672DmH+rWpZHRhaerbyDWs5hrXTbgVlm7/ymY8gBc1PqJbsqqLGzcl8/qjFx2HDyFu4sJXw9X/Dxd8HV3xdfDhQh/D65M6E2YqQx+fBk2LgRr7ck6ZexLFz9pfNA13Odv+sjomVr/HOz7of5NI8fC9W9DQL9WZSwqryH5SBHJR4rYc6wYb3cX+gV50S/Ii6hgL/oGeeHv2aA9qzgFm16BDS82zjniBhgxHz66ufE+HzEcy7I/Y972XxQarcGKia/NF3J8+M+ZOWkicRFnnw0zt7iSLQcK2JJdwLLU45worsLPw4W5I3tzzahIxkQFNu69qiyCZY8aBW6tmItgzO3Ggez/bmicM3IsVRkrcP30FpTN6FTQyszJ/leSHzoRz8o8QoZdiM+gya1ar622LxE+uLb+oMbsBoOvNNrRH55slFH3GUd++noCF1+HqbZtsvf0WmIuwdR/GmZLebuLs6LyGn7IOMHy1BOsycyjvNrKDPdM7vddTZTtCKHlWdjM7lj7TsE1ZwPYLGizG0eu/Ig0czzl+zZy2c57MekabNpEsi2aBPN+zNjQxh4PLh7tOmjUWlNebaWk0kJxZQ0llTUUV1jwOLaVwce/xK90P6Yj24yiVtsAbV+PS89sP82uMPlXxgHt3hX1BzsmV7jtK4ie0uZ8NVYbqUeLOVVejYtJ2S9+NWE2KfzydtC7cDte/uGQtRzSv7Z3VFmNnMoMM/4AF/y2iZwPQOa3cDzZWA/AgaDp3FfzK/bkVePmYuKiweE8evlgegd4ntO6bY/29OR6AQ8D/bTW9yilBmHc5vfr5p5zvha5taw2zaZ9+Xyx8wh5KT9w47DH8VaVXJDqQZFfHG4jrsHzxxfOLMIanJ7MDxxJUk4hx1PXcl3qAsy6Bq0VJXgSpErZYotjjXkyvqZqlpcPYoeOBSAq2Ithkf5MHBDMNaMi8W7NEVXOFsheS+bBY7B3ObGmQxAYDcVHmz591iBnErG8vSGbo8lreM/lKVyxoJWiBB+CKOKAawzbPKdyuLCCtTWDSTHFM2FAEDPjwrggLpQBId6tOr2RV1LFCysz+d/mA1xes5p7PFYywvVg/QOUGWY9CtN+fUbGRo1Z3enYMXAyA358BU4doLY4s5rcuKn6jxz1GcGrt4xmRJ+As68/oLiyhnc2HODN9dkUVdQwd3gEN7pvImzbs8R61PaCKZh0P1z8JHuOFZO46htK9qxmyOTLmHv5vDMzRk8zCqXkT2HDS3Bqv/Fzkwv85BOj2G2DBz/aydq9J9n66GzMtT3VWpO56j1Y/yKx7Ktfl/NegZE3svPHMVBZyKiBHza9HmvXb00lfHUfpHxmvCyw32skAxd8Ad6Oma4m87N/QuJTxAbbs8dcBBf+mf/b68P33y3hF9HHiJ1wGVEJM5rMmeU+mOeX72Fy+t+5yeUHTPacqu9EmL8IfFoep7zz0CkWfLCDk2XV/PXKodw4ru+Z227OFjKfvQSs1cQGmwFlDOmJmQ3f/PrMff60jFutMfz2010EFSTxscfTuOgaY8s0ucDYn8HUh6Do8BnbttaafXllJGbkkpiRx5bsAqqtNnzcXRgTFYjGOANSUmmhpLKGARVpTLFtw3zqINPMqQwNtqCipxpZbJYWMzZaVvshWEspSPiJcRq+YF+jx5dWWfh8x2E27y8g+UhR3bAvgMgATyprrOSXNT5zdIHnfub57sGl8DADSzYzxL/SeM2mctozlkRMZEVJFCvSTlCUuYE31RNGu2RyobjPDIKOrkHZaozXCY2D4de3uuCx2jQb953k8x1H+D7lOBU1VqKCvZgRG8qIUBO9dr9O8N5PiPNtcFauQdtks2mKszZQlLaaXS7DWF3W3xgDnFfKSJ3BRNMesnUE403p3Gj+AU9Vg9ZQjQuP+P4d/9gpTOgfxPj+QQT7uLcq8xmqy8hc/BRsfYNY/9r1bTIKm5l/BODknnXkpaxiG0NZXtyPtKPF5JdVM1plMtG0hx9tg8klgJvNq/iJeRX+qhwNWHBh8bBX8I2dRnyEL9HB3s2OT7faNFm5pezKKSTpcCG7cgpJP16C1aYJ83XnssEBzDrwH8KzPyOudl8afzdc8IjRprTQxuvsdeT4j2FJfiRbU/Zwe96/mWHaZZwpAfaHXsjJi19lWN/gZj8jtdbkllSRfryEjOPF9n9LyMotpcpSfxbWBQs3Fr7DLS4riQ8xoTUs97iYbTH3M9a3kJGWZMKGz8YUNaFRxjOyr/47rPkndR0w7v4w52/Gwaa5+c6ryhoru3IK2ZJdwObsArYfPEVFzZlzBIxWmfyt5K+4YiEuxEyF8iIp8iZcosYzZvMDKGsNqpn9XkdN5bDPcI4kJzJmze2YbNVG7a40+aZgsuN/TvzICfjkntvZMUdoT5H7MbAduE1rPUwp5Qls0lonNPec873IBYxxtIlPobe9w6ahJWhge9q9PF9xCWaTmfm9jjFOp5HlncAhr2GYTQqTUlRarKQcKao7RWY2Ka4OOcxsryyqIifh2W80I3K/Imzni5jsPa3a5EryzLdZZxlMypEidh8u4khhBf6ertwysR8/nRxNmK9H0zn3r4H3rwVbDZn5VvCNJPbmfxjjh5oZe1NjtfF9ynHe3pDNjkOF+Li7cMPYvtzdP49ep7YZj++VALs/hsS/Q/ERNKCVCx/GPMtbx6PZl1cGQLC3G6P6BTImyvga0ccfdxcTh09VsCW7gK32HpSA/J3c4rKCGZ4HOXnsIAREEzvrFtjwQtOFQ2vZrMZppeRP6hYV957KDfn3sL/Ujb9cMYSbJ/RrthAvqqgtbvcTU5XGzeGHmBwXQa9D35KZsh28Q4n1KqkfI9Ygo9aa29/eytYDBSx/aDp9Ar2az7n2WVj9ZP0QF7M7TP4lTLyvVUWk1aYZ8+QKZsWH8dykauMUpYs7pH1J5q4fwdWbWL8q6o7m7R/Krb2tL9Co6LFqjcKGcvVGTbgH+k2BE7vb3gBqbfQWrn+ezO1Ghthgc13Gg0Pu5eIX1jI1JpQ3bhvTqgOmfTt+oM/SGzHbakCBCY1y8UANvhwCoiD2kkYZtda8t+kgT36TRrifB6/ePIbhfU4bnqC1MW7164fIzNhjz+kCkxbAxU/Vr59WnC6tqLbyr2Xp7Nq0nIlqD2W+0VzulcbYU9+hlEJhQ2uNzeTGlyNe5bvCvuw4VEiBvUAcFObDzPgwZsSFMjYq6Myp4na+D0t+hdZWMvOtbNfxvOV7NwH9hvPw4EImqDTMA1rZI9fwd/LrbfSybnu7vkfK7E7BdZ/xfwdC+WDzQUoqLfQJ9GREH3+GRfozIjKAYZF+dWdNSipryCmo4FBBOSpjKbOTf48JK3vzreywDuRt/3upDh7M3MAc4qt2s9dzJPs9hmLVGptNk19azfZDp+oKpQsHh3Nd2FFGWJJxHWj/nUpOGKdoa/d5ZYILHzP2J1Pr79RXVmXh+5TjZG5ayrTc/zFC7eV4QSmbbEM52e9ifln5GmZdg0W58gefJ1lfOYCCsmostvrP3Ag/D4b09mNILz9iI3zxdXfBbFK4mBRRu1+g9+6FdWeqTpmC+JvlFpZUj8OKmdhwH+YMieCSYREM7e3X8rafs8XYj8ryIPVLMnNOQPhwYvW+uoOFY/M+5qv8PnyXcpxdOYUAuJoVg8J8GRbpx7BIf4b08sPD1UyxvfeypLKG/mmvMHr/q5jsOfO1L0/U3MpS2yRMZhd83F3wdDXj4WY2/nU1o7Um/XgJ5dVGMebr4cK1oUe50DOT8KFTibFmY9r4EpkHjwKN9/m6jow2yEtbR+Dia43iDGOfz7aFs9B6NTogmrGmdHaahpGkY6mosVJZY6O82lKXDyDcz524CD/iwn0I8XEn0M3CkONfEbP3bQ7lGMPP4oLNWDHxqe9PebrkUoorLXV/50uGGX+rcdFB9Z0Mp/+N6s6QmSGwv9ERE9APhl1nDGkccAH0HU9eSRXL047zfcpxNmcXUG0vuuMjfJnQP4gJA4KJ8PfAatNYqysJ3vcFUUn/5sDRPABigl14330+fy25CqtN1x28JLsO56jvcEJ83AnxccfP04X9eWWkHSumxP67jDXv5XLffXgNuoAZA30J3/4c5PyIU4YuNdCeIneb1nqsUmqn1nqUfdkurfXI5p5zXha5tWObPAPg4EbjlKq9od84tBRQTAz/J0nRP2Nl2gk2ZJ2kvNqKVdtPo9mM+VzNJsXgXr6M6hfI6H6BDI/0P/N0KMCaf8Hqp6k76nPxMHp6xtwBlYUcSVrO+8f78dr+YFxNJq4eFckvYwvoU7TdKDi0BZI+NBp6e09MZr6Gib8g9uZ/NvkrFlfW8OHmQ7yz8QDHiiqJDvbi9snRXDe2b/NjcNb+G354Cqgtztxg7M/ICxrNkX2prK2O48uTkew/aRS9LiZFoLcbeSVVKGxM8TjAL71WMb58tX0XUmT2/xlMuJvY+MGOuTinrnGxnwLVNrSrF997XMpnJ6MY7n6M/JDxuPefyLBIf4b29iPY2513Nh7grQ3ZlFTW8GjfFO7MfwZT7ak/nwgyY+6CuMuI9SlrNuPhU+XMeX4t4/sH8fbt45r/oDp9iECfccbFiK7eEH+ZMW5uyFXQb0KTT992oIDrXtvER7NKmLj5l/W9b97hZA64HQKjid348BkHDG0qcmtzHljHmuo4/rbyKIsHryNw/xL7D5XRI3HzZ2e/AOzgJtj6X+NCxvws8O1Npt9USP2c2EDj9J++7StuWa7ZlVPEioen08u/DafIcrZwbNcK3j7ch+UHa3jSfRFTSLLHNJEx6B6+9rqabbma1KNGA39hfBjP3ZBQPySo9uJRmwUyv4Nju8Ddj8xjJaA1seGe7TotuudYMWsy8+oO9vyrjvGyy4uMMO+vG8O7wjaGV/wfZFBUFKOjApkaE0LfoAYHS7X7R5/xRg/w1v8aB692mflQNe7nbBnwC97deIBDBeVEBnhyx5Ro5o/re25jqlc+DutfgLqix4+F1nkUx17LPUMsxFXsav4MS+RY4wzSrv9B9tq6H2fka44NvoM9Q37FzkOn2HO8GJvN6AQwOgjApBRe7i5MjQnmoiERjIj0b35s/bpnjXZJN+jxCuwPE38BIXFnH69dXWacXt72FmSvAUArE0vD7med62TyzMG4HNnGWFLZ751AfmACwT5udcXDoHAfBvfyI6Sl3thGQ5dMxrj94sNU+kaxx386e4vg4/yBbLfF0i/Iq66ISugTUP97W6pg+zuw7I/1wxIix5AZex9VIUPxqDhKXsoqFudH83meMbZ2RB9/LhkWwbSYUGIjfM4+9rhR22TC5tsbU+FBSr36khwwkyorpHhNJN11MJX2AtJisxEf4cfIvv6M7BNAdHkKpkVXNh5K1n86md4TYP0LxAae2UnQZg0upC4uOIZK/Ae+hXuMDhgUVlx4MfJZjvqNrCvI+wZ6EhfhR3yEL4G1F5RnrYKN/4EjO4whWv0mkek5Dja/2iin7jOOw6cq2HqggO9TjrMmM48qi40QHzfmDI3goiHhDI/0b7wNNPw86zPOGCu77FHI32vvKDLzjs/d/P3kZGq0C9HBXlw4OLyud79uiF3OFsj83rhIOPM7Y+hh0AAy9x0Am62ubaqMGEPmiRL2HCvmeFEVJ0uryC+r4mRJNSdLqyiqqKFfsBdDe/sxpJfx2RcX4dv4WiOt4av7Iel94/t2HIy0R3uK3I3AhcAGrfVopdRA4EOtdbNbWo8ucne8B4c2Q0gM+PeFmgrI3QNbXq9vRFy9YcxPjQb7qwVsjDsJSjF5wgbHHd2cftQXNdm4ettWYzSI2jjFeWr0fSzPC+Tw/nTuNy3GVVlQKKN3wM0XoicbY7NsFjJPmeDq14i94LrGb1VQztsbDvDx1kOUVVuZNCCYO6f2Z1Z82Nkv0Dq9OIueaszSUPvhYjLDqNsoDR5OVrkXR48eIjB/F708qoksTca17Lj997EXycpM5qB7YOzPiI2Ndcy6rM1Z27i4+cCGF9G7P6G2OLdh4kvbVDZYhrBf9yaMU8w1/0i0n43B6qCRs44JZv6RzF5XAZw159sbsvnr0jRemJ/AvFEtXMRxekGfuwe+/wPsX13/mN6jYeAsiBxtfL8/EVw8SMnMwitvJwPUseZzehaeUYy3uci1KyirZsyTK/jVrEE8ZHnLmPGilrJvrwNmGMV5fpbxAa6AvHQ4vB1yU2sfbJyin/EImfsPwrHdxJoOQvQ0PjnRi98t3s2T84Zxy8SoNuVrKPlwEZmf/ZV5BW9hVrruArAabSbVbTjF/vH09nNlQFwCJu9A46K7ozuNi3Rqt2P/vjD9NzBiPpkbv4Ej24iddo3D9nerTZNxvIQDSau5aOtdmHUNCvsgG5MrDJoDvUbAqUMQPBD8+0BumnGlvM1CXeEQPMgY5rH9LbDWNNrnrTbNqj0neHN9NpuzC/B1d+HG8X25Y0r/Vo+xKyqvYev675i26S7MthpsKE559CW86oDx4W+z2mflcDH+rmGD4dRB49qDhsMeAqONC5uSPwZr823TOWs03tANpj1sFBSHt9Y/pnaISORY8A6B0lzjMaW5xkWulorGFwx3RNvUcJ+PHAsZ38CqJ4wePozi7GjoNDZUD2JNvh9mWzXj3A7g6+HCQNMJ4iqTcLNV1l0PYMPE0pCf8ffDCRw5VYE50GhvxkQFcumwCC4eGtH4IOmcc34LKx9rcCGwfcaLQXOM6wpKjhr7fFWJsc6z1za+8HrMHXDFC2RmZjba5x3aO6g1fH5Po7N4uHpB7MVG2+TuZ/xe3sHGdpuXYez3p+zX4isTXPZvGHdnq3KWVVlIzMjj25RjrE7PreslDvV1Jz7ClyG9/Bjcy49QX3eOFFZw5FQFh09VMPbQW9xQ+i5m6tumShc/qgbMwa/vUFTpCQiMMi62LDkGR3dB+tL6z8y+E2DWnyB6GplrP3N42wScuT85YXaQ9hS5c4BHgSHAcmAKcIfWenVzz+mxRW7OFnhzDo2uNjyDCWb8HmY8UvecrNS/Q3AMMeOecXyehkVJaR588XPYt6rFp9k0fGebyDcD/szFo/ozx/cQnkc3ku8/gurwBMyevhSUV3O8qJLF2w/zXYpxhfrcEb24a9qAlq8kb03O03p6mhU1xbhYwzsEPvxJ3Q6Uf+UiiBzd8bcmXP4X2PhSXU5de3BwuujpEDnGKOSsNXU7eb7XQODst1C02jTXvrqRg/llrHz4graNtVv3rHGRSO3UST5hxlXQDXuogGJ8yHAfzrjhg43T1Q3GWreU81yLXIBrX91IjdXGkqvcGh+QDbnS+MCwX8DQiFeIcSV34SFOHzrR8JaUuSWVXPTcWuLCffnonontng2DnC3Y3rkCrDXYTK7kTX2CcMsRTCmfnnklNBi5atexMsHMR40il064dWbDqf1cPY1hQUkfGBdmtWT0bXDFS8anpP018v1HNLkv7T5cyBvrsvk22Tgounx4L64d04dwP3eCvNwI9Harm06rtMrCyrQTLN11lLV786ixai4LOMQtETkMm3w5frFTjF7upQ81vtq8ScroIJj7QqtytktTZ4G+fujMWTCaMvhKY3yoyRUWXd25bdNa+z5fe3bMzce44v00uQSz3DaGQ9ZgHnJZjCvGhZkPefyVMv9YYsN9GRfXj1H9Agn3a2Y4W3tzNhxi5e5fNwtKIyGxRi/6vh/OGNbVKftSg15o+s8wLgIrOXbmYwOjjb93fhYttU2tUVljZcfBU6QdK2bPMaMnNSu3tNEUdkoZwxxmeh3g8cI/4KItYHbFNOMR4yBnzxLjjMLpzO71ZyVP61Xt0PXpjCkPG2jX7ApKqWBgIsbB4I9a65MtPb7HFrkNCwplggn3GmMic9Phk1saFThOmeMQzrwi8urXjYuXjmyHpQ+gbRa0yZV3B73E6/tDOF5ciYeriXA/DwrKquvG3dTydXfhpgn9uH1ytOOumDz9qO/mT40j0Q0vGleiY2v9hWQd6fSct3xmFJFrn4Hdn3B6Q9eejJknSrj8pXVcPrwXL9w46twz/nSJMRPDsj8apynRaGXmmepr8Z/zCD+/YGCbcranyH15dRbPLMtgy6MXEla4+8z3XPWEsU/Vzhk69WG48M+t6hVY8MEOVqSd4LsHpzHQUXdWa2q9NPygViYY/3PjIDYvs/FsKM7c5wHWPGP0htbmnHif0Vu++GftapcOnyrnnQ0H+GhrDqVVp7UNHi4EebtxvKiSKouN3v4ezB3ZmytG9GZYZBNjRGvnDbXWGG3TvFfr26avH2r6grfOdvq2d9P/wL8fbPoPbH+PLtE2NbV/hMbDqr8Zw1EatEu2KQ9zsqyKUxnr8T76I4FDZ+E9cHLHZ2wuZ+b3sO55jPVoMtbhrD/VP96Zcy7Xvq/WRvv546vUtU0X2DuuOrDHssZqY39eGfllVUQGeNLL37N+PH1T62bNM/Yhiw32+ZmPGkW6k3tVnaE9PbmrtNYXnm1ZQz22yG1pA3fyUcwZOVuaWcC+3GbTbDt4im+Tj3GqvJpALzeCvOu/Ar3cGBbp1zFznZ7tau2usnN2Ys7nVmTy0qq9vH3HuNbfkawVGS3KlRsqHuFfD91FTNjZp0xqqD1FbtrRYi57aR3/um4EN4zt23Tuc9iflqce555F2/nNnFjunzWozbnapDvt803ldFDGksoaUo4Y0xLll1VzqqyaAvtXkLcbc0f0YnS/wNYNX2pF2+RU3aFt6g4Zm8rZFTM2pTvs990hYydqc5GrlPIAvIDVwAzq5633A77TWg9u7s16bJEL57TxZGUtBCAm5v6OTNZuHX5qqDVasX57as4qi5XLX1pPRbWV5Q9Nb930b63I+HRqCN8V92Xtb2c2eWFbSznbU+RqrZn8jx8Y2SeA124d02LG1uxP+fn5lFTWMP/dFAK93Fhy/9QzZw7oCG3c5522fZ5D29Ql9qVW6BI5u0Pb1MptwKk527jPg+RsVndpmzpBc0VuS5+iPwceBHpjTCFW++lYDLzs6IDdRt/xbT4yys1dBEiR2yqtWL89Nae7i5l/Xjuc617bxDPLMnj8yqHtzlgZMYb3li9n/tiwZmdu6Kj1qZRiZnwYS5KOUm2xNV2QtmF/ys/P5/kVGeSVmHj91rGdU+BCm/d5p22f59A2dYl9qRW6RM7u0Da1chtwas427vMgOZvVXdomJ2r2U0Jr/aLWuj/wG631AK11f/vXSK31wk7MKMR5Y0xUEDdP6MeiHw+yL+/Mi0naatP+fCprbMyMb8PwBweaFRdGaZWFrQcKzv7gs8g+WcrS3ce4bVI0CX0D2h9OCCFEj3bWrhCt9X+UUpOVUj9RSt1W+9UZ4YQ4Hz04OxZ3FxPPLc9s92utTs/F09XMxAHOOXKfHBOMm4uJH9Jz2/1ab67PxsvVzAMXdvA4XCGEED3CWYtcpdQi4N/AVGCc/euMcQ9CCMcI8XHnrqn9+Sb5GMmHm5hyp5W01qzak8uUmJDGk3d3Ii83FyYNCG53kbvj0Ck2ZOUzf1zf+knZhRBCiBa0ZnaFPcAQ3Zq5xux69IVnQnSC4soaLvjXaoZF+rPozqbvYnY2mSdKmPP8Wp6+ejg/mdDvnF6jPRee1Xpv0wH+8lUqq38zg/4h3m1+vtaam974kazcUtb8dmb7L8gTQgjRozR34VlrrtxIASIcH0kI0Rw/D1fumxHDur0n2bivxWmpm1XbezozPtSR0dqsdjq0c+3NXbf3JD/uL+D+mTFS4AohhGi11hS5IUCaUmqZUmpJ7VdHBxPifHfrpCh6+Xvwr+8zaMOJlDo/pOcyuJcfvfwddBOPc9Q3yItBYT78kH6izc+12TT/WpZOn0BPbjrH3mghhBDnp9YUuY8D84CngWcbfIlW2rhxAhs3ntsp586UmZlp3IO7iztfcnq4mnlw9iCScgpZnta2AnHTvny2ZBdw2bCzn4TpjPV56fBebNyXz7Y2zrLwXcpxUo4U8/BFsRzcv++8+Lt3pu6SVXI6luR0LMnZdbVmdoU1Db8AC3BDx0cTQlw7ug8DQr3597IMrLbW9eZW1lj5w+e7iQr24q5pAzo4Yev8fPoAevt78vvPdlNZY23Vc2qsNv69PIPYcB+uSojs4IRCCCF6mlbNpq6USlBK/UspdQB4EtjToamEEAC4mE38Zk4ce3NL+WLnkVY95/mVmRzIL+fv1wzH0805syqcztvdhaevGc6+vDJeXp3Vqucs3n6Y7JNl/PbieMxnu12sEEIIcZpmi1ylVKxS6i/22RUWAjkYszHMlJtBCNF5Lh0WwfBIf55fkUmVpeVe0JQjRfx3XTbzx/Zl8sCQTkrYOhfEhnLNqEheTdzHnmPFLT62ssbKiyv3MrpfALMHO+dGFkIIIbq3li5VTgfWAVdorbMAlFIPdUqqHiYs7FZnR2iV7nKrv/Mtp1KK310Sx61vbuG9jQe5e3rTQxAsVhu//2w3Qd5u/PGywZ2eszX+PHcIazLzeOSz3Xx+35Rme2jf2pDN8eJKXrgxoe52xOfb370zdJesktOxJKdjSc6uq6Ui91rgRmC1Uup74CNAzhmeg5iY+50doVW6yw5wPuacGhPC9NhQnvp2D0eLKvj9JfFn3ODhjXXZpB4t5rVbRuPv5eqUnGcT6O3GY1cO5Vcf7uTtDdlnjBmuqLby9+/28N6mg1wYH9boTm3n49+9o3WXrJLTsSSnY0nOrqvZ4Qpa6y+01vOBeCAReAgIV0q9qpSa00n5hBAYvbmv3zKG2ydH8/aGA1z+0jp2Hy6s+3n2yTJeWJnJxUPDuWRYL+cFbYUrRvRiVnwY/16ewaH88rrlSTmFXP7SOt7bdJA7p/bn5ZtHOzGlEEKI7q41syuUaa0/0FrPBfoAScAjHR2sJ8nKWkhWVtcfxpyfn09+fr6zY5zV+ZrT083M41cOZdGd4ymrsnLNKxt5adVeaqw2HvlsN24uJv521TCn5zwbpRRPzhuGi8nEH79IpsZq47kVmVz76kYqa6z8764J/HnukDN6qs/Xv3tH6i5ZJadjSU7HkpxdV5tuH6S1LgBet3+JVsrNXQR0/WELtRt/Vz+lcb7nnDYolGUPTufPX6Xw3IpMPt6aw5HCCv5xzXDC/Ty6TM6W9A7w5PeXxPHnr1KZ8UwiRworuGZUJI9dORR/z6aHWpzvf/eO0F2ySk7HkpyOJTm7rlZNISaE6Fr8vVx56aZR/OemUZRWWZgaE8L8cX2dHatNbp4QxYT+QZRXW3j15tE8Nz+h2QJXCCGEaCu5EbwQ3dgVI3sze3A4ZpOqm4WguzCZFO/dOR6bjS4zn68QQoieQ4pcIbq57lwgurt03+xCCCG6NqV1624V2qYXVSoPOOjwF+46QoCTzg4hegTZloQjyfYkHEW2JeEonbEtRWmtQ09f2CFFbk+nlNqmtR7r7Byi+5NtSTiSbE/CUWRbEo7izG1JLjwTQgghhBA9jhS5QgghhBCix5Ei99z8n7MDiB5DtiXhSLI9CUeRbUk4itO2JRmTK4QQQgghehzpyRVCCCGEED2OFLlCCCGEEKLHkSJXCCGEEEL0OFLkCiGEEEKIHkeKXCGEEEII0eNIkSuEEEIIIXocKXKFEEIIIUSP49IRLxoSEqKjo6M74qW7pT15ewAYHDrYyUlaVllZCYCHh4eTk7RMcjqW5HSs7pITuk9WyelYkhMy8jMAiAuOa/dryfp0vu3bt5/UWoeevrxDitzo6Gi2bdvWES/dLU14dQIAm3+x2clJWpaZmQlAbGysk5O0THI6luR0rO6SE7pPVsnpWJITZrwzA4DE2xPb/VqyPp1PKXWwqeUyXEEIIYQQ3db9999PVFRUm55zqryaQwXlyF1fezYpcoUQQgjRLWVnZ5OYmEh1dTUlJSWtes6h/HKycks5WljB+z822QEoegjVEUcxY8eO1TJcQQghhBAd6bbbbuOyyy7jjTfe4KmnnmLixIktPt5q09z4f5v49vi9eLu5EFTxFN89MJ3+Id6dlFh0BKXUdq312NOXS0+uEEIIIbqd1NRUUlJSmD9/PoMHDyY1NfWsz3lj3X62HjhF/xBvYsJ9cHcx89DHSVistk5ILDqbFLlCCCGE6HYeffRRnnjiCZRSDB48mJSUFAC+/PJL7r77bq666iqWL19e9/g9x4p5bnkmlw6LIMTHHTeziSfnDSMpp5DX1uxz1q8hOlCHzK4gGpPZFRxLcjqW5HSs7pITuk9WyelYPSHn5s2bWbZsGUlJSSxYsIDKykpGjBgBwLx585g3bx6nTp3iN7/5DXPmzKHKYuWhj5Pw83TlyXnDuHax8TpXjOzN8rQTvLByLzPiwhgW6e/QnF1Jd8npSNKTK4QQQohu5Y9//CNff/01Bw4c4MCBA+zatauuJ7fWk08+yYIFCwB4YeVe0o+X8M9rhxPs497ocU9cNZRgHzce+jiJyhprp/0OouM1W+QqpcxKqZ8rpZ5QSk057Wd/6vhoQgghhBCNrVixgqqqKi688MK6ZeHh4ZSVlVFQUIDWmt///vdceumljB49mm0HCnh9zT5uHNeXCweHn/F6AV5u/Ou6kezNLeXZ5Rmd+auIDtbScIXXAS9gC/CSUmqN1vph+8+uAZ7s6HBCCCGEEA1ddNFFXHTRRWcsLyoqAuCll15i5cqVFBUVkZqewWflQ+gd4Mmf5g5p9jUviA3llon9+O/6bC4cHM7EAcEdll90npaGK4zXWv9Ea/0CMAHwUUp9rpRyB1SnpOshbh1+K7cOv9XZMc4qODiY4OCuv2NLTseSnI7VXXJC98kqOR2rO+bUWvPdd98xadIk3nrrrRaf96tf/Yrt27fz2muv4TL0YjK2riH33Qf4bskX2GzNz6Lwx8sGExXkxd+Wpp1zzq6su+R0pGbnyVVKpWut409b9hfgYiBMaz2ouReVeXKFEEII0V5aa77//nsef/xxSktLeeyxx7juuuswmVp3SdHVr2zAZtPcO7CExx9/nLKyMh577DEWlixEmdQZt/V9Y+1+nvp2DxsfmUXvAM8O+I1ERziXeXK3KaUuabhAa/034G0g2rHxhBCi7V5//XV69epFQkICMTExzJs3j+rq6g59zzfeeIOEhAQSEhIwmUx1/3/44YfP/mQhRJs88cQTXHbZZWzZsoW0tDTmz5+P2WxGKdWqry8XTGXJL6fVvUZqaio33HADGW81PfZ2ZnwoAIkZeZ35a4oO0myRq7W+RWv9fRPL/6u1du3YWD3LwvULWbh+obNjnFV+fj75+fnOjnFWktOxunPO3bt38/TTT5OUlERmZiYpKSns3r27Q3PcfffdJCUl8c0339C3b1+SkpJISkriueeeazZnV9VdskpOx+pOOe+77z6++eYbxo8fz9ChQ/n444+xWCzYbLazfn2+PYd+v1vKzoP5fPvtt0yYMIEhQ4bw0UcfEXtH09NoDQz1oU+gJ6szctuUs7usz+6Q05FkCrFOsCh5EYuSFzk7xll1lx1AcjpWd86ZnJzMqFGjAMjKykJr7bA5IK+++mr+9Kc/MW3aNCIiIli5cmWjn6ekpDB8+PBW5eyquktWyelY3SlnQUEBl112GT/++CPPPPMMzz33HO+++26renFXZ+QR6uvO4d2beOSRR3j44YdJTk5m/vz5mMxNlz9KKWbGhbEh6yRVltZNJ9ad1md3yOlIcjMIIUS3lZqaym233UZNTQ2HDx/mm2++wc/Pr8XnTJs2jZKSkjOW//vf/2b27Nl136ekpDBlyhTWrVvH559/zgcffNDo58nJyQwbNsxxv4wQollKKS699FIuvfTSVj3eatOsycxj9uBw5s4dydy5l7f6vWbGh7Lox4NsyS5g2qDQc40sugApcoUQ3VJOTg5hYWF1wxPee+89nnjiCRYsWMA333xDbm4uCxYsYM6cOY2et27durO+dnl5OUVFRTz00EMAWCwWAgICGj0mJSWlyWmMhBDOl5RziqKKmroxtm0xaUAIbi4mVqfnSZHbzbVquIJSKlApNV4pNb32q6ODCSFES3bv3s2QIfXzXo4cOZLc3FzmzZvHG2+8wTvvvMPHH398xvOmTZtWd7FYw6+GwxFSU1MZM2YMZrO57r1O77WVnlwhuq7V6XmYTYppMW0vUj3dzEwaEExiG8bliq7prD25Sqm7gAeAPkASMBHYBMzq0GQ9yOZfbHZ2hFbpLvezlpyO1V1zJicnM3jwYMCYZujdd99tNJyg4S09G2pNT25KSgoJCQl13+/evZurrrqq7nubzcbevXuJj48/47ndZX1C98kqOR3rfMi5OiOXMf0C8fc6t+vkZ8aF8vjSNA6cLCM6xLvFx54P67O7ak1P7gPAOOCg1nomMAqQuTWEEE6VnJzMO++8w6hRoxgzZgyVlZU88cQTZ9zS81xfu2GRm5KS0qjXNisriz59+uDu7t7eX0MI4WAniitJPVrMjHMYqlBrRlwYgPTmdnOtGZNbqbWutF+t6K61TldKxXV4sh7MZrOxZMkS4uPjm+wJEkKc3QcffNDk8oa39MzKyuLee+9t82vXTgdWa//+/Y2+j42NJS2tbXdFEkI0LzExEXd3dyZNmtTu11pjn+N2pr1QPRfRId4MCPFmdUYet0/p3+5Mwjla05N7WCkVAHwJrFBKfQUc7chQPc2EVycw4dUJ2Gw2Fi9ezMiRI3n66adbvL2gM2RmZpKZmensGGclOR2rp+VseEvPcylw26u7rE/oPlklp2N1xZzl5eXcdNNNXHzxxWzatAk495yrM3KJ8PMgPsK3XZlmxIWxaX8+FdUtTyXWFddnU7pLTkc6a0+u1vpq+38fV0qtBvyBM24SIVqWvy2fiMcicHV1Zfr06cTExPDRRx85O1YjtfPndfV7W0tOx5KcjtVdckL3ySo5Haur5rz55pvZtWsXl156KSEhIfznP/9h4MCBbXqNGquNdXtPcsXIXiil2pVnZnwob23IZtP+k8yKD2/XawnnaNUUYkopMxAOZNsXRQCHOipUj2QGs9mM1hqlFC4uLu3eAR2t9kpyF5euPbOc5HQsyelY3SUndJ+sktOxukPO2lv3ttW2A6corbLUjaltj/H9g/B0NbM6PU+K3G6qNbMr/BJ4DDgB1J5f18CIDszV4wSPCibztUyWLFnC448/Tnp6Ou+9916XmoKo9jRGV78CU3I6luR0rO6SE7pPVsnpWF0x59dff819993H8OHDWb58OePHjz+nU+uJGbm4mhVTYkLancndxcyUmBBWZ+TWdVCJ7qU1h3EPAHFa6/PrXnAOdOvwWwEwmUzMmzePK6+8km+//RY3NzcnJ2usq526ao7kdCzJ6VjdJSd0n6yS07G6Yk4/Pz8WL17M+PHj65adS87VGbmM7x+Ej7tjeqlnxoeycs8J9uWVEhPW9Bjfrrg+m9JdcjpSa7aCHKCoo4P0ZPdPvb/R9yaTiblz5zopTfO6yw4gOR1LcjpWd8kJ3Ser5HSsrphz+vQz7zHV1pyHT5WTeaKUG8b2dVSsumEPq9PzpMjthlpT5O4HEpVS3wBVtQu11s81/xQhhBBCiM6zunbqsPj2j8etFRngSXyELz+k53L39AEOe13ROVozhdghYAXgBvg2+BKttHD9QhauX+jsGGeVn59fd9VtVyY5HUtyOlZ3yQndJ6vkdKyemjMxPZd+QV4MOMsdytpqRlwYWw8UUFJZ0+TPe+r67AlaM4XYXzsjSGfSWvPZjiP8d91+KmqsWKwai81m/1fj7+nKg7MHcfWoSIcMNF+UvAg4c9hCV9NVp5U5neR0LMnpWN0lJ3SfrJITbDbN4h2HeWnVXkoqLbiaFWaTwsVkwsWs8HJz4d4LBnDlyN5n/dzqieuzssbKhn0nmT+2r8MvEJsZF8pra/axIesklwzr1a6cztRdcjpSa2ZXiAV+A0Q3fLzWelbHxeo4ucWV/OHzZFal5zIs0o+EiACjkTApXMwKF5MiKaeQhz/ZxYdbDvH4lUMZ2tvf2bGFEEKcp3YfLuQvX6WSlFPIqH4BXBgfhsWm6zpmLDYbe0+U8sBHSXybfIynrh5OiM/5dcvpzdkFVNbYmOHAoQq1RkcF4uvhwg/puU0WuaLras2Y3E+B14D/Ai3f9qML01rzVdJRHluSSmWNlT/PHcIdk6Mxmc484rPZNJ9uz+Gf32dwxX/Wc8vEKH59URz+Xq5OSC6EaLOcLXBgHURPg77jz/54IbqgU2XV/GtZBh9tPUSwtzvPXj+Sq0dFNvm5ZbVp/rtuP8+uyGTO82t54qphXD7i/CnIVqfn4uFqYtIAx/dSuppNTB8USmJGXvunEpO2qVO1psi1aK1f7fAkHaWmguKtH7F+82bey41jYN/xPHP9SAZWpsGGz5vc0Ewmxfxx/bhkaC+eW5HBoh8P8vXuY/z+kjhu6IBTIQBkfA85m2HQHIhqcO/urrRDHNoM2WthwAWNs3RCRqtNk19axfHiSrZnnSSvtAq/Y2ZGRPozql8gnm7mlrPkbIHsddC/C6zH2jwNc2oN+1bBgfUQd1nXzAhQUQjp30DhAYi5qGvkPN3BjfDePLDVgNkdfrqka+bMXAZ7V0D8XBg4o355J+/zFdUW1u89ScrRInzcXQj38yDCz4Nwf3eCC3ZiTv/GyDfwQqht+7pSuwRwcBMc3AD9p3d629RqzWU5tBkOrm+03GbTfLQ1h38tS6ek0sIdk/vz4EWD8PNovqPFbFL8/IKBzIoP4zef7mLB/3bwbUovnrhqGEHerZyusqmMVgtkrYQj22FQ432+pLIGq00T4NWJ02E2kVHbbFSlLGVhwB48jgY0/gx1kJnxYXyTfIzUo8UMizzHs7v7VsP/5re7baq22DhVXk24n8e55TiPKK11yw9Q6nEgF/iCxrMrFDT3nLFjx+pt27Y5KGIb5GwxijCfcCjLg/2JWA9swKwtgHEHC0IHowL7QdYPYLOCy9k3tNSjRTz2VSrbDp5i2qAQ/nHtCCIDPM8944F1EDUVPPwhfSns+hjy99Y/xjMIAvqBiwcc3moUQK3I2WHyMmDdc7D7Y+xrEVy8wN0HlAlKTxjLze7w06XQb0K731Jrze7DRXyx8wgr0k5wvLgSq63pbdXFpBgW6c+dPpu4/MDTKG1FocDdz3iApQKs1cb/TWa44iVIuLn+A7szaQ3b34ZvfgPaCijwCoaKU/bvMZYl3AQT74PwYc7JeWgzvDsXrDXG3zhsMJQch/KT9Y9RJhh1K4y+DXqPonTfZorSfyDTI4HttkFknywj+2QZx4sr6eXvQXSINwNCvOlv/xoQ6oO/ZzvPjhzaDHuWgJsvVBbC0R3Gh7HNUv+YoAEw/HroMx4UcGxX5xY9tft87zHGh9v+REj/Fk7tr3+MVwj0GgEeAbBnqbEtdFCBXlhezZbsArYeKGDLgVOkHCnCatOMVplMNO1hqy0WN2XhZtNKLjVvrdv8bCZXlH8kys0HctPs7ZIb/PRr57RLVgtkJ8LGl2H/D/XL3bzt+76CkmPGMhd72+SUnDWw8T/wwxOg7fdTcrNfu22pqN9WTa4w/31yQqfzu8W72bQ/nwn9g/jbVcOIi2jbtd4Wq43X1+7nhZWZ+Hu68vz8BKYNCm35SQfW1x8cKhP494XqUihvcKGSMsGkBZSMvpc3dpTx5vpsqiw2ZsSFcd2YPsyKD8PNpTXXs5+jnC3w7hVgqTLa8qjJUH4K28kMTLVtPEDUFBh+nXFgVnqiyYOLGe/MACDx9sRWvfXJ0irGPbWSBy+M5YHZg87+hAPrIfUL43O8PB+O7ICTGY0fEz7UaEP7jAdLJeT82GLblHq0iE+3HearpCOcKq/h4qHh/HpOHLHhMheAUmq71nrsGctbUeRmN7FYa62bnUvDKUXunq/hk1vrGxEgzyuGAyUmxpj3YkIDyigey05CTVn9cwdfAde+aTSEzbDZNB9sPsjfv0vHpBR/nju47b26OVvgnbn1BVdtwegXiS4+ikKjUaheI8E7FI7vtheQDXJe819w7eCjt5wtkPk9VJfDoU1wLAmjOqjdVpSxE4YNMQqK47vrn+sTDjMegeE3GB+EbexFySko58udR/gi6Qj788pwczExMy6UQWG+hPt7EO7rToS/B31Kk/E8uol0l3iOHcggJudTYmsy0NqoCW1AUeBwfGMm4XIiGQ792CA/EDbUKCSDB0FuascXPZZqSPsSfnwFju5s/LNeCeDmZfRGNVzHaAjsD33GgWeAUah19Ie01WI0zMsfbbzt+fczevOKj0LWqrqc9r2KMrzw0JWAphpXbrU8ysmAkfQP8SbC34NjRZVknywjp6Cc2mMVpWBsVCAXD41gzpAI+gV7tS3n2mdgzT/rsmB2g96jwS8S0peA1Wq8SUCU0fPcoG3A7Aa3f9Px6/PgJnjvCqPQqXtvd/DrDacOULcGI4YZBcSJNKPIqDXmdrjixXbHqKyxsjztBJ/vOMy6vSex2jRuLiYS+gQwrn8gF3rtZ1TiT+vaJgVYlQsmbTH+rxXbbLGUukcw1rwXv6qj1LV8IbEw93mjsOjoA7JDmyFlsVE0HFhvbKMuHkaBUJu8zzgIizeKihMp9c8NjYdL/g79Z8CRbe3q4bXaNKVVFlxMCu/TbzpQe1ATHGu0jTveg9LjDR6gIHKM8b7Hkhrt9zYUa/UovmIGcycOZ5Z3NqodZ5/Sjxfzqw93sje3lIdmx3L/zJgzhzqU5sG2N2HDS40/F0PjjSIyP8s4C4au299tKLba4igNGoqnpw9v5saxqiyaIG83rkrozfVj+jKkt985ZW5WWT4svgOy19Qv8wiEvuM4nnuC0MLdmJU9obsvVBXbH2T/fU870GlrkQsw7+UNaOCrBVOaf1B5gdF+Jv2vQc4A6DfR+Hzc9aG980AZHVoNOw5QZ+TML63iq6SjfLr9MHuOFeNmNnHR0HCigrxYtOkgpdUW5iVE8uDsQUQFO3ZWie7knIvcc+GUInf132HNPwDQmFjiewMP5F3JbwYXsiDn1yhrtfHB9tMlxuPfvcIoPNDGl29vmLTA6Dk7ur3Zxu9Qfjm/XbyLzdkFXBAbyj+uHU4v/1b06h7bDZ/dVXckp4GSqDl81uthsjLT+FP+I7hioQYX7uIvZHsMYbzLPv5Z9iiu1KAAhTaK33F3Q+9RcCLZ8cXZ7k/hi5/X9SqW+/ZnZ/g17CoP5mdHH8cFC1ZceS36OXSf8SSQyfRNd6JsNShlgoC+ULDf6Om1VlHfw9t8j9TB/DJWpJ1gWepxth44BcCE/kFcPSqSS4f3OrO3L2eL0ctY9/cDQuKw9J+J2vE2WC3UYOYnVX9kr/sQfjEgn58ffAiTrQZldoXxdxsfLEcabKNmd7i9+R6pyhorGcdLSDtWTGF5DVabDYtNY7Xpun/7h3gzoX8Q/UO86w9+9q6EH182eg/L842iOu5S2PJ/RkPXaJu80igyzG5ww3tQchR2LKrPqUxw+Qsw9qdn5NNac6yoktSjxaQcKaKgrBpfDxd8PVzx8zT+9fVwoZe/BwNCfBr3tuRsMU6jVRUbvYiFB42ituSYURjWZuw7npoDP2JedBXaWkMNZn5e9SB+qpxfeX5HjHVf3aGQbdRPMV/10hk5qy02DhWUk32yjOQjRaxIO8GeY8aHUXyEL3OGhDNrcDhDevk13SNkrTHOKKx71tjOaikTzPgjXPBbqi02jiavwZq9jqMBYzjoNYzK0iLGZTzD8Lyl9gNesPj1wzzvP6j+Fzi+OLNaIOUzWPaI8aFnhISEm9GXPcOR9C1EfDkfZavBZnLh06Evk+s/kj4lu5iXfB9mWw2gjY/nvhNh2sPGB+Vpp7VbYrNpNmcX8MXOw3ybfJzSKgu9/D2YNyqSmXFhjOjjj4cZ46Dmu983+LBVxgHVqFvhfzeAtRptdmXF2Dd440AI1oOb+cDtadyUBaUU2tULc3WJcbAWe6nRw3b6kKZmFJXXsDe3hEMF5RzMLyenoJyDBeUcKijH283MsEh/RvTxZ1hvP0bnvIvHmiep2+ejpsCEe8ErCN6/rn7fqW1rcrbU71NKgas3VBUZbX1Z3hnbdlMKyqr5cMshEjNyKaqooaTSQkmlhdIqo/fVbFKMiQpkZlwYM+NDiatKQ713RYOODOxD0KZA4j+azait1dRoE0stE5jpnk6QtcHfop290OXVFh79IoUvdh5hRlwoz9+QQGBBEiQvNg7+9iUabXUfe9Fts56RUb97JdpSTTVmfld9NzNDS7jMloh7ySEAtMlM8tRXeP1YLCvSTlBttXHLxH48OW/4OWWuk7PF6MAqPAh7l0NNubGvgz2jsV7+vPBNHj35CB7Knv22r8AzEJb/CfYuq3+9yHEw/z3w631ORe5Lq/by/MpMtj46+8wL+0pzYdNC2Pqm0QNeS5lh5qMw/df1v1PDA6yiI7DiL8bBW13OMXD9OySe8OCe97ZTbbUxso8/143pwxUje9cNDzlVVs1ra/fx7sYDWKyaG8b15VezBhHhf/4NY2hPT64X8DDQT2t9j1JqEMZtfr9u7jlOKXIbNBZV2sxtlj9x7VVXM39cv6bHGTUcNlBdCuufN74Hztaw2GyaRT8e5B/fpeNiVvxq1iCmxYYQG+Zbf5Rc+/q+kUz4egFUFrLJMxwsVWhtowYXflL1R3boWIZF+nFTr+PEViSR5TWKTLfBlFRaKK6oISB/JyEnt7LDNITZgwK4yboE74OrGuR00OnCvAwyP/wjeu8yYoPNKMCiFc9ZbuAV61X0CfTkyqDDDKtJZqM1nh9KozlWXInW1J3mzPEfg0f0BC7yO8S0vf/AIz+1vrdnwi/g0n/Urb9dhwtZuecEK9JOkHnCaBDiI3y5YmRvrkroTZ/AZnr18veR+fJ8yEsnNtg+Dnf0T43eLqXq1ru131Q2VQ/k8x2H+T71OPE1e7jQcy+FYRPwGDCRob39mLz3OXx3vWEcPAC2kDhyZ/+HY16xnCytZn9eKWnHikk7Wsy+vFKaGi1hUuBiMoEyCjiAUF93LulTw8zsF4jM30BcsNlomGf/zTiQMpla3iYbLlv3LPzwZONeyJjZWKY/wo9V/VmfdZLUo0WkHi2moMzeC6fA39OV0koLliZCu5gUA0N9iIvwZbbbbmITH0BhIS7YTE1QHFXTH8U8+DLcju+gaM8PJLsOZ3VZf5JyCkk7WswwWzqTzHsoiZhI/1EzuWhIOH1KU+pPI9YWIf0vgKHzjKEYLRRmOQXlLE87wfLU42w9UIBNg5uLiaG9/RjZJ4CEvgFMUGkUrXoBTqQQ71VIddgIigdcTtDW58FWg1W58FKf51hW1Jf9eWVN/t7jzHt5z/UpXLUFjaIYL4JVCZnuQ8mJuIiYADORo+fgEjWx6W3vbHK2wP41ZB44BlnLiDUfhsAB6OLDYLNiVS680PtZPjrei5OlVYxWmUxxSWezHsI2a0zd9lW7P+2wxTDYfJh7Xb8lXOfVlrxoszt513yKf+wUPFyNfcBm0+ScKif1qLG9ph4tIvlIMSdLq/B2M3Pp8F5cMzqSif2DMR3Zagzr0jYyV70Pp/YTO3CAcVDTRIFz+jaZU1DOj2u+oyR9NV8XDyRNR/GLwG3cYf0Mv+rjRm+fyRVuXtxorLHFaiPjRAk7DxUaXzmn2J9X33OoFPT296RvkCd9A70oqbSQfLiQoSXruKroQwaZjjDI3jZpZUbNehSmNVM4NPyb1C7vNRLSlsCqv0JRTu27wvTfwKw/NfpTph8v5u31B/gy6QhVFhsJfQMI93OvO1j0s/9bUFZNYkYeaceKmGHaxd0lrxHKKWKDzcZZucm/hDlPNJnRZtNknCghfetKDm5fzmY9hMsvu4qbx0Wilv4Kkj6oDxQ1BW5YBN7ndlGV1poPNh/ib0tTucfzB6448X8obEYbGj8XLnwMQmPPyFhlsfLJtsOsW/UNMeVJFEVMYN4VVzMuOujMtsnkAuN/TtGY+/jn+lP8b/Mh3vvZeKbHnmWYRHOSPiLzzZ8DViNnzEUw50njYLxBxuLKGkb/bQWPjSrj1ohDZ7aptQc6tUxmGHM7Mw58DzXlJF7zYas/P1OOFDH3P+v59/UjuW5MH2Nh+jdkLn4a8vYQG6Rh2LXGgc2SX515UNOcJnJqpVivEzjm2ocJl91BVMKMZp+eW1zJwtVZfLjlEEopbhrXl1/MiKkvdu1/10xbFPQaQWxsbKt+3+6kPUXux8B24Dat9TCllCewSWud0NxznFHkaq355tuvSN/0Lfu8R7Hgtp+0fXD41w/Btrfqv++VAFe9bJxKbMKBk2X87rPdbMk2emr8PV0ZFx3I3MAcrkz6OcpWjQLGWco5SSC+loXEqCNMd8vA0ncK/RJmMCM2lLCzDB7fc6yYdzYc4IukI1RbbLwasphLSj+vLyDDh8K814wxfW2Rs8Xoxcndg96fSGq+mUTrcO4KTcFVWbGZXEm5cBHRCTMJbOLChcoaK0cKKziUX07q0SL7B1chBWXVjFaZ/M/tKdxUbS80rGIC/6euxWStYpQ1hS0MwTVqIhcNCeeiIeH0DWqmsK3LmQ7ZiWQWKNA2YoNNrWpAyqosLEs9ztrMPNKOFZOVaxSso1UmH7g/jSsWtFZU4YKPqmKZdSzLrWMJV6fI8krA1mccQ3r7M6SXH0N6+RHm547ZpDArVXdQo7Vm/8ky9uzeRuiuVxhTvJK9J2tQaOJDzFgxcXzMr+l1+aNNXhnd4t/I3vhpsytHoq8hMPsbvK1FbLXGkkk/dgRcjDlqAsMi/Rna24/4CD+83V3QWlNRY607YCqurOHwqQoyjpdQmJPGuOMfMdeykuwCo2EdGOTCs5brecU674wYXvZetYS+AYzsE8DkgcFnbhO1H5CR44yzDGuegUqjZx6zG9zyuXHhXwsKyqrZkHWS3YcL2ZVTRMGRvdynP+Jq8wb2FlixacWn/rfwpvVyQNUVhD/aBpMbMJL4CF/iInyJi/AjMsATf3svtp+HKx6uJtThrVRnrWGf9yi2VfXFO+1DZh57i0CK0Bosysw70c8waNIVTB4Y0vrxhZnL4KObwVZDZr4V7dcX85w/82HxCHKS1xJTlsSPtsEc9xvBhAHBTOgfxPjTev1tNo1VG2cFThRXkna0mLRjxWQcKeDGnL8y07oJpYyhsGttw3mg5n4s7oEE+7hRUFpNSYPexZhQH4b09mNGXChzhkTUX5iZvQ7ev6buwzSzKhym/JLYyxac0yn82rMwK9JOMDbnLR42f2o/ZQyVuPG+6UoWmy+n2OTPqfIaKmqMM0TB3m6M6hfIqH4BDOntR1SQF5GBnri72HMe2mycQj+8DQr2sasigr3+U7iy5mtMthpqcOH/+j/PxZdcSXxEG0+L1w0bs19i4uoFE3+Bre9E9iVv4v1jfXn3cDgeriauHtWHO6ZENz3msfZiVpOZmuQvcD2RxPZTPnhYS4kLNlGDCw+4/xWP/pMY3S+AMVFB1Nhsxnho+5jo4krjbzZ5YDD/vHZEfRt4etGjrUZP9IR7oN8UOLG7bWfxbDbYu4yyVf/CO3cHGSetKAWDQtxg5qOo2l5GuyqLlU+25vBK4j6OFVUyul8AD86OZdqgkPqzVA0zml0gerpx8azZHUvcZXySCWvUWJ779T1nDuloKWfWSqNHNHsNmfnG9hIb4gYND2oa+Gb3MRb8bwef3jvJKL5P17Bw9wk3ivOd7zNDG2eQEs1Brb6WRGvNhKdXMTYqgFemVMCaf8GBtfacZmLveRuGX3Pm+7bm79Tw8X69SXlrAUMLE0FhnCWd/TeYdJ9RpDf3EgXlvLw6i8XbD2NSivnj+vJQ2HaCVj4MNguZha5w9WvEXnDd2fN0M+0pcrdprccqpXZqrUfZl+3SWo9s7jnOKHL3HCvm8pfWMSs+nGdvGHluF7Sc3rCYXIyGsP904yjSWn3G1bv60GaK9qxmh2kIacdKCc1ZxsVVKwgwGT0UNg0xVjfK3MP5+8yljIkKZEhvP1zNbR+cn19axYdbDrFz43IW1jxed7pQmd1QlgqIHGuMoxp+ffNXa0eONU5J7XgPvePduqPwzy1TeerURUwfEcuj03wJzd9yTkMhtNYcKihn56FCTu5ZR6/C7RzzHET/ihQmn/wMT1spNkxG76nZDXXbEqjtOWuYs884YyxY7anp2t6C4deR2f9OKDlKrOngOWWsHXqQerSY4r0biCzcTl7wOGwhsUzM+5T4fW/jYi2390i5wOXPGReqmV2abrgqi4yLB7e9CXnp4OKJHn0bm8v74Lf2r8QF2ajWLtxc/UeO+A7n4qERXDw0grgIX4K93Zod111WZSH9eAl5aeuw7F/LR7lRrK8aQLh7Dc8GLGZK0VL7gY6CIfOMYRj9JhrjpJu7ijvpfeNCwpzNYHanpv8M9m1ZCdpKTKgHiRPf4LD3cCpqbFTUWOkT4MnIvgHEhPlgbktxDsbp2cR/UH+xojuMvAlG3Gj0bDd16r324lGzOxxYi967wv4Dzd58KzbMlE34JVlx9+DhasbT1Uywjzux4T74tnDleYvW/Au9+um6Hv1qbeZz6zS+dLmYSVF+XOCegWfsBfQdMQMvN5f6nPsTjVORR7ahM79H2bfR9Hwb/1Nzec/rFtzMJqYNCmHO0HAmDwyhT6Dnuc3OkrMFXTfEChQ2akzu7A66hGSXEUSqXIieSvjQ6cSG+xo9vA0POioLIe0r4yK9ut4iE5mD7oFxdzqkZ6c4cwNeH12DslVjU2YOew6hf/kuqpU7aT6TqPAIwxI3l6hRF9E3yL4eGu5P4UPhwAajBzPtK+rGK0//LZm9rgazC7GehRSm/cDi/GieSw+gvNrK9NhQ7pk2gCkxwa1ftw3OtFnSv8Wc/hWA/UDHhRXDn2PyJTcZB3Kn7/OWKkj6CL79df34ad8ImPkomR6jqTmeRmD5XrYzlO+L+rH94CmOF1c2evsBod6Mjw5iXLRxsNPkdtHwfT38jYKq4Sltkytc9yYMuerMx9fO2JL+LSR/YrT5pw5AQD8qY+aStex1TNpC/2B37lZ/wdp7HMMi/Rja25/C8mpeW7Of48WVjI0K5IHZg5gaE9L0uj39PU9mwXe/M4pdwKYV20OvYdxNj0LwwOYLv+x1sPk1Y1hf0SHw7QVxl5G58l2wWogN92y2M+PXn+xi5Z4TbP/TbFxa+7m6/M/M2Ph3ABLxNoa8TLgPRtzQ7IVq5GyBrBWsTTlA5MkNDFRH7OPBq8jMtwBmYm/4S5OFeFttO1DAD/99hN+4fIqJBmfx/PvBmNuMYZW5ac2eucjzGsTmbVsZcOQrhpgO1o2lzswHJv2C2J/8o90Zu5r2FLkbgQuBDVrr0UqpgcCHWutmKwtnza6w/eApRvUNaFtP2eka7oTBMbDjXdi4sPF4tcgxEDLIuCo29csGV3JrMLlSHT4Sl+O7jMLMxZVJPiHg7sPmX2xu529oqLHa2LTmO7K3fc9XpwaQ79mfl8KWMOL4Z/W9u17BxoVh7n7GWCabBZQJ7eqFqi6pTWsMS8DE9gH34ZLwE3w9XDvuVEZFIXx6O+xfXb/M7G4UZr69IPUzYyxj7fg5e846ygyzHiUz/AqAjsv5w1PGRU0NL1Rz9zd69HO2GOvSZIKIEcaMA7VXcINxYHTjhxA7h8zMTDi2m1jTQcp6T2JFcRTfpRxjTWYelTVGw+XhaqJPoBeRAZ70CfQkwMuVfbll7DlezMH88rqXDfRyZfbgcC4dHsGUmBDcN71g5KydkUGZjf+7+xvDb7TNOOIfeKGRtyC78dX8o241TlH6hJK5ZjEc2UbstGscO7674UGjyWzsU4c2GePqardUk9kYo+zuZ5xCPrC+/oDGMxDG3wMRI+GzO8k8UQFmV2J//W0H5nTBMmAmav8azNYKbBhdpzZMJNpGUuYeQaRHOaNL16GMn1KIL2tsI7hYbcEFK2n5ikURjzB17s3Mig879+K7qZy1bZObD2x+FZI+rC+0lIK+k+xtU40xvr7hRWxewca4y32r6oYlZE5b6NjTl6cXMXkZ9nGRy+sf4xdp7DtuXsbwAZt9n1cm+77lUt+mtrDPF5ZX88HmQ7y94QAnS6voF+TF3BG9uGJkb+IjfM9a8OaVVLFo0wEW/XiQBdVv8TOX7xrf596/HwRGGduszWpsq0Exxn7U8PQ3JphpjAfPzMw8IyfA0cIKdhw6hVkpxkYHEep7jjdq+P4PxsWrDQVEGW191sq6dp7gGCjMAUttG6Jg+u/ggt+C2ZX01Z9yMnMj5VEzSazoT+qRIvYcL6kbcjUuOpAHZ8cyeWAbDhxqNRjGUPsZU5ez+Ej9uoyeZoyxL8iGkiP1OS/4vVEouridtW2y2TTjnlrJ1EEhvHjjqNZnzNnCjLemAppE5W/MHlN7AbUyGQcIJjMMuti4iK3oMBzaWNc2ZdoiUVMfYNCgIfDB9Q5tm6osVi57cR0Dq9J43fY3+/VErsawmux1jS+8U2YYOAv8ehmfrxnfNppZpjpsJJtt8YzL+xwXZWVfoRl1nvXktuYcwuPA90BfpdQHwBTgDsfGc4wxUYHtf5G+4xtvpFMfMgqv1U9Rd5Fa8ZH64qZu2ieM3rQrXsTNM6BRY3/rwS3tz9WAq9nE9FmXM23mZcTuL+C/6/azbK8LQ11MuCgbGsUplzBMJaX45my1X8QCWlvJsoSwsPpWSpUPr7i9iKu2YHZxY8LMq8j3inBozjN4BhgfBod+NHrIlRliZtuLm3X1xY3WxlH/uDuNI+WGY5uipxHsdW7j0lpt0EXGlD+1jcu0XxuNXNqX9UWDzQolJ2DADOOCg32rAZuR/UQyxM4xbp0YPBOCg/EG5gHzRkVSXm1h8/4CDuaXcaSwgsOnjK/dhwsprKghKsiLIb38uHZ0Hwb38mNwL18iA07r6YmeZqyP2vVy00fG0IC1z8CJVHtGizFnbEiM0Qtde1mYMkNQf/AxxsoFD5sJw4ycDtV3vNH70rDoqSqFrxYY67I2Y9YqowCrqWgw9tgEExcYH8oAP11C8K7vod8kx8+IcFpOl77jjd75z3+OyvzOqL+wMc0tkypbNu6lZShtQymwolgbdD0pA+/GVe0lrnIXIVHjeSR6nONvnXl623Tlf8A7zCgq0Ma2l59lTEdYdpJGM3WMugXmvnDG2Yhgr4EdmzE0zjiIzVpp/9sq44Cm8KBRANe2n1pD3wlwwe+MHsoPrj/rPh/g5caCmTHcNa0/X+86xle7jvL62v28kriPgaHeXDGyN5cO64Wbi4mCsmpOlVVTUFZNQXk1e0+UsnT3UWqsNmYPDmdy3F2oFYn1B2RjbjcuTtv3Q33RYLMYB2gT7jUOwNb8s/7i0QEXAM3fLrV3gCe9z3XayYaGXg3b3q4fIjD2LqOHNmtlfdukrUb7Gj7UftGqNgo3V3ejPQNCR8widMQsgoODmWN/6RqrjX15pdRYNMMi/c59PvjoaUbnhb39/L3+FdFup/i5Xo6p4bo8mmQUl57+xkW2tTld3Iwvzt427TpcSH5ZNbPaepezvuMhYrhxhqN2TO6pg7D0gfpOGJvFOFvjHWL83e1tk1YmluppVNZM49H+QxzeNr38Qxb78sr48x3XobzGNm4/p/8Wlj0Km17G2OetcHgLuHgav0tdgatgwr24XfoPpgF5abdSkrGakIGTIHJ0uzN2J62aXUEpFQxMxPiU/FFrfbKlxzttntyO0mjsUYMxoIc2w3tXNr5K3kkTjh/enUjYFzfUjVe7udq4qG20yuQDt6fsMze48vfQfxI/bjaXDIsgqCDJOROlN3XKKnsdvH+tsZOevi6dMaF7cxeGvXvFmX/v5raPc2C16dYPC3BSxnZrLktXyniWnPrdKxvP2NLV1uXBTbBoXpdom5rP+CMsuqrpjOe4z+eXVvFdynGW7jrKlgMFNPfx5u1mZt6oSO6c2p8BoT7Nv2fd/lSbfalz26Xm3vfgJvu6bNB+gvP2pwYZV5REcfd723hmQiXXp97n0LbpueUZLFydxY4/X9TmG1I0ObtCK9umvwb9nbUV/Vn16xltes+zST9ezNyX1nPFyN48Pz+h6Qd1l/azk7VnuMIqrfWFZ1vWUI8rcqF1V+86e4PK2YLOXkdF5GTyA0fW9VqonC0EndxCn4SLCIpv+cIfp+pK67I53WQ7kIwO0h1ySsYmHS+qZE1mLq5mE4HebgR5uRHkbXx5uZnbPn63K6zHlrR2xhYnWPC/HaxIPcEP8z3pU7TdYdvB3P+sw8PFzOJfTG5zpmanEGvFtvrWwVD+9nUaa347w2Fz01ptmmtf3cihgnJWPnxBy3ep6w77fCdrc5GrlPIAvIDVwAzqh9b4Ad9prQc392Y9sshth4XrFwJw/9T7nZykZfn5+UDzp9y6CsnpWJLTsbpLTug+WSWnY3V2zrySKmY/t4bYcB8+vmdSq6+baSnnieJKJjy9it9dEsd9M2LanOlc5smtdTC/jAueSeSxK4Zwx5T+Dlmfb63P5m9fp/HijQlclRB5zq/Tku6yfZ6L5orcli5F/DnG1GHx9n9rv74CXu6IkD3VouRFLEpe5OwYZ5Wfn1+3E3RlktOxJKdjdZec0H2ySk7H6uycob7u/OnywWw9cIoPtx5q9fNayrk6PReg7eNxHSAq2JsBod78YM/Q3vV5tLCCfy/PYEZcKFeO7O2omGfoLtunIzVb5GqtX9Ra9wd+o7UeoLXub/8aqbVe2IkZhRBCCNGNXTemD+P7B/H8ir2UV1vO/oSz+CE9l97+HsQ1NYdxJ5gVF8bm/QWUVbX/d3lhZSYWq+aJq4ad+wV/oklnnVROa/0fpdRkpdRPlFK31X51RjghhBBCdH9KKX5/STwnS6t4e8OBdr1WlcXK+qyTzIwPc1pROCs+jGqrjfVZLV6Hf1ZZuaUs3n6YWyZGNX9DJHHOzlrkKqUWAf8GpgLj7F9njHsQQgghhGjOmKhAZg8O57XEfZwqqz77E5qxJbuA8morFw7u/KEKtcZGB+Hr7lI3bOJcPbs8A09XMwtmOng6PwG0bnaFPcAQ3Zq5xuzkwjMhhBBCnC7jeAmXvLiWe6YN4A+XNXv9eov+ujSV/20+RNJf5tTfsrqN2nPhWa37PtjO9oOn+PEPF55Tj/KunEKuenkDD1w4iIcuctANWc5T53LhWa0UoIPvEiCEEEKIni4uwperEyJ5Z+MBjhdVnv0Jp9Fa80N6LpMHBp9zgesoM+PCOFFcRerR4nN6/r+WpRPk7cZd0/o7OJmo1ZoiNwRIU0otU0otqf3q6GBCCCGE6HkeuigWm9a8uGpvm5+7N7eUg/nlTplV4XQz4owMy1OPt/m56/eeZENWPgtmxjju1t/iDK29ra9ohwmvTgBg8y82OzlJy5q773pXIzkdS3I6VnfJCd0nq+R0LGfn7BvkxU/G9+P9zYe4Z/oA+oc0fUOF03Nqrfnb0jR83F24eJjzTzCH+rpzYXwYL3+1jrGBlUwfN7JVz9Na869l6fT29+DmCf06OGU9Z//dnaE1syusafgFWIAbOj6aEEIIIXqi+2cNwt3FxLPLM1r9nE+3H2Z91kkeuTSeMF+PDkzXen+9aigAz6/cS2svXfo+5Ti7Dxfx4EWxeLg6d8hFT9ea4QoopRKUUv9SSh0AngT2dGgqIYQQQvRYob7u3Dm1P1/vPkbKkaKzPj63pJKnvtnD+OggfjK+83o/z6ZPoBd3TunPluwCvko6etbHW6w2/r08g5gwH64Z1TF3NhP1mi1ylVKxSqm/2GdXWAjkYMzGMFNuBiGEEEKI9rh7+gACvFx5ZtnZe3P/uiSNihorf792eKtvC9xZrh7dh8ERvvx1aSr5pVUtPvbzHUfYl1fGb+bE4mJuVT+jaIeWxuSmA+uAK7TWWQBKqYc6JVUPc+vwW50doVW6y/2sJadjSU7H6i45oftklZyO1VVy+nm4ct+MgTz9bTpf7z7K3BGNb2lbm3N56nG+ST7Gby+OY2CojzOitigsNISnbprELe+n8bev03jxxlFNPu5IYQXPr8xkZB9/Lh7a+WOKu8rfvTM1O0+uUupq4EZgMvA98BHwX/utflsk8+QKIYQQ4mwqa6xc++pGUo8Wc9P4fvzp8sF4u9f3vxVX1nDRc2sI9HJj6S+n4uqg3k9HzJN7uudXZPLiqr28ffs4ZjaY/UFrzec7jvD4klRsWvPeneMZExXksPcV5zBPrtb6C631fCAeSAQeAsKVUq8qpeZ0WFIhhBBCnBc8XM18ft9kfj59AB9tPcRlL61j+8GCup///dt08kqq+Nd1IxxW4HaU+2YOZFCYD49+kUxplQWAgrJqfvH+Dn796S7ie/ny3QPTpcDtRK2ZXaFMa/2B1nou0AdIAh7p6GA9ycL1C1m4vusPY87Pzyc/P9/ZMc5KcjqW5HSs7pITuk9WyelYXS2nu4uZP1w2mI/unojVprn+tU386/t0vt6SwftrUrhzan9G9Alwdsxm1a5Pdxcz/7h2BMeKK3nm+3R+SD/BnOfXsir9BI9cGs9H90yiX7CX03OeT1ozT24drXUB8Lr9S7TSouRFANw/9X4nJ2lZ7cbf1cftSE7HkpyO1V1yQvfJKjkdq6vmnDAgmO8emMYTX6fxSuI+LKeOEOHn3uVvedtwfY6JCuSnk6J5Z+MB3t10kPgIX9772XiG9PZzcsqu+3fvSG0qcoUQQgghOoqvhyv/um4ksweH8/RHRSyYMRAvt+5Vqvz24jgyjpcwsm8AD100CHcXmQvXWbrXliOEEEKIHm/O0Aiibz3jOqJuwdvdhQ/vmejsGIJW3gxCCCGEEEKI7qTZKcTa9aJK5QEHHf7CXUcIcNLZIUSPINuScCTZnoSjyLYkHKUztqUorXXo6Qs7pMjt6ZRS25qaj02ItpJtSTiSbE/CUWRbEo7izG1JhisIIYQQQogeR4pcIYQQQgjR40iRe27+z9kBRI8h25JwJNmehKPItiQcxWnbkozJFUIIIYQQPY705AohhBBCiB5HilwhhBBCCNHjSJErhBBCCCF6HClyhRBCCCFEjyNFrhBCCCGE6HGkyBVCCCGEED2OFLlCCCGEEKLHcemIFw0JCdHR0dEd8dLd0p7cJAAGhyU4NYcQbVVengGAl1eck5MIIYTjZOQbbVtcsLRtPcH27dtPaq1DT1/eIUVudHQ027Zt64iX7pbGLgwAYNv9sk5E97Jz5wwARo1KdGoOIYRwpBnvzAAg8fZEp+YQjqGUOtjUchmuIIQQQgghehwpcoUQQgghRI/TIcMVRGPb7i90dgQhhBBCiPOK9OQKIYQQQogeR4pcIYQQQgjR40iR2wnGLgyom2FBCCGEEEJ0PClyhRBCCCFEjyNFrhBCCCGE6HGkyBVCCCGEED2OTCHWCW4Zdp2zIwghhBBCnFekyO0ED874r7MjCCGEEEKcV2S4ghBCCCGE6HGkyO0ELyTexQuJdzk7hhBCCCHEeUOK3E7wfspi3k9Z7OwYQgghhBDnDSlyhRBCCCFEjyNFrhBCCCGE6HGkyBVCCCGEED2OTCHWCbbdX+jsCEIIIYQQ5xXpyRVCCCGEED2OFLlCCCGEEKLHkSK3E4xdGMDYhQHOjiGEEEIIcd6QIlcIIYQQQvQ4UuQKIYQQQogeR4pcIYQQQgjR48gUYh3o8OHDbNiwgVuGXefsKEIIIYQQ5xUpcjvQqlWrSEtL45///K+zowghhBBCnFdkuEIHWb9+PQ8//DCLFy8mISGB7OxsZ0cSQgghhDhvSJHbQaZOncq4ceP46quvuP2FsXx18ClnRxJCiC7niy++QClFenp63bLDhw/z8ccfOzGVEKInkCK3A2VkZBAXF8f7KYt5P2Uxf/vb36RHVwghGvjwww8ZO3YsH330Ud2yVatWsWPHDiemEkL0BFLkdpD8/Hz8/f1xdXXFVq05+HEFH330Eb/85S8pLi52djwhhHC60tJS1qxZw5tvvsmHH34IyFAvIYTjSJHbQbKzs+nduzcAeeuqCR7nyoQJE5g9eza7d+92cjohhHC+L7/8ktmzZzNixAi8vb3ZsWNHo6FeSUlJ9O/f39kxhRDdlBS5HSQ+Pp6TJ08ybNgwilJrcPFR9O3bl+TkZIYOHerseEII4XQffvghN9xwAwA33HBDXW9u7VAvIYRoDylyO4iPjw9btmwhJSWFN5/6kMDVCWzYsIGZM2cSGBjo7HhCCOFU+fn5bNmyhUsuuQSA+fPn8/HHHzca6iWEEO0hRW4nuP7665k8eTIffvght9xyi7PjCNEuWmtSU1OdHUN0c4sXL+ayyy7D3d0dgP79+xMREUFaWlrdUC8hHKGoqIicnBxnxxBOIEVuJ/nnP/9JWFiYs2MIcc601nz33XdMnDiRm2++merqamdHEt3Yhx9+yNKlS4mOjq772rNnD2+99VbdUK+NGzc6O6boAZKTkxk1ahR33nkn+/fvd3Yc0YmU1trhLzp27Fi9bds2h79udzV2YQAA2+4vdGoOIdpq584ZAOzYcSvPPPMMlZWV3HzzzUyZMgWTSY6RhRDdQ0lJCV9++SVff/01EydOJH9qPj59fUi8PdHZ0YQDKKW2a63Hnr5cbusrhDirF198kb179xIfH8/WrVvZvn27syMJIUSbVFZW4uPjw8qVK+nj1gefvj7OjiQ6mBS5Qoiz2r17Nxs3buSvf/0rGRkZ/OUvf+FnP/uZs2MJIcRZnTp1iscff5xFixZx++2387vf/Y4bv7/R2bFEJ5AiVwjRKpMnT2bZsmVs3LiRt99+m1tuuQU3NzdnxxJCiBbt2bMHDw8P0tLSiIiIcHYc0YmkyO0Etwy7ztkRhHCYyZMnM3nyZGfHEEKIVpE26/wlRW4neHDGf50dQQghhBDivCKXRwshhBBCiB5HitxO8ELiXbyQeJezYwghhBBCnDekyO0E76cs5v2Uxc6OIYQQQghx3pAiVwghhBBC9DhS5AohhBBCiB5HilwhhBBCCNHjyBRinWDb/YXOjiCEEEIIcV6RnlwhhBBCCNHjSJErhBBCCCF6HClyO8HYhQGMXRjg7BhCCCGEEOcNKXKFEEIIIUSPI0WuEEIIIYTocaTIFUIIIYQQPY5MIdYJbhl2nbMjCCGEEEKcV6TI7QQPzvivsyMIIYQQQpxXZLiCEEIIIYTocaTI7QQvJN7FC4l3OTuGEEIIIcR5Q4rcTvB+ymLeT1ns7BhCCCGEEOcNKXKFEEIIIUSPI0WuEEIIIYTocaTIFUIIIYQQPY7SWjv+RZXKAw46/IW7jhDgpLNDiB5BtiXhSLI9CUeRbUk4SmdsS1Fa69DTF3ZIkdvTKaW2aa3HOjuH6P5kWxKOJNuTcBTZloSjOHNbkuEKQgghhBCix5EiVwghhBBC9DhS5J6b/3N2ANFjyLYkHEm2J+Eosi0JR3HatiRjcoUQQgghRI8jPblCCCGEEKLHkSJXCCGEEEL0OFLktoFS6hKlVIZSKksp9Yiz84juRyl1QCmVrJRKUkptsy8LUkqtUErttf8b6OycoutRSr2llMpVSqU0WNbstqOU+oO9rcpQSl3snNSiK2pmW3pcKXXE3jYlKaUua/Az2ZZEk5RSfZVSq5VSe5RSqUqpB+zLu0TbJEVuKymlzMDLwKXAEOAmpdQQ56YS3dRMrXVCg3kDHwFWaa0HAavs3wtxuneAS05b1uS2Y2+bbgSG2p/zir0NEwKa3pYAnre3TQla629BtiVxVhbg11rrwcBEYIF9m+kSbZMUua03HsjSWu/XWlcDHwFXOTmT6BmuAt61//9dYJ7zooiuSmu9Fig4bXFz285VwEda6yqtdTaQhdGGCdHcttQc2ZZEs7TWx7TWO+z/LwH2AJF0kbZJitzWiwRyGnx/2L5MiLbQwHKl1Hal1D32ZeFa62NgNBhAmNPSie6muW1H2itxLu5XSu22D2eoPb0s25JoFaVUNDAK2EwXaZukyG091cQymX9NtNUUrfVojGEvC5RS050dSPRI0l6JtnoVGAgkAMeAZ+3LZVsSZ6WU8gE+Ax7UWhe39NAmlnXY9iRFbusdBvo2+L4PcNRJWUQ3pbU+av83F/gC4zTNCaVULwD7v7nOSyi6mea2HWmvRJtorU9ora1aaxvwBvWnkGVbEi1SSrliFLgfaK0/ty/uEm2TFLmttxUYpJTqr5Rywxg4vcTJmUQ3opTyVkr51v4fmAOkYGxHP7U/7KfAV85JKLqh5radJcCNSil3pVR/YBCwxQn5RDdRW5DYXY3RNoFsS6IFSikFvAns0Vo/1+BHXaJtcumoF+5ptNYWpdT9wDLADLyltU51cizRvYQDXxhtAi7A/7TW3yultgKfKKXuBA4B1zsxo+iilFIfAjOAEKXUYeAx4B80se1orVOVUp8AaRhXPy/QWludElx0Oc1sSzOUUgkYp44PAD8H2ZbEWU0BbgWSlVJJ9mV/pIu0TXJbXyGEEEII0ePIcAUhhBBCCNHjSJErhBBCCCF6HClyhRBCCCFEjyNFrhBCCCGE6HGkyBVCCCGEED2OFLlCCCGEEKLHkSJXCCFaSSkVrJRKsn8dV0odsf+/VCn1Sge83ztKqWyl1L3n+PzV9mxjHZ1NCCG6OrkZhBBCtJLWOh9IAFBKPQ6Uaq3/3cFv+1ut9eJzeaLWeqZSKtHBeYQQoluQnlwhhGgnpdQMpdTX9v8/rpR6Vym1XCl1QCl1jVLqX0qpZKXU9/b7vKOUGqOUWqOU2q6UWnbabVWbe593lFIvKaU2KqX2K6Wusy/vpZRaa+9VTlFKTevY31gIIbo+KXKFEMLxBgKXA1cB7wOrtdbDgQrgcnuh+x/gOq31GOAt4KlWvnYvYCowF+PWmQA/AZZprROAkUCSY34NIYTovmS4ghBCON53WusapVQyYAa+ty9PBqKBOGAYsEIphf0xx1r52l9qrW1AmlIq3L5sK/CWvXj+Umud5JDfQgghujHpyRVCCMerArAXozVaa21fbsPoXFBAqtY6wf41XGs9py2vbafs77MWmA78f3t3aBNREIQB+P8FGoUmweJwOCqhCqiABgiWkJDQAgVQABZBARgcCYoTi+AS/PFyuff4vgIms2YzmZ3dfUvy0PZ8ikUAzJkiF2D7XpMctD1NkrZ7bY83Ddb2MMn7GOM2yV2Sk2nSBJgv4woAWzbG+FpfGrtpu5+fvfg6ycuGIc+SXLZdJflMopML/Hv9PUUDYJe0vU/yuOkTYusYT0kuxhjPU+UFMAfGFQB210eSq798BpHkKMlq0qwAZkAnFwCAxdHJBQBgcRS5AAAsjiIXAIDFUeQCALA432DTD9EQALX2AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 864x288 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, axes = beacon_sync_figure(\n",
|
|
" time, impulses, beacons,\n",
|
|
" delta_t = t_phi,\n",
|
|
" beacon_offsets = phase2time(beacon_init_phase, f_beacon) + t_phi,\n",
|
|
" impulse_offsets = impulses_offsets,\n",
|
|
" f_beacon = f_beacon,\n",
|
|
" show_annotations = True\n",
|
|
")\n",
|
|
"axes[0].set_title(\"Beacons synchronised\")\n",
|
|
"fig.show()\n",
|
|
"\n",
|
|
"if True:\n",
|
|
" fname = 'figures/08_beacon_sync_synchronised_outline'\n",
|
|
"\n",
|
|
" # Dump figure\n",
|
|
" fig.savefig(fname +'.pdf')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### 1.2 Impulse delays ($\\Delta A, kT$)\n",
|
|
"\n",
|
|
"###### 1.2.1 $\\Delta A$\n",
|
|
"Find the delay within a single beacon period"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[0. 7.]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"impulse_max_time = np.argmax(impulses, axis=1) /samplerate\n",
|
|
"impulse_time_in_periods = np.array((impulse_max_time - t_phi)*f_beacon)\n",
|
|
"someB, A = np.divmod(impulse_time_in_periods, 1)\n",
|
|
"\n",
|
|
"# subtract the reference beacon's value to obtain time differences\n",
|
|
"A -= A[0]\n",
|
|
"someB -= someB[0]\n",
|
|
"\n",
|
|
"Delta_A = A[1:] - A[0]\n",
|
|
"print(someB)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"###### 1.2.2 $kT$\n",
|
|
"Find integer number of periods"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Best k: 8\n",
|
|
"Maximum: 2.0\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"ref_impulse = impulses[0]\n",
|
|
"my_impulse = impulses[1]\n",
|
|
"\n",
|
|
"# remove 'already determined' offsets\n",
|
|
"if True:\n",
|
|
" # $t_\\phi$ offset\n",
|
|
" my_impulse = time_roll(my_impulse, samplerate, -t_phi)\n",
|
|
"\n",
|
|
"if True:\n",
|
|
" # $\\Delta A$ offset\n",
|
|
" my_impulse = time_roll(my_impulse, samplerate, +Delta_A)\n",
|
|
"\n",
|
|
"best_k, (ks, maxima) = beacon_integer_period(samplerate, f_beacon, ref_impulse, my_impulse)\n",
|
|
"print(\"Best k: {:0g}\".format(best_k))\n",
|
|
"print(\"Maximum: {}\".format(maxima[np.where(ks == best_k)][0]))\n",
|
|
"B = np.array([ 0, best_k])\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### 1.3 Total Time delay"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Δ𝐴 = [0. 5.42857143]\n",
|
|
"B = kT = [0 8]T\n",
|
|
"𝑡𝜙 = [0. 8.57142857]\n",
|
|
"Δt = 0.12828571428571425\n",
|
|
"Preset Δt = 0.11399999999999999\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"Δ𝐴 = {}\".format(A /f_beacon/ns))\n",
|
|
"print(\"B = kT = {}T\".format(B))\n",
|
|
"print(\"𝑡𝜙 = {}\".format(t_phi/ns))\n",
|
|
"\n",
|
|
"\n",
|
|
"delta_t = A/f_beacon + B/f_beacon + t_phi\n",
|
|
"\n",
|
|
"print(\"Δt = {}\".format(delta_t[1]))\n",
|
|
"\n",
|
|
"print(\"Preset Δt = {}\".format(impulses_offsets[1,0]-impulses_offsets[0,0]))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"##### 1.3.2 Beacon Synced and Period Alignment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEWCAYAAABi/I8SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB0DUlEQVR4nO3dd3hUVfrA8e+ZmfSEkgIkEBIgBAgtFGkChmIXxV5B1LWtrmvb1VVXXduqP3XtvaCIWLGBYqH3HgIJEAIEAkkIKSQE0mbm/P64k0rKBJIZGN7P88yTyZ1773vumTt33jn33HOV1hohhBBCCCE8icndBRBCCCGEEKKlSZIrhBBCCCE8jiS5QgghhBDC40iSK4QQQgghPI4kuUIIIYQQwuNIkiuEEEIIITyOJLlCiNOKUupJpdTnLoo1Rim1vRXWm66UmtjS63Ui7q9KqRuPc9njKrNSKloppZVSlhMtgxDi9CJJrhCnCEeSUKKUKlZKFSil5iqlIt1dLtEwrfVSrXUvd5ahzn5zQCn1iVIq8HjWpbU+X2v9aUuX8VQrQ3MppaYppZa5uxxCnG4kyRXi1DJJax0IhAMHgDfcXB6PVtl66AEq95vBwBnAY81ZWBnk+0IIcUqRg5YQpyCtdSnwLRBXOU0p5aOUekkptdfRYveuUsrP8Vp7pdQcpdRBRyvwHKVUlxrLBjta+DIdr/9Q47VblVJpSql8pdRPSqmIGq9ppdQdSqkdjuXeUkopx2sxSqnFSqlCpVSuUuqr+rZFKeWrlPpcKZWnlDqklFqrlOqolLpSKbW+zrwPVJZNKTXdEW+uUuqwUmq1UqpHjXn7KqX+cJT7gFLqkRqr8lZKfeZYLlkpNbTGculKqYeUUknAEaWURSl1sWO+Q0qpRUqpPnXmf1ApleTY1q+UUr6O1xKUUvtqzPuQUmq/I+52pdQEx3STUuphpdRORz18rZQKrrHcFKXUHsdrjza0XzRFa70f+BXo51jvCKXUCsd2bVJKJdSIuUgp9axSajlwFOjumPaXGmV+zFGuHEd9tj2eMiulLlRKbVRKFSmlMpRSTzYyb80ymJVSLzv2r91KqbtV7a4Ni5RSTyulljvq/HelVKjjtcpuEDc5YhY49uUzHO/lIaXUm3Vi36yU2uqY9zelVFSN1+r9LDj2lXeBkcpoTT/U9DslhGgJkuQKcQpSSvkDVwOrakx+AYgF4oEYoDPwuOM1E/AJEAV0BUqAml/gMwB/oC/QAfifI8544L/AVRitx3uAL+sU5yKM1sGBjvnOdUx/GvgdaA90oeFW5xuBtkAkEALc4SjfT0C3mgklcIOjrJWuBf7jiJEGPOsodxDwJzAPiHDUx/way13s2I52jji1khnHei90vN4dmAXcC4QBvwA/K6W8a8x/FXAe0A0YAEyru5FKqV7A3cAZWusgjHpKd7x8DzAZOMtR3gLgLcdyccA7wBTHayEY9dlsyujecgGwUSnVGZgLPAMEAw8C3ymlwmosMgW4DQjCeO9rmuZ4jMOoo0Ac9XgcZT4CTMWo7wuBO5VSk53YpFuB8zH2+cEYdVjXdcBNGPu1N8Z21jQc6InxeXoVeBSYiPFZuEopdZZjmyYDjwCXYewHSzH2i5qO+Sxorbdi7NMrtdaBWut2TmyXEKIlaK3lIQ95nAIPjISoGDgEWIFMoL/jNYWRKPSoMf9IYHcD64oHChzPwwE70L6e+T4CXqzxfyBQAUQ7/tfA6Bqvfw087Hj+GfA+0KWJ7boZWAEMqOe1d4BnHc/7YiR/Po7/pwMf1pj3AmCb4/m1wMYG4j0J/Fnj/zigpE4931zj/38DX9f43wTsBxJqzH9DjddfBN51PE8A9jmexwA5GAmUV50ybQUm1Pg/3FHPFowfKl/WeC0AKAcmHsd+swd4G/ADHgJm1Jn3N+BGx/NFwFN1Xl8E/MXxfD7w1xqv9WrBMr8K/M/xPNqxn1nqKcMC4PYay02sZ97Harz+V2BenfV2rvF6HnB1jf+/A+51PP8VuKXOfnAUiHLiszANWNbcz7w85CGPE3tIS64Qp5bJ2mgJ8sFoFVyslOqE0bLkD6x3nGY9hNGKGQZGy69S6j3H6eMiYAnQTillxmhBzddaF9QTL4IaLXha62KMRKBzjXmyazw/ipEIA/wTI/le4zjVf3MD2zQDI7n6UhndJV5USnk5XvsUuE4ppTBaBb/WWpc5ETsS2NlAvPqW81W1+99m1Hhetw7sjtedqYMqWus0jNbgJ4EcpdSXqrrrRxTwfY33bitgAzo64mfUWM8RjPegOSZrrdtpraO01n/VWpc4Yl5ZGdMRdzRGgl0po76VOdSqF8dzy/GUWSk1XCm1UBndaQoxWj5DndiuWnEaKG9T782BGs9L6vm/cv4o4LUadZWPsX83az8QQriOJLlCnIK01jat9WyMRGg0kIvxhdzXkcy001q31cbFRgAPYLS0DddatwHGOqYrjMQgWCnVrp5QmRhf7sbMSgVgnHre70QZs7XWt2qtI4DbgbeVUjH1zFehtf6P1joOGIVxyneq47VVGC2AYzBOO8+ou3wDMoAeTc7VSPFrPK9bBwojiW6yDo5ZqdZfaK1HO9anMbqYgFHe82u8d+201r7a6EOb5YhXGd8f4z04URkYLbk1YwZorZ+vWeRGlq9VLxjdYKwYSWJzy/wFRreRSK11W4w+rMqJbciidjeI1hxtJAOj1bhmfflprVc4sWxj9SiEaCWS5ApxCnJc0HIJRl/UrY7WxQ+A/ymlOjjm6ayUquwfG4SRBB9SxgVNT1SuS2udhXEq9m1lXKDmpZSqTIK/AG5SSsUrpXyA54DVWut0J8p4paq+uK0A44veVs9845RS/R2tykUYp7xrzvcZRl9Pq9ba2WGY5gCdlFL3KuOCvCCl1HAnl63ra+BCpdQERwvzA0AZRhcLpymleimlxjvqsRTj/ajczneBZysvZFJKhTneXzAuMLxIKTXa0Q/4KWocu5VxcdvxJFGfA5OUUucq4wIuX8e6nO3vOwu4TynVTRlDkj0HfKW1tjZV5noEYZxNKFVKDcP4QeOMr4G/O/b1dhhdMFrLu8C/lFJ9AZRSbZVSVzq57AGgS51+3EKIViZJrhCnlp+VUsUYyeCzGP0nkx2vPYRx8dUqR5eEPzFab8Ho4+iH0eK7CqMrQ01TMJLLbRj9Ru8F0FrPx+iT+h1Gq1kP4Bony3oGsNpR3p+Av2utd9czXyeMpKgI4zT9YowErNIMjNEAnG3FRWt9GDgbmIRxCnkHxgVSzaa13o5xwdsbGPU3CWNIrvJmrsoHeN6xjmyMC6EqR3x4DaOOfldKHcZ4j4Y74icDd2H84MjC+MGwr8Z6I4GVx7FdGcAljjIcxGip/AfOfy98jPGeLAF2YyTuf3OyzHX9FXjKse2PYySvzvgA4+LGJGAjxkWBVur5MXWitNbfY7S8f+n4fG3BuOjNGQuAZCBbKZXb0mUTQtRPaS1nUYQQJy9lDIOWAwzWWu9wd3lONkqpD4FvtNa/ubss7qaUOh/jor+oJmcWQng8TxnoXAjhue4E1kqCWz+t9V/cXQZ3cfwAGofRmtsRoxvO924tlBDipCEtuUKIk5ZSKh3jAqTJWuuNbi6OOMk4LmhbDPTG6OM8F6NbTJFbCyaEOClIkiuEEEIIITyOXHgmhBBCCCE8Tqv0yQ0NDdXR0dGtsWohhAcrLt4KQGBgnybmPHGlpaUA+Pr6SqwWjHX06HYA/P171btMS8drLRJLYkmsU8f69etztdZhdae3SpIbHR3NunXrWmPVQggPtmKFMZTtqFGrWz1WamoqALGxsRKrBWNt3JgAwKBBi1wSr7VILIklsU4dSqk99U2X0RWEEEK0mJIKG+VWu7uLIYQQ0idXCCHE8XvqqaeIijKGpdVas/NgMduzD5NzuNTNJRNCnO5aZXSFoUOHaumuIIQQnm337t1MmjSJvLw8UlNT2Z5XwboNZwFwNPBb7j+n5fvlCiFEXUqp9VrroXWnS0uuEEKI4/LEE0/w2GOPERcXR3JyMh8u3Y3ZZKKtnxefr95LaUWL311XCCGcJkmuEEKIZktOTmbLli1cffXV9OnThyWrN/J7SjYd2/gQ0c6P/CPlfL9xv7uLKYQ4jUmSK4Q4aaxYMbxqhIXWlpqaWnU1scRqvkcffZQ77riDHTt20KdPH75fsBKTUliLNP97YRdl8/6Pj5btpiW7xHliPUosiXU6xnIVGV1BCCFEs6xevZrffvuNdevW8dRTT1FhtXIkIIK/XBtOt6gAnniiF3/9RwBpOcUsTj1IQq8O7i6yEOI0dFxJrlLqfa31bS1dGCGEECe/Rx55hDlz5hAZGQnAzymHeGjK+dwyujvWg8Y84W19sQX58NGy3ZLkCiHcosHuCkqp4AYeIcAFLiyjEEKIk8Qff/xBWVkZEyZMAMBqszN7WzEmaxmd/asvNDMpxY2jolm6I5ft2YfdVVwhxGmssZbcg8AeQNWYph3/y89yIUSL69BhistihYSESKzjcPbZZ3P22WcDkJKSwkdf/ciekPHMWZdG+/btmT79IK+/vhuzOZy4JV/i6zWET1em89yl/U84tifVo8SSWKdzLFdpcJxcpdQOYILWem89r2VorSMbWqmMkyuEEJ4vPz+fSTffy8p5s5l8wTlkZWWRmbmJ22+P4pFHtgJw8/S17C8o4bf7xrq5tEIIT3U84+S+CrRv4LUXW6JQQghxMnvvvfcIDw8nPj6emJgYJk+eTHl5ucvif/DBB8THxxMfH4/JZKp6fv/997usDI0JDg6m20V34RfYlu+//57Vq1dz7rmhnH9+x6p54sLbsPNgsYyZK4RwuQa7K2it32rktTdapzhCiNNZWtqbAMTE3N3qsfLy8oDGT9ElJSXx3HPPcdNNN2G324mNjSUpKYmhQ49pMDjhWPW59dZbufXWW9m/fz+jRo0iMTGx1WIdj9zcXDYkJdMxsht7CrLx9/cnKMgLm636DGGf8DZY7Zq0nGL6dW57QvFcuW0SS2JJrFOfjJMrhDhp5OTMICdnhkti5eXlVR3UG7J582YGDRoEQFpaGlprYmNjWyTWlVdeyd13383o0aOJiopi2bJlTJ06ldjYWG655ZZa827ZsoX+/Z3r0+rMdrWUz7/+nm3v/43u3buTnp7O7Nmz+fPPXK69dj1WqxWAuIg2AKRkFp1wPFdum8SSWBLr1Cfj5AohRAOSk5OZOnUqFRUV7Nu3j7lz59KmTZtGlxkzZgyHD9ceTaCsrIyHHnqoVoK8efNmRo4cyZtvvsnjjz/OLbfcwqJFiwgJCaFjx468/fbb+Pj4VM3br1+/lt/AE+TXsRsdrniS/z5zC5GRwURGRvLJJ/Hs3VuCxWJ8vUQF++PvbSYl68STXCGEaA5JcoUQoh4ZGRl06NCBpKQkAD777DOefvpp3nvvPZ599lkKCwv59ttvj1lu6dKlx0yrexeh0tJSDh06xL333guAn58ft9xyC+Hh4QD4+/vj7e1dNf+WLVuqRjQ4mew/ojH7t6V3p6CqaUopoqL8q/43mRS9OwVJkiuEcDmnuisopdorpYYppcZWPlq7YEII4U5JSUnExcVV/T9w4EBycnLo3r07H330UYPLjRkzpuoCscrHJZdcwooVK6rmSU5OZvDgwZhMxiF406ZNDB9u3M543759REREoFT16I0na0vuzpxiwtv6EuTr1eh8cRFt2JpV1KK3+BVCiKY02ZKrlPoL8HegC5AIjABWAuNbtWRCiNPOqFGrXRarqb61mzdvpk+fPgBorfn000+ZOHFik+utryW3vnUPHDiw6v+kpCQGDBgAGAlv5XMAu93Ojh076N27d5Prhaa3qyVl0p6hA7o2OV9ceFs+X7WXfQUlRAb7Nzl/Q1y5bRJLYkmsU58zLbl/B84A9mitxwGDMG4UIYQQHmvz5s1Mnz6dQYMGMWTIEEpLS3n66adbbN3x8fGA0XWhpKSE9u2NERtrJrxgXPDWpUuXqv65J4sjZVbS847QJ7zxPsoAfcKN7gzSZUEI4UrO9Mkt1VqXKqVQSvlorbcppXq1esmEEAIoLi6muLiYTp06uTTuzJkz652el5fHo48+ysaNG/nvf//Lv/71r2av++WXX6567uvry+7du6v+r7u+2NhYUlJSmh2jNezcuZMePXoAsC37MFpXj57QmN6d2mBSxggL5/Z17fsohDh9OdOSu08p1Q74AfhDKfUjkNmahRJCnJ5WrBjOihVG39Ti4mJeeOEFevTowaxZs1o8Vmpq6jEXhDkjJCSEd999l507dzqd4B5vrOPRWrFKSko477zzmDBhAkuXLiUlq4iK/P34Hj3Q5LJ+3ma6hQaw9QRbcj2hHiWWxJJYrtNkS67W+lLH0yeVUguBtsC8Vi2VEOK0VVJi5Y477uDrr79m0KBBvPjii0RFRbFo0aIWjZORkQFAZmbr/2b3lFjvvPMOf/zxB9dccw02nzaYeiXQIegsp5btE96GxIxDLV4mIYRoiFNDiCmlzEBHoPKcWidgb2sVSghx+kpOPsLHH3+Mn58fRUVFfPLJJ60Sp6SkBDCG72ptnhTLbrcTEBDAjh3bCTp6FKXuc2q5uIg2zEnKorCkgrZ+jY/GIIQQLcGZ0RX+BjwBHADsjskaGNDgQkIIcZyGDm1Lfn4+b731Fq+88grjx4/nmWeeqeoL2lIqT8u54opiT4n16aef8tRTTxHdrRulI29l8si+Ti8b57hAbVtWEcO7e85tQ4UQJy9nWnL/DvTSWnvWvd6EECedDh2mABAYGMhDDz3EXXfdxVtvvcX8+fNbPMl15f3ZPSFWSUkJf/75J9OnTye81yAmvrKY+JguTserTHJTTiDJ9YR6lFgSS2K5jjNJbgZQ2NoFEUKImJi7a/1fmey2Bk/98mitWH5+fsyYMQOAnzcZ/X2Hx0UREtLWqeXDgnwIDfQmJfP4Lz7zhHqUWBJLYrmOM0nuLmCRUmouUFY5UWv9SquVSgghxEkrJasIL7OiZ4egpmd2UErRJ7wNW7NlrFwhhGs4M4TYXuAPwBsIqvEQQogWlZb2Jmlpb7okVl5eHnl5rumF5WmxUjKL6BEWyOHCgmbFigtvQ2p2MRU2e9Mz18PT6lFiSazTNZarODOE2H9cURAhhMjJMU6H1+220BoqD+auOEVXXyytNTNW7WFFWh7eFhPeFhO+XiauGBJJfGS7Fo3V0lKyihjTM7TZseIi2lBus7PzYDG9OzV9E4m6XPWe5RaX8dzsNRSVVBDYIZJym50OQb7887xe+Hs7NShRs7h7X5RYEsvVsVzFmdEVYoEHgeia82utx7desYQQwnPZ7Zqn56bwyfJ0IoP9MCtFudVOYUkFszfs5/O/DGdw1/buLma9Dh4u4+DhMseFZNZmLVt58dnWrKLjSnJdoeBIOTd8uJqUrftoH+BN29IgvC0m5m3JJmnfIT6edgbt/L3dXUwhhBOc+Un6DfAu8CFga93iCCGEZ6uw2XnouyRmb9jPTWdG8+8L4zCZFAA5RaVc+d5Kbvx4DbNuHUG/zs5d1OVKlXctiwtvA/b8Zi3bLTQAH4uJ5P1FXDqoNUp3YopKK7jxkzXsyj3CC1cMYEhU+6qh2OZtyeKeWYlc/d4qPrtlGB3b+Lq5tEKIpjjTJ9eqtX5Ha71Ga72+8tHqJRNCeJzlablk5B/FbtfNXzhjDSx92fjbmloxTmmFjTs/X8/sDfu5/+xYHh9YjGn5K1WxOhQm8dPA1Yz02snUj9ew48Dhlgtec7tOYBuTHaMjxEU00BJbdhgKM6rXXSOWxWyid6cgUk7w9r5VWmibAI6WW7n5k7WkZBbx7g2DGRJVuyX9vH7hfHLTGewrOMoTb31MwbznW39fhJNyv88rLmPL/kLKrcfXt/qYWK21ja6K48pYrtympmKfApTWjX/ZKKWeBHKA76k9ukKDP+GHDh2q161b10JFFEJ4giNlVvo+8RsAfl5muocF0KtTEDef2a3+FsuMNbBrMXgHQPpS2P6LMd1kgUvfhXZRxvToMRA57MQKl7EGdi+FknxY9Q5oGygTDLweIgbC0XzoMe6E4pRW2Lj1s3UsS8vlqYv7MsX0O8x7CLTdiNUtwdgebcNu9uYv+nE2m3rx3R2j6Bri36xY27MPc99XicR2DOTh8/vQKflD+OPfRiwUKAVag8UHbvy5Wdv1t1kb2bCngOUP19Njbe9qNm4YDWgGbWoDHfpATkqtWP9a68uvW7LZ+O+zUUo1a7vqxuLTi8BWgUZh3KNIo5UF0w3fQY8Ep1dVbrVz8/S1rNiZyxvXDubCAeHHxkr+HizeFKVvJHD/EhSAyYK6/tvqfbSl9sUdfxjP05fB3hXGc5MXTHgC7OUtFyd9KXQZZuz7S/+vel8cdoex3xfug25jyW0/kA+W7GLj3kOkHSwm/0g5AO39vbh4YASXD+lC/85tm34/reWw6L+w7H+ABmWGnufAzvlgt4HZG2786cS3DSB9OXx2CdgrjG3qNACyNxvbaPFtkTh2u2ZHTjF7NvzGhDW3Y8KKViaswbF456c69vuWiQUY79mnk8BaBiYzdOwHWZsAbdTd1J8hasSJx6mUvgw2f2PUX3Yy7FttTDd7w9SfjDLU2O+tNjsWszNtpy1PKbVeaz30mOlOJLm765mstdbdG1pGklwhRF0VNjuJGYdIyylmx4Fi0g4Wk7i3gMNlVi4b1IV/nNuLTm0dp4D3rDQSGLujz6eygK7b/1MZD4vPiX2J7FnliFXR+Hxmb5g297jiVNjs3Pn5evK3LeOlmCS6V+wwvnBrqUzUAGUid9g/mbh2CKGBPsz+6yja+Dp3K9x5W7K5/+tEhlnSSKhYRrxpB/EqDe2IcIx+l8PlHxmJrxPGv7yIHmGBfDC1zvfJob0w4zI2RiYCMCgxALwDoby4ep4+F/Nrm8vZvOwXbrp+CmFxY5yKeYzD2TD9IsjbAThqTVdvQrnJF8vgKZgCQ6HH+EbfM601//w2iW/W7+OlKwdyxZAutWdI/Q1mXeP4gQBYfNHW0qq6tJssmNBGQmM+wX0x9Q+YdbXxIwvAyx8qjh47n8UHbpxz/HFqJks0nANowGby5kbb46yu6MGgru2I6RBITIcgQgO9+T3lAH+kHKDcaqd3pyD+cW4vxvfucGyym74MVr0NGevgyIGGy6XMMP5RGPPA8W0XGD9I1n4I23+F8hpnQiy+YC2t/n/4HXD+C8cVIi2nmHcW7eSPlGz6lm/iLctrBJuM/VxrOKx9CTKVVn2iVe+LoPPgE/9x8vO9sL7Gbc4tfmAtqf4/sCOMuBPsduh2grHWfQpz/k7V/uHTBspqnIHxDjT2H21Hm735ccDbvLytHXPuHkNbf9fftvu4k9zjIUmuEMIZRaUVvLUwjU+WpWM2KW4d252/DPSnzRcXwqF0YyZlgvgbjBYFWzmYvSA8HjJWAaBRLO96O1/7XcMZ0e2ZGNeR8LZ+zhXgaD58OBHydzomKKN1QjtaRvpdhk78AuU40O/wjuMfgc8S2jaIaaO6cWZMSJOtVza75p4vN3Jo8+/M8HkBU+Xd0fteDtvngq3CiHXuszDvX2BznDDreQ7JXa/n199+4WjnUTxy29RGW0nsds1r83fw2vwdXN9xD88UPVaVLM2xDudsy0Z8lA1lMhvbaa8wthMNkSOg6wjofWGjX4xHy43W+HvG9+S+sx23Dd6zEpa+ArsXA4qN/Y2TfIO2hMB5z8O8hx3bZCSCGoVdAxYfzNOa14pMxhqjpX3H72hbOTabHbQdmzLhZTKhtA0rJnZZw+hlzjQSDLMPTGs4IXx/yU6e+2Ub90zoyf2V21TZymnxgwXPQMURY7oyw+CpsOlLtK2ccm0iR4XSRWcZSa8ywfjHGkzSdh4s5uNlu9mw9xDBAV6EBfoQGujDiO4hTAzcDZ9fUZ2YKRMMvhE2fWns91Cd/AL0vwou/6DeOMVlVpakHmThthwCfCwMjGzLwC7tiA4JMPp/z30Q1tZYtue5sHuJ4/Plja33RZi2fItCozWsCzyL4Glf0CMs8JhYhUcrmLM5k4+W7mZX7hHG9AzlsQvj6NXJMdJo0jcw+1aqfoWccTts+LQ61sT/oH5/FOX4kXmw64WUh/YhfOA5mKOG17t9DUr5Eb6ZVv2DxORlPDd7Yz/3vzDvYVTlvqjM2PpdhSWkm9NnabZlF/HmgjTmbs5igiWJJwO+o0vpDqwBnTCX5oPdhjZ5saLnPzhj+4tY7OWY0MaJE0BZfJ06c6K15nCZteoiT9KXMyjtLXwyV1F1JsbsU+PzVQ4mE/i0haO5xkqciFVcZmXDngKUAm+ziXb5G+mYt5Z2FQdg3XSqf3SbYchUSHTsiyYz+LWHYuMHiw0TL1dcybaet/Lspf2cP/62oBNpyfUH7ge6aq1vU0r1xLjN75yGlpEkVwjRHBn5R/lq9nf0anMPbdURRqW0waxAOb6guPEnAPTupewMiGd5Wh5Xb70Lb12OScFOeyeWWEbxc8kANuhYBnRpy6QBEdw4KhpvSz2JYcYaUn99F9IWEBt4GFBVX4ac9zyU5GHteiY/bMzkwo2344XVaDTGTpa5M/Ptg5ldOoSjHYfwlzHdmTQwHB+L+ZgwFTY7D3+3mRXzf+I9/3cY0LZGsjT+UaNlp+Zp7ow1sGsR5O+GTbMAsKMo0xa+6P0Gt1x7Tb31V1hSwQNfb+LPrQe4NCST23Ofo7dfflWs3QPu5aH1bflL5H7OueAKY3r6Uug6CpJnw5r3jWlNtFZv2FvAZW+v4P0pQzinbydS530Acx8gNkQZSdmVn7Gx6EkoPcSgHrOqtyl9KUSNhtXvoJO/Rzm2yzTh38632u1cQOqrlwI2YkMtbBr2Mv9ZUsT9sTmMGH8JFpOpqi4Tl86h//bXMSttJBc9z4XrvjqmtfrPlAPcOmMdF/QL541rBxkJoKOVM/XAUUATG9UZSgvAZq21L5K+lG2+A/nPzylMNz2FNxVGojt4Ggy8FvYuh+gx6C5nsHp3Ph8u3cWfW3PwtpgY3i2Y4jIrucVlRBQlcWH+55xh3k5sVATmkgLjDEadWPiFVCc02g5ooxU+rA90Pwsih/FHygFmrdnLsrRcyq122vp5UW61U1JhJMejfXdxVelseh7ZQO8QUMpU3foMWHctYUFJLN9v3M8rpY/jraxGkoaGmLOh8xCImVDv/lFutfP5qj28Nn8Hh0sruCS+MwmHf6V30ov0CrZX7YuMf5SijiPYl/gHvx+J4bN9HYk+uoUJpg1MMK2nt3k/WkO58uLbfu9wZsIFRIcGNLl7pP7+CfzyILHtKs/+mLEOmkp6RXv+ONqTj/d2ILJ4MyNMW0m2RzHN8hvjzJvQgFV5s3HcDOKGTyTQp/b1+JmHSpi3JZtft2SxNr2AAG8z9wX8zph979MrxGx0n5ryg9G6XuezfCDpT9K2b2Zk4S+YHInu7u7X0/Hq1wmoEyersISlqbks2XGQ5Wm5FBw1kv6xBT/xiNcX9A41YcPEwqh76RtmodOAiaiuw6s/X9FjjO5dC5+lKjkdchNMerVWHK01q3fn8826ffyyOatq3xisUvnPYWM/7hVqZr9/bzqV7cZkt6Lq7It5ocNYv6eAcatuwqKNY+P+2Kl0iYxuma40x+FEktyvgPXAVK11P6WUH7BSax3f0DKS5AohmmX3UpgxmRV9DgHwdeI/yVKduCpsD+mBg8gI6IfJpFi/p4A9eUfxMiumRR7knIBUoskidOd3RuJk8uKHge/z2b6OJGYcol/nNrx69SBiOtRogXJ0T0g9WAooYqe9BR161/qCSssp5sFvNpGYcYi7YvL4a7dsAmITYM8K+PMJo/ensnCf37P8mB9JG18LF/QP5+KBEQzvHsK27CK+Xb+P3RsXcmn5HGKK1uDl5Utsuwrn+x7WODVpR/FyxZVEXPwY1w+PqjVbcmYhf525gQ6HNvFc13XYt/+B0prYYF0r1gMrfZi3JYvVj9b5Il/6stFaWdn61XWEcSrcfOwpxxmr9vDvH7awZmoQHdK+IXXBF2ArIzbEXJXAbAz8GYBBgxYdu02OBLLqdH+vC2DkXZCxuvEvx33r4PPLSN1vJO6xod583WYqr5RMYtlD445t4c5Yg236JLStHKU1ZqWh+3joOryq+8LWrCKueGcF3cMC+fr2kfh5O36k/PoQrH6X1DwboIi9/FFjmQb63K7Ymctrn8xklEri7KB04o6uQyujPFblxd+9/8Mvh7oSHODNDSOimDIiirAgH2PhlJ/R30xlR24FNm3ijQ6Pc2NCX4arlPrrozKhiRwOq9+FrUZda7MPb0T+j1e2taNLez/O7duJc+I6Vl08l3awmAMbfmX0mjvYmVeBTSvmhN5IbKgP6QGDSPPti81uZ8OeQ2QXlTKwS1seGXCYM0jBFDUKNn4OiZ8bZWiiZbzgSDnf//gNA7e/TlB+MrvsnRgfVogZK1Ys3KYeZ3GJ0duxvb8XCb06MKZnKCGBPkSnvEPXxFeMFmRgtm0MD1TcyZkxIfxtfE9GdK9n/NY9q2DRc6SuWwBtIon1y0PbrNiUF3+1PMHvRVEE+lg4KzaMCX060LNDELlHygjZ+Cb9tr2OydFa/bNtJPfZ76G9vzdtfC0E+Vqw2nXVhZaXhu7nqtB0BrcvY8+f7wO61n7f4I+1jDXYP50E1nIUdsq1mY/tkwhq246Nqi9rbDEcLrVyyJHUdgjyYXTPUPp0DOKM/B/xXfAfFDZ6hZixYeIV65W8Zb2E4d2Cue/s2Np1krEGPr3YOHOitfHDc/gd4B+CNepMvsuJ4J1FO0nPO0qQj4WLBkZwYf9wfLxMRC36GwXrf0QBMSEW/me7iuXWPowwbyXNL56isEF0bufP1qyiqgtHz2mzh3sjttIn93dUcTZGS0AL9kFuhhNJctdprYcqpTZqrQc5pm3SWg9saBlJcoUQTslYAxtnwJbvofwwK/oWA4reQU/z4pEL2bC3AKtdY7VpbHZN97AAJg2I4Ny+nar7fdVN0sJ6w/jHSU1ex7PJway2xvC/URWcF7AD5R8Mi1+Aw1mOJMZM7FWPV31B2e2aT1em8/yv2/DzNvPUJf2YNCC8uktCnVi6fXdS+j9I+taNzDzQlRXlPQjwNnOk3MZVlqU8b3kPE3a259lRF7xMbL945y9QqtNvMsscwQ+lQ9gdehZdBiQwoU8HkjOL+PcPW7jYZwMv2l9GaRupeXY473liB5xRK1ZixiEmv7Wcpyf3Y8qIqDpxLjZaCBVGYhzWx2ixi7ukVjn/NXszB5N+5wPTcyi71ahDkxexwaoqmd6Y+0+ggSTXEe/nH2ZhKdjJ+Xaji0ODfav3rIIlLxqt2/6hpO7LBbuNmI6+XHHkYRImXsQ9E3o2GKd4+0KeTwmhd85crrcsMN5jZeGFjv/Hp/vCaefvxY93jTb6gu9ZZby/O+eDtpGaZ3RZiX3glybfqx0HDjNz9V5+StzPCxX/ZaJpA0qBTStmt52CHvtPLh4Yga+X2XGR4xKjq8ya98FeQWqeDY2ZFZ2n8p9D53H54C48eXEcQY31w176Msx/GhwJ4UpbHBkD/sYVHTIxdx9b3Yq+ewmUH4HV70HFEVLzbNgxs7PPrfz38AUoBV4mE2aTIqKdH7eO6X5sN5xjfgiNhHGPwr41tfdlu924qGyBUa5tefBTt3+TYQ2ib3kS2e2HUhExlKgQf4ZEBRMf2Q6zqUacmvuio7V6R+jZ/Jkfwh8lvfHpNpL7zo5lWLdgI4lb/ynMvQ+0ndQ8OHrh6+SZgklbO4/fimOwdRnG38bFMDY27NgzOjViaeworUkNHs9eSxSbfIaQpHpRYbNzZkwok0P30fnHq6v69KaqGChIJ7a9du4Hq+PHia1DP0p+e5rA/M1ooEJ583bX/5HXPp6oEH/G9AwjtmMgaucC+P1RyNlKqqUP5O6oinX46u/4LieCtxftJOdwGSO7h3DXuBhGdA82fuxV/hAKj4fFL0LGKiMWXlxT9ii2zmcw7cxozusbjt+B9cZFjvvWwa4FxrEDE7Ed/Si59nuWlXUnJbOIPflH2JN3lIz8o0SHBDCudwfHD4ZAYz9Z9LxxQSE02WWntZxIkrsCmAAs11oPVkr1AGZprRt8RyXJFUIcw2Y1+uJlrIH20cYFSZUjGQCYvIyWXKUYNXy58y0BtZI0xxem3QootMnCQt8JjD7yJ17KarQe+rQBawmpORVg9qpKYrILS/nHt5tYuiOX8b078Pzl/ekQ5NtILBNG39byqlhb4/7O1lwb44t/on3xzqrFUvOAkXcSe93zzauzyi+svJ3oxJnGpmFipnU8W+1dGWDazQD/XOLKt1T1G24oltaai99cTrnVzrx7x9ROYmqd8lwIC59zvKBg6M0QNRJSfydxayp9rZvxcgyZnpoH9JtMbNyAqmRn48YEoJEkF3hn0U5emLeN1MHf453yTfULXYZDlyHgHQTZiZD6O0b/SRNc/y2p+wtg/zpWmAfxzKYgVjw8ng5NjFdrtdlZ9skjjMl412jRBQoJZFPHS4kPhTbBHeBQBmz5prr1a+JTpO7ZD52HEnvWFY2uv6Zyq50NK35jyMKpWHS5sb/5B0P0WIiIN5LNZa9WX+QY2hsOpZN6oBTMXnS7dw6vp7bnrYVpRLTz45Wr4o2Erh6Fqcvwn3UZyl5hdNHEMXIGGKfQB10PiTONPt9gfOaKskjNKau13zul5n4Pjs9sjVjDboUjB2H/esjfVbXYce33NUd9WPMBbP3RMW6Gic/UJDaWdeZSv0R6mfcRXr636oLKrXma6dbz+KrtjfTv3Jb7zu7JuF71XARXX6yuI42L1bZ8Z0xXJhhwjfHeKQUpP8GhPY6FFKk974AuQ4k17Wn+6fklLxk/GCq7FLTvBoOmGP1blRmyN8Ge5cZrJgupY94Bk+mYWKUVNmau3ss7i3aSW1xGkK+F0TGhJPQKo42vF8mZRUSnvMNlhdONCyOBkoBIfM+8E5WTAhUlkPJD9fF30BRS24yGrERix1zW/L7ylS3IJ3rx5XE6kST3HOBRIA74HTgTuElrvbChZSTJFUIcY/dSYxSD+jgubEiz7IGQGGLO+L/mrbtmkpbyE6x8o97Z7Bp+C7uRQQlX4JW+iPLOwyiNHMO69HyembuVcqudxy7qw3XDujb85Vgr1o+w8s2Gt8lkBruNvDILXDOTkAFnN2+7KtVtSatBA6rHBOOL0VbRaKyv1u7loe828/XtIxtMnhqNpWFPUDzRJSkNbpczSe7i1IPc+PEafprsxYA/pxhDSzlSmSpm7+qkynFKOC9uGqUVNi54L5HRMaG8df3gBmPU4ui+oGwVYDKjgjqiCjOqX1em6u2tEQuO8xanlftIcY7RglrvCAaOFq9uY8jbNA+6jqyqx/V7Crj/60T25h/l9rE9mDwogs7t/Ajy9aK4zMqHS3fxwZJd9LZu5dauWYw5ezIBm2dWdyloRqxmb1P0GFj3CWz6op6ZFMRfB1tmg628Zfb7+c8Ax+6LdhQ/WkdxnnkNXtg4UGLix97/x9Bxkzkjun3zh6drZL8noCOU5FVdkJp38QzoPPj4942aP8q9AqHsUPXrNUckUWbyhtwLI+9qMFZJuY1F23NYnHqQRdsPkl1ktDabTYpJ7ffx4tHHsGgrymQyLnyrOeJEJUfra4vs8ydZn9wm73imtf5dKbUeGIHxg+nvWuvcViijEMKTZazBuP+M3Ugk+l9ptCRUji4w8DpijvfgGDms9oF17YfVIzGMvg+WvoK2W7GZLHx6oAf3zComOGAUOcvL0HoRAAMj2/G/qwbSvZ4ryBuP9VF1rJiJsO0Xqr6UB10PbSMJOdEDf/QYo4XEcUU6fS81rrrHjlJmiD4TEh6G9KWNxrp4YGeembuVGav2NJzk1o3V5yLY/C2gsWGiODIBRv1fk7EaU3l73zUVMQy48Wfjy7FwH6yfXj1Wa/z11SMLmL0hegwhISF8sy6DwpIKbqjZ5aIpkcOMkRwqv4R3L3W0pjn2xUFTIOmrY2Idt8p9ZOnLjgTaMe5y30thW40RNRzDPIXUqcMhUe355Z4xPD0nhXcX7+TdxcZZgbZ+Xti15nCplfP7deKBc0ZX9zf3thgtkbZyMFtg1L2w/NXqi9gaiNXsbaqU/H11oma3UdXiHtLDaMk7gf2jSvQYoxtL5fvS+wIjgUZjUibOG5fArsD7iDq8gc69xvHXlvqM1d2m4bcb9efYf467DsGoD0f9GPviEljwLFX74oArq0cxMHsTMvA8aGRf9PM2c37/cM7vH47WmtQDxZRW2OjVKcjRPSa+OtbOhUbXAoxuCZhM1SPJtNQ+f5JxpiV3vtZ6QlPTapKWXCHEMWq2YNS9crylf/3XbVWo8f+BtgN4f8kuikoq6NLeny7t/YgM9mdw13bHN5B5zVhw7Da21Ha1UJynfk5hxqp0Vjw8ofoCKCdi2a3llGkzOZd+Q1R8QoPrd6YlF2DYs38yumcor1wVXx3Tif3jkjeXcaTcxh/3jT3+m0m4al9sgTjbsotIyylmf0EJ+wpKOFpuY8rIKOIj29Ufr4H9vsUTkMp11xz1oaX3+ZpxWvvzVTNWa29T3ZiuPC7WjOUYScZdra8tqdndFZRSvoA/sBBIoHoc8TbAr1rrPg0FkyRXCFGvJr5009KMU/8xMXe3elHy8vKA4zw115h6trFVYjVQl03F2nmwmAkvL+Yf5/birnExTsda+Nts3kkPZ+Z//oaX48dAfbGcTXJv+mQNWYWlzLt3bJPbVGlx0i5u+Gg1z1w9khtHRTtX9oY0EavF3jMnEs1W2xddFes498WTOlYj75vEOvkcT3eF24F7gQiMIcQqk9wi4K2WLqAQ4jTQxCmtnJwZwCme5Nazja0Sq4G6bCpWj7BARseEMnPVHu44q0ftq9sbifUhdko7WasSXGdiNSYuog1Ld+RSWmEzTqs64jS2f3y2cAve1iNcOrhzs+Mdo4lYLfaeOXEa95RPco9zXzypYzXyvkmsU0eD5+a01q9prbsBD2qtu2utuzkeA7XWDVxpIYQQ4mR33fCuZBaWsnJnnlPza61JySyq6kvbEuLC22K1a3YcKG56ZhwX2KTmMKF3B6dvcSyEOL05c+HZG0qpUUB0zfm11p+1YrmEEEK0kvG9OxDgbWZOUiaje4Y2OX92USkFRyuIi2i5JLevY10pWYX079K2yfkXbMuhtMLO+N4dW6wMQgjP1uRVFkqpGcBLwGjgDMfjmH4PQgghTg2+XmbOjuvIvORsyq31DJlUR/J+4w5HfVswye0a7E+gj6XqjlJNmZOUSXt/bwbWd8GVEELUo8mWXIyENk43NQyDEEKcoFGjVrssVmxs7Gkda9LACH5IzGR5Wi7jendodN6UrCKUgt6daie5J7JdJpOiT3gQKU4kucVlVhZsy+GacUPp07vXccdsjpPxPZNYEstTYrmKM+PlbAE6tXZBhBBCuM6YnmG08bXwc1Jmk/MmZxbSLSSAAB9n2kWcFxfehq1ZRdjtjbeh/JlygDKrnYsGRrRofCGEZ3PmiBUKpCil1gBllRO11he3WqmEEEK0Km+LiXP7duLXLdm1RzioR0pWEQO6tGvxMsRFtOHISht78o/SLTSgwfnmJGUS3taXIV3bt3gZhBCey5mW3CeBycBzwMs1HkII0aJWrBjOihXDXRIrNTWV1NTU0zrWpIERFJdZWZx6sMF5dhw4TEZ+CYPrSTBPdLuGRBnrnL/1QIPzFB6tYHHqQS7sH05a2o6Tsh4llsSSWCenJpNcrfXimg/AClzV+kUTQgjRmkb1CCE4wJufNzXcZeHzVXvwtpi4dFALjE1bR0yHIIZEtWfm6r0Ndln4LSWbCptmknRVEEI0k1P3sFRKxSulXlRKpQPPAFtbtVRCCCFancVs4rx+nZi/NYej5dZjXi8us/Ldhv1c1D+c4ADvVinDlBFR7M49wooGxuydk5RF12B/BjgxzJgQQtTUYJKrlIpVSj2ulNoKvAlkYNwGeJzcDEIIITzDRQPCKamwsWBbzjGv/bBxP8VlVm4YGdVq8c/v34ngAG9mrEo/5rW84jKWp+Vy4YBwlHLizmxCCFFDYxeebQOWApO01mkASqn7XFIqIcRpqUOHKS6L5cpbV57MsYZ3CyEsyIefEjO5aEB1lwCtNZ+v2kPfiDYMamBs2pbYLh+LmavPiOS9xTvJKiwhvK1f1WvzkrOx2TWTHOU6metRYkksiXXyaSzJvRy4BliolJoHfAnIT2khRKuJibnbZbE89cujubHMJsWlgzrz/pJdfL9xH5cO6gLAuj0FbMs+zPOX9W+wFbWltuu6YV15d/FOZq3ey/3nGOPgpuUc5qXfttO7UxB9woNaNJ4zJJbEklinvga7K2itv9daXw30BhYB9wEdlVLvKKXOcVH5hBBCtLL7z45lZPcQHvwmiT9TjJEOZqzcQ5CvhYvjW/+Cr8hgf8b36sCstRmUW+3sKzjKDR+uwWwy8e4NQ6SrghDiuDgzusIRrfVMrfVFQBcgEXi4tQsmhDj9pKW9SVqaa7r85+XlkZdX/8VOp1ssXy8zH9w4lH4RbfjrFxuYk5TJr1uyuGJIF/y9Gz7h15LbdcPIKA4eLuOL1XuY8tEajpZbmXHLMKJrjJ97stejxJJYEuvk4tToCpW01vla6/e01uNbq0BCiNNXTs4McnJmuCSWp355HG+sQB8Ln9w0jKhgf+7+YiMVNs0NIxq/4Kwlt+usnmFEBvvx5M8pZBWW8MlNZ9AnvPZthE+FepRYEktinTyaleQKIYTwXMEB3sy4ZTiRwX5M7NOBHmGBLottMiluHdMdb7PRRWFIVLDLYgshPFPL3ohcCCHEKa1TW18WPJCAXdd/c4bWNHVkNJcP7kKAj3w1CSFOnBxJhBBC1OJldt9JPklwhRAtRelW+LWulDoI7GnxFXueUCDX3YU4TUndu4/UvftI3buH1Lv7SN27jyvrPkprHVZ3YqskucI5Sql1Wuuh7i7H6Ujq3n2k7t1H6t49pN7dR+refU6GupcLz4QQQgghhMeRJFcIIYQQQngcSXLd6313F+A0JnXvPlL37iN17x5S7+4jde8+bq976ZMrhBBCCCE8jrTkCiGEEEIIjyNJrhBCCCGE8DiS5AohhBBCCI8jSa4QQgghhPA4kuQKIYQQQgiPI0muEEIIIYTwOJLkCiGEEEIIj2NpjZWGhobq6Ojo1li1W209uBWAPmF9Wj1WaWkpAL6+vh4Vy9XxJJbEkljO2563HYBeIb1aPdbxcHU8IcSpYf369bla67C601slyY2OjmbdunWtsWq3Gv7OcABW37m61WOlpqYCEBsb61GxXB1PYkksieW8hOkJACyatqjVYx0PV8cTQpwalFJ76psu3RWEEOI0cPfddxMVFdXoPEfLbew6WEyZ1eaiUgkhROuRJFcIITzc7t27WbRoEeXl5Rw+fLjB+TLyj5JzuIyfEjNdWDohhGgdSmvd4isdOnSo9sTuCkIIcSqaOnUqF1xwAR988AHPPvssI0aMOGaenQeL6fvGSFCQ0P4tfv37GJRSbiitEEI0j1JqvdZ6aN3p0pIrhBAeLDk5mS1btnD11VfTp08fkpOT653v42W7MSlF1/b+bMs+zIqdeS4uqRBCtKxWufBMCCHEyeHRRx/l6aefRilFnz592LJlCwA//PADc+fOJScnh6m33MZ3G0yEtvGhU1tfjhZ789Gy3ZwZE+rm0gshxPGTJLcZZHSFUy+exJJYp3Os1atX89tvv5GYmMhdd91FaWkpAwYMAGDy5MlMnjyZgoICLrz+NkoHTCO8rS8mpbhhRBSv/rmDtJxiYjoEnhTb5Y54QohTm3RXEEIID/XII48wZ84c0tPTSU9PZ9OmTVUtuZX+89RTHOo2nrGxYfh5mwG4YUQU3hYTnyzf7Y5iCyFEi2gwyVVKmZVStyulnlZKnVnntcdav2hCCCGO1x9//EFZWRkTJkyomtaxY0eOHDlCfn4+Wmseeugh2vYcxtGgrtwyulvVfKGBPlwa35nvNuyj4Ei5O4ovhBAnrLGW3PeAs4A84HWl1Cs1XrusVUslhBDihJx99tksW7bsmOmFhYUEBwfzxhtv8Oeff/LJzC/xS5vP2J61+9/eMqYbpRV2vliz11VFFkKIFtVYn9xhWusBAEqpN4G3lVKzgWuB03JcmSn9p7gsVkhIiEfGcnU8iSWxTvdYWVlZvPDCC6xcuZLVq6uvJ7jwwgv5v1f+x9HYYTz99zuOGS4stmMQY3qG8uXavdw1LsapWK3N1fGEEKe2xpJc78onWmsrcJtS6nFgAdDwlQge7O7Rd7sslqd+Abs6nsSSWKdrrMrk9rPPPuPGG2/khx9+qDVfjx49uO2J1/nvs0/z8NXjKH70Eezedkxe1Sf4zowJZemOXA4dLaedvzd1efKxQwhx6musu8I6pdR5NSdorZ8CPgGiW7NQQpwq3nvvPcLDw4mPjycmJobJkydTXt66fRg/+OAD4uPjiY+Px2QyVT2///77WzWuOHVorYmOjua1116joKCAV199lYiICJRStR6P33wxJTvXkp2Vyd13383GZzfWWk9ceBsAUrKK3LEZQghxQhpMcrXWN2it59Uz/UOttVfrFuvk9OayN3lz2ZsuiZWXl0denmsGY3dlLFfHa+1YSUlJPPfccyQmJrJy5UqSkpJISkpqtXgAt956K/Pnz+fzzz8nMjKSxMREEhMTeeWVV5pe+Dh40vt1usTKz89n165d3HPPPbRv3557772XzMxM7HZ7rUfCPz8kvP+ZdO7cmTfeeIP4R+JrrauPI8ndmlX/rYA9+dghhDj1yRBizTBj8wxmbJ7hklie+gXs6nitHWvz5s0MGjQIgA0bNmC1WltsDM9LL72Uxx57jDFjxtCpUyf+/PPPqtfy8vJYvXo1/fv3b5FYjfGk9+t0itW5c2dee+01tmzZgtaayZMn12rFTUvbyfIPHiN+ZAJpaWncfffdmB1DiFUKC/IhLMiHlMz6W3I9+dghhDj1yc0ghDgBycnJTJ06lYqKCvbu3cv7779PmzZtGl1mzJgxHD58bMvYSy+9xMSJE6v+37JlC2eeeSZLly5l9uzZzJw5s9brqamp9OvXr+U2RnikiIgIXn311WOmW9qHE3Hbh0y7fAC+vr4NLh8X3ka6KwghTkmS5ApxnDIyMujQoUNV94QXX3yRt99+m4CAgKrbpd51112cc845tZZbunRpk+s+evQohYWF3HfffQBYrVbatWtXa54dO3Zw+eWXt8zGiNPOVkfiGhfR+I+yuIg2rFi6i3KrHW+LnPwTQpw6nEpylVLtgZ5A1c99rfWS1iqUEKeCpKQk4uLiqv7v3bs3H3/8ca3bpT744IPHJLnOtOQmJyczZMgQzGZzVay6rbbSkitOREpmEWaTavS2vWD0y62wadJyiptMiIUQ4mTSZJKrlPoL8HegC5AIjABWAuNbtWQnodV3rm56phbiynuzu/o+8J6ybZs3b6ZPnz6AcTX7okWLuPDCC6tef+aZZ7jrrruOWc6ZltwtW7YQHx9f9X9SUhKXXHJJ1f8xMTHs3buX3r17n8AWOMdT3i+JVVtKVhExYYH4epkbna/mCAt1k1xPPnYIIU59zpx7+jtwBrBHaz0OGAQcbNVSCXEK2Lx5M9OnT2fQoEEMGTKE0tJSnn766arbpZ5//vkMHjz4uNddM8ndsmVLrVbbtLQ0unTpgo+Pz4luhjhNba0naa1Pt9AAfL1MDV58JoQQJytnuiuUaq1LHVfk+mittymlerV6yU4RqampbN68WfpGnoZmzpxZ7/TXX3+dP//8k8LCQtLS0rjjjjuave66w4Ht2rWr1v+xsbGkpKQ0e73CsxQVFfHtt99yzTXX4O/v7/Ry+UfKySospU94UJPzmk2KXp3aVPXhFUKIU4UzLbn7lFLtgB+AP5RSPwKZrVmok9Xwd4Yz/J3hgJHcTp06lTPPPJOcnJwWj5WamkpqamqLr9fdsVwdzx2x7rnnHtavX8+77757XAluc2K5gsQ6eWMppZg7dy49evTglVde4ejRo07FqrroLLytU3EqR1jQWtea7snHDiHEqa/Jllyt9aWOp08qpRYCbYFjbhJxurCWWRkyZAjbtm1j2LBh3HzzzWRlZfH444+3aJzKsSBdcRtLV8ZydTyJJbE8PVbfvn0JDQ3lgw8+4IknnuDqq6/mn//8Z6PLVCa5zrTkgjHCwqw1e8ksLKVzO78TLrMQQriCs6MrmIGOwG7HpE7A3tYq1MlMKYXJXN0AbjKZsFhafiS2yqvqW2Pd7ozl6ngSS2KdDrFMJuOYpJSqitWYlMwiOrbxISTQuT7dcY5keGtmkSS5QohThjOjK/wNeAI4ANgdkzUwoBXLddIye5tZvWY1aWlpPPvss3zwwQc8+eST3H333S0ap/KUnCuuJnZlLFfHk1gSy5NjFRUVMXXqVNauXctDDz3ErbfeSkZGRpPLpWQVVY2a4IxendqglLHcxLiOJ1JkIYRwGWeaFf4O9NJan/b3UpzSf0rV85iYGD755BPS0tLYsmVLi8dyVdcBV8dydTyJJbE8OZZSissuu4xZs2bh5+fnVKwyq420nGIm9OngdJxAHwvRIQHHjLDgyccOIcSpz5kkNwMobO2CnAruHn1sa21MTAwxMTEtHssTvoBPhngSS2J5cqygoCCmTp3arFg7DhRjtWv6NKMlF4z+u1v2S5IrhDh1OJPk7gIWKaXmAmWVE7XWrzS8iBBCiJNRStXICs1LcuPC2/DL5mwOl1YQ5OvVGkUTQogW5cwQYnuBPwBvIKjG47Tz5rI3eXPZmy6JlZeXV3VFtifFcnU8iSWxJFZtW7OK8Pc2ExUS0Kz1Vt44Ylt29S2pPfnYIYQ49TkzhNh/XFGQ1vblmr18sHQXpRV2ym12yq12zogO5tVr4gn0ce6K5xmbZwD1d1toaZ4yvJG740ksidUasex2zYu/befLtXuxmBTeZhPeFhMJvTrw74viMJtUi8VqrqZipWQW0atT0DFlbEpl94aUzCLOiA52KlZLc3U8IcSpzZnRFWKBB4HomvNrrce3XrFa1tdrM3h49mYGdmnLwMhAfCwm7Hb4dsM+rvtgFZ9MO8PpoXSEEKe3Cpudh75LYvaG/Zwd15GwIB/KrXbyj5QzfUU6pRU2/ntZf5RqXhLpClprtmYVMWlgRLOX7dTGl/b+XnJ7XyHEKcOZJsxvgHeBDwFb6xan5f2YuJ+HZicxNjaMD6YOwcdSPYbkuf06cufnG7jyvZXMuGW4jP8oWk/GGkhfCtFjIHKYu0sjjlNphY27v9jAn1tzuP/sWP42PqZWMvvSb9t5c2Eavl5mnpgUd9IluvsKSigqtTb7ojMwRnKIi2hT1ae3SbLPCyHczJkk16q1fqfVS9LS0pezZ9kXfLm1G2dEn8kHCTZ8Vr5a64A7vndHZtwynFumr+WKd1Yw45bhxHQIbH6snYtg92KIPQ+6Dm/dg/uelbBnBXQbY/x/gnGKSitIzixkT95Rlh/04py+nYxkv+427F0Ne5a1zjbVjGUtg10LjbpszThdzoCtP0FmIvQ6v3W/hPesgM8mg90KZm+48afWi7fjT0j7E+ImQ9SIFtsXi8sq+HpdBqUVNmI6BBLTIZCwzEWozPUQc7ax7tba7zPWwK7F0P2s1o1TGauB/f5w2CBu+XQda9PzefqSvkwZGX3M4g+cE8vRchsfL9+Nv7eZf57X27k4OxcYn+2eRl0WllSgFLRpiQu8asTaeiiCi03LmZC9BjIubHb9xYW34dOVe6iw2fEyN3JJR8Ya+HQS2MrB7OPUPp9VWEKHIN9md6MQQoiGqLr3Ij9mBqWeBHKA76k9ukJ+Q8sMHTpUr1u3roWK2AwZa2DbXMhJRu/4A4Vx1wpb+x5YCveAttd7wE3OLOTGj9dgUoqvbx9JdGgTF2RUfml0HADJ38GmWdWvte0KRftBa7A4d3B3SkkBzHnAiFeX2QemzXE6ToXNzher9/L+kl3sP1RS6zWl4NbwXTxc8ARK21BgJGa28uOK1aTUP+DLa4wEsFZBTDDpNRg8tf7lmqvyS9daZmykVwCUH66OdcFLlAXHkb35T9boOOYURJKSVUTXYH+GRrVnSFR7hkYHExzg7Vy83Uth4+dwNA/SlxhxK/WYAF1HQPeEE6/HjDVGrIBQ2PozpP1R/Vqn/pCzDbTN6USjJqvNztK0XL5bv48/Ug7Q17aNEaatZOpgrjAv4UxzctVnTIX0hIJdxn5/HLEalPQNfH+b8dkF8A6C8mIjqsUXbvy55fbFTV/CD3dWxzJZqvZLbfHlsTbP8VV2OC9fNZBL4js3uBqtNY/+sIUvVu/lX+f35vazetSeIWMNTL8IbI590ewH1qOOmGa2J7zHdYvbUWGzc//ZsdwwIgpLYwllY6pilYNSWLUZCxXGe2aywBUfQ1B4VRKcMN+4HfCiaYvqXd0PG/dz71eJzLt3DL071dManPo7bPgUMjcax8FKkcMh/no4kmv8QK/xnuUcLuXFedv5dv0+RnYP4a3rBzv/ORNCCEAptV5rPfSY6U4kubvrmay11t0bWsYtSW7KT/DNjaDtVG6R8QWsUN4Bji9Gx9Rxj8JZ/6i1+Pbsw1zz/kr8vS18fcfIhrsu1EyWHJF0zVi+7aC0oDpWwr8g4aHj3649K2D5a5C+vDopq0+XYcZ2Za5vsIVLa82CbTk8+8tWdh08wvBuwZzVK4yYsED62bfjt38F2/fnMyDjU/x0GUoZ26bbRmIq3Fe1vYQPNLYrJ+XEWtO2/wrf3gIVRxqeJ3K4Ea//lSeWzPzwV0icWf1/YEcozgF01ftn1woNlOPFw4HPYOo6nPS8I2zZX0iFTWM2KS4ZGMFfx8U03uK/+n34tcb+1fkMyE4Em5WqOgTjx8O0uce/XTWTJXAkZTaq9kizd/VrmGDCYzDmAadWvXB7Ds/O3UpaTjHt/L24KyafW3beg7KVoQCbMqO0DRPGbRArzIF424qNH0WYYPxjMNa5WPVuV+pvkLsdts6Bmp/ooHA4nFk9b++LYNQ9Tp9lKCm3odH4e1uqY+1cCPk7YfM31QkuCtpGQqFx93INbLT1IKDfhfQaNanJOHa75p4vNzJ3cxbv3jCEc/t2Ml6wVcDnV8DuRdUzB0XA4Swq90WrNrHEMopi/y58mtub4g6DeXJSX0bFhDZdd7ULATMvN1qJHfLMYbS35WKquR8qRwJt9iEhrDP4BDWY5KYeOMw5/1vCK1cN5LLBXapf0Bp++Qes/aDGes3GdAWgjB9b4PjxP4fy8KF8uiKd1+bvoMxqY9KACOZszqJDkA/vTxlaNZqDEEI05biT3OPhliR34XOw+AUAbCjsmLAoUGZvOO95mPdQdWIa2hvGPwJ5abW+GLfsL+TaD1YRHODN17ePpGMb32PjzH0A1n4IxprYHjKR6LwlWLSVCiy85nUz91k/xpty49jePhrGPgTFWc1PCDd/A9/divHlZ+LX9tczvuArLFgBM8qkMGkbSuFIbpTxqNOCrLVm1a58Xp+/g5W78ugeFsAj5/dhQp8ORp/BqsS91Ji/bST68AG03Uq5tvCO76383foRZnuF0fJkt2OkNsrRmlYdq9xqZ116Ppv3F1JudYxkYbPTMciXi+MjCA30Mb50/3wSsjZB++5Gi4/dCiazsU67Fcxe0GM8bP/FqAuTBab9YnQHAWx2zYa9BSzankNZhZ0ObXwIC/KhQ5Av/bu0NU7zZqyBXYsgN9WoS5Sj5cwHznse+7yH0NZyKrSFRHt3hpu3Vf9YGf8YjH0QMPphbt5fyLwt2Xyxei+lVhsX9A/nzrN60DeiTXW/S7sdlr4MC5+lKjFTZqwJj5DmH49OXwYFe+iV+X1VkmHrMgLzTXOM7W0OreGLq2DH744JCuuA62DLdyh7BXaThcXdHiBh10uYtWNf7HUhjLgT9q1pcF9MPXCYZ+ZuZUnqQaJD/HngnF6c07cjPt9OhW1zqmIRfy1s+R5tK6ccC0+U3cB/vD/DmwojVni8ceq95zn1xskrLmP9ngKS9hWyad8htmUfJrZjINdHHOD8dbeg7BXGjFFjYP9aIzms+iw/7DizoI2ktEaSVrcFeUnqQd5ZtJPsolIOHi6juMyKt9nE5EER3N2zgK4/XVl9lqLLcMjeVCuWnvcwdmsZaDvmyrPoTp7NKK2wcfX7q9hx4DDf3DGSvrm/wx//NhJa5bg2oE6cCm1mr08MPcu3AmA3eXOX13+YVxjVYBeJY2SsMT43OxdCVmKtWM/rG7nf/gneOD5job2MbQZQJhLaBUPbyAaTXKvNTt8nfmPKiCgeuyjOmHg03/gRmfpr9YzKDEOmGj8UosfAjj9gyf9R1TDQ7wquy7+VlbvymNC7A49dFEe30AA2ZRzi9hnrKSyp4KUrB3LhgPCmt1cIcdo7kZZcf+B+oKvW+jalVE+M2/zOaWgZtyS5GWvQn16M3VpGubaQPfJJugWUVn+ZV3Yx0HZY+gpUHKW+JG39ngKmfLSaiHZ+vHzlQAZ0aYvatxbSlzJ8+Svo4gOstgSiUZRpC9dXPMLQqGAm+qWyzWcgicRizlxLWO5aOgW35frybzCXFdQbqzGpc97E/vu/6RVsR2G07rxrvpbyLqPomL+Wnwu7U261M8K0lazgodwcuJp+Wd86WtKM1mo99kEWbs/hrYU7Wb+ngNBAH+4e14PrR0TV6k+X+ta1sO1nYkMcSeb4x6DbWPTupawmjodW+xKSn8gl7Xfh0+MsxutVhG35oCohzBp0L0sjbmbR9oMs3ZFLcVntrgfeFhPlVjsWk+LxiDUM3/4yoOkV5gNTfzK+bCv7J0L18/SlsODZqhYg3SGOVQmz+GbzIRZuz6HgaAUWk8JiVpRW2KvimU2Kqzpm8fShh9mZW4ICug6fhBp+O6W7V7O4PJZPMzqi965mpHkrXj3GcvngLkT+fHX1D6HOZ0DCw0YCUCMhzCsu46Nlu/ls5R6Ky6x0Dwvggn7hXNE2hdI5j2Iq3Etk/Dh8MteArYIKZWGa7TFWlhunrAerVGZ6P4cXRh1ZlJ0Mr24Ud51Az7FXYoka0fS+vnMRqZ/dC/lp9Az1AhQVWLjZ/m+Olls507KNFbberLfHMlilMsqUTE9TJpeYl6MdP4S0xRum/IQpajh78o6wYFsOC7blsGJnHv7eZv4+oSc3Rubglb6Y1PWLIX0JsY5YVf2KHe+VjhrNwqPR/PTzj3Q+tJZhPnsYa19t7Ik1WqsLjpQzLzmbOUmZrNyZh10b71VsxyB6dwoiOSOX23bdxwDzbmJDzGhMqAmPVe8LdT/LUaNh5RtGNw2gZmt1cZmV537Zyher9xIZ7MfALu0ICzJ+CO0vKGH2hr38O+/fDDGn0ivEjFYm44dNjVgZAf2Y+e03mPYsZ3I3O7H7vsP4cYfRgnzNTJqSU1TKJW8u4/IDbzLJ/ie9QsxG/Z3/f1CSB9FjyGrTn9emzyQ4Zw0R8WdzXce9mBY+U9WqbOsxkWuK7yezsIwl/xzXeJ/VjDWkvnQe2MuNz/Po+43+7XuWUdRxBAM+PsSro8qY3H539eft04uqutMk+PmAbxCLLpvV4HHqkjeX4e9tYdZtI0id/SIs/x+xbcpg+B2w7mNHP9w6fc8z1sCnFzt+UNhBa+ZYhxMWM5jhEy47pvvCnZ9vYP2eAm4b251/ntsLS+Y62L2UVB0F4QOIjY1tsu6FEKePE0lyvwLWA1O11v2UUn7ASq11fEPLuKtP7vszv+RQygKGJExiwtmTGp7x93/Diter/x/7DyOxc1i5M4+/fLqWI+U2Lg7exyul/8ZsL2OEtZgSfBlke4QBlr0E9ErgnHMn0T2s9qlrrTVfr8vg6TlbuUt/yR2m2VR9LY2+HyY+0XDZ9qyAP/9DauJydhFBQnA+XsqOMnvBVCMpAaNFZUdOMSt25jEnKROVsYaZ3s/ho8oxAal05Q19NZHWvaQFxDN63AVcNTQSXy9zjVgrYeGzpK5fBCgjiannwqgyq40vVu9lTlIWG/YWMIhUvvB5Dm+MWPvswcyxj2St75mE9RnDuN4dGNEtBH8fMxaTQilFanYh++f8l7H73iUt14pSEBPijR73COazHqy/LhxfjNpWjkahtY1MewiLTMPJi7qAmCHjGRsbRpCPhSPlNg4eLiPzUAmrduYyev09DCtbzY58Gzat+Lnttbxtu6Rq1XHhbbigfycuHtiZriH+1fF2L4WyQljxpiPJOLZlHKDwaAU/J2Xy6+ZMBu/5iPvN35CaZ6MCM48HPQnACNNW9rYZTEjv0YyKCaVbaABhgT60zd2IPX0pyV4DyEuax7jsj0CDVVlYMuoTzppwUcN9MNd+BHMfYHueFY2FhdF3czg/hw2mvkT0O4srh0YyvFswJpPCZteUWW1s3lfIgu05DNrwKOeWz0cpsGnFa/ar+NrvarKLjBb8HmEBnNO3E7eO6U5wfmJV8pOaZ4Pek4i96B7Yu6LBVmC7XTN/Ww5Zc5/l+uLPMCvj9Pt61Zf7vJ4gq9iG1a6JDvHnogERJPQKo29EW/y8zbB9HvzyD1J37caOmZgQExXawvcD3ubKyZc3fJFTnbMQ9LmE5MirWbrgF34/GsPQ0edx/9mx1fu9oytExY4F7E5eiw0TPYPNWJWFz3q+wcCRZ5NRUMK36zNYtSsfpeCxC+O4JepgjSTN0YIcey5EDIEe4xr+4VpSQOFXd3Bg/Vw0GEmuMsP4R2HMAyzbkcs9X26krMLGi1c4Wi5rJYRGrNywEXyeGcGZ517NGWPPqz9W2WGYfhGpW9YDEBvqXRUHYHlaLtd/uJoZtwxjTM+w2nW4cwHs+JOE/YsAWGQJhhvrb63+1+zN/Jm0hzUD57JjgTF2eGwHf6N1Gxq+KLDyx0nkCDZ+9xKDDi8wOtbU0zJeZrXx1M8pzFy9lxsiMnn60L9Q9gpSD3nBpe8Se9YV9deBEOK0dCJJ7jqt9VCl1Eat9SDHtE1a64ENLeOOJDcls4iL3ljKrWO6868L+jQ+c+WXiLUU0ODXHkY/APbyqoNzcdoKdq36Ge/0BfSq2IZSMKyimHxzKM9ctJbz+4XT1r/xU8z7Co7ywRdf8nDOQ/ioChQa5R1otAINmQZRI6sP/F2Gwe7F6CUvodCk5Gpeb/MAT1yXQHjBuia7OuwrOMq6ZfPwyliJl7aSkPs5XrqcyiRN3eho7UpfCl1HGacxf3sEtJ3UPGDsg8R28m8yTv6Rchan5pCxaTF9yjYRYSogbv/XxosmC+rKzyAwrPYoBsnfw/ynoGA39uixbN+wHK2tdAv24QG/pxg38SLO7dfpmCvJc4vLSF79B/s3/sG3edGc6Z/B/baPAFDKDJd/CG271P5S3fYL/P4Y5O9EKxPbc23YlRd7zv+YXb598bGYmNinY9MXF855ANZ9WP1/38uhU9/arYnb5sLeVZCxCg3syLNhx4z1zHvJ7H8nfcLbEBns33icpS+jFzyDcrTa7bF34GPfKUyKLCci/mwi+p9lxNo6x3jPdi+uimXVJhZ3vIGAif/k0kGdm77VasYa9PRJYCtFAQf8ujO3/RQG+OfTOf5swtv6GXUZ2guWvQL7jWQpNU/DyL8Se93zja/fQe9djb0qSQMzdrK8o9kXPILgYVfTfdC4qrMjdOxnbNvGz4xYBSYY+xBRwWbe2xPBK9vaMTCyHa9eHU+3ht4zR7cUa3YKlq3fG32rlZE8mc5/oarFlPIjMPNKcHSFSI26gfKuY/Ep2MaPhd35MD206oxAdIg/lw/uwqWDO9OlfY0fQZWfn42fQeIXxnSTF9zwHXj5Ve+LnYfAmvdh4X+hvJgFfucRuncecSEam7Lwff932B/UnzcXphETFsg7Nwyp3c+7Zmt10lfodcZ+b8OMZcp34B1Q++xH4kzjh0LxAVLzAa2J7ehX68fZB0t28ewvW1n/2MT6xwVf8jIJC4zrBxYRAFGjjAaAzI219vvU397Ff+8iupjyjB9AHJtQNyb/SDmfPP837jN/Vd03uO41BQDpS9mYo4lIeoOO6pDxnuUBI+90el8UQpweTiTJXQFMAJZrrQcrpXoAs7TWDWZC7mrJ3bi3gAFd2jk3BE3ll0hgJ1jyIhSkG9OVCaLHGheyVF5ZbaSnjLAWo0JjWX1vstNlsts18+b9xNaVv+BvtnMH36AqD+yhvSE/DezGxTBVV6oD2/JAD7+DPje80JwqqDbvEVj1VvX/QZ3hSI5jm2q/5yf0xbH0ZVhQfWoVMOpQa+OvT5vqC/FMXjBtLqm7M9D71lEUmcB/NgWwZb8x7mZUiD99I9oQ0daPNY5+vVobg9D/dVwPriv/FsuiZ+vEMlf3ywwKh6J91bEu+D9SU7dD56HNb/mp5wJDY71mCB9sfBlXlqPPJbDjd1IPlIDZi9gHfnG+73WNVjutTNgwYbaXoTXYMbHZ3IcB9q2YHKfJF9gGMcqUzO78MlAWYu6fi3f0yOZt1+6lxnatfLPGRX8mo7+ytju21/E/jsSzua1nNYfI2rXI0U8ZQEHEIMjeXJVs1lR3X5yblMUj32+mtMLGtFHR3JnQg3b+x155vzWriPu+SuT23OeZbFlefeak8lllv+nK90yZSO15Owy9uerUd3GZlSWpB+kQ5MOQqPaNj3G79GWY/wxV3RdMXsZzu92IZfIGm6N12exD6ti3yS4qwTt/Kz8e6sGX2Z3QGi4eGMF/L+tPQGN3XazzGbObvIzk0F5z2HLHkeOiV0g90gb2ryN2TO1uAPd9lcjKnXmsemRC/XEy1pDw8WhAs4ig6gvFUMbnKzwesjaCtmPXsDd2KuVrZ4Gt4piEujHvLd7Jb/N+4tuA5zHZHPuArrktJseVvMb2Wr3bosuPoLSdtEITpkvfk5ZcIUQtDSW5zoyT+yQwD4hUSs0EzgRuatnitYxBXds7P3PksOoDctF+48K1ytOQ6UtqfRmqITei2kYy9VA2tI9qVplMJsUFF1xC7NDxLJ/+CLYjYHGMWmAr2IulKpGGP62DGGtJxlvZCAuywICJzYpVS9/Jjv5xZcYXVFlh7aSi+3jj1LOtgpAgC/Rr4IuvKdFjjAtxbOVgtkBILBzYbLymbca0yvRd22HPMkL6TYN+4+gVEsLPYzQrd+Wxce8hkjMLSc4s4rfkAwzs0pb7JsaS0CuMfhFtMZkUZIyFpS85YnlBSA84kFwdq+JI7Vgl+YSc+496i92kyGHG8FTpSyF3hzG8VGVikZ1UY/8wQ8RAGHU3IZvmQdeRzbu4MHKYkRykL0VFj8Gy/VdY9gpKgcJOP/t2TNpudDHAhFe3EWzq8U+iD63Fq9uo5iW4lfEqy2crM0buQGP0k6ycScGov0GfiyB9KSFtB0DnwccfJ32p44ePI4E+sKXGvqig72XGhVK28mP2xQsHhDMkqj0vztvG+0t3MWvNXu5I6MH5/cLJKixhf0EJ27MP89nKPbTx86LreX9HLVpv7CNaU7VRWkNYH8jfVTVecUi/CVDj9rCBPhYu6O/khU7RY4xuLLZy46LINp2NIdQqY/kHV42YgN1KyOEUQkbdRUjIFEYADxaXkXmolH6d2zSeTFfGMvsYF/nZTZRYQmhXnn3sfMoEJQWE9LsE+o2rtW1gDJXYt7ERCyKHGcPOlR6Cy2ZB0teO0RK08fnKSa5OtDGxvzyQ3jfPgr0rYaBz41rb7ZrPV+8hInoEpgt+rv4htOlLcLRW190XLaP+ypHIsezb8Dthvc5s/r4ohDhtOTW6glIqBBiBkUGs0lrnNja/28bJPV41+8CZveG8/zqu4K5o0cH7K9JXwWcXo2wVVGDhPxVTeMLrM7ywYVUWkid+zuCu7VAtddOFmq1pWsNnk4xhrOpcOHTCsWrGAccg8PVcDe9kXdrt2khqXRDL6e2rtX+0UpwGYul5D6NaO1atkS1ae5vq+XxBk/vi1qwiXvptO/O35dSarhSc17cTz0zuZ5yGr9xH/EKMUVWaGadZ2+WqfdER68VtYWzJLORT8zMoW4XT71tphY2+T/zGXxN68MA5vRoMkzA9AXCMk9vIfl+qzfwv4iX+dduNzdqMhdtzuOmTtbxx7aDatxZ21b4ohPBIJ9JdYb7WekJT02o65ZJcOPYORK149yb77qXkhw1jt19fju5cSUTBOnqccV7VRWWtxlW32XRVXboyliduU91YcEps04a9BaQdKKZzez86t/MjvJ1vrdt1Nxq3NbngfVuRlst1H67mkwmacb7bnX7fNmUc4pK3lvPuDYM5r1/DrdW1ktxGtunlHR2ZnRPB8ofHN6v8t0xfy6Z9hax4eDzeljoXE7pqXxRCeJxmJ7lKKV/AH1gIJFDVuY02wK9a6wav7jolk1wnvLnsTQDuHn13q8fKy8sDIKTOKcdTPZar40ksieVJsbTWTHhlMW18vfjhrjOdjjVrzV7+NXszS/4xrno0kXock+Q24N3FO3n+120suGswbf29ndqujPyjjP2/hdw9LqbR1uTGuPpYJYQ4NTSU5DZ2r8jbMYYO6+34W/n4EXirkeU81ozNM5ixeYZLYuXl5VUd0D0plqvjSSyJ5UmxlFJMGRFFYsYhtuwvdDpWcmYhQT4WurRv4E6OzRQXbvTtXbN9r9Pb9eXavSjg2mFdjzuuq49VQohTW4NJrtb6Na11N+BBrXV3rXU3x2Og1vpNF5ZRCCGEw2WDuuBlVvywcb/Ty6RkFtEnok3Dfd2bqfKWu2k5xU3MadBa88PGTMbGhhHR0C3ThRCihTXWkguA1voNpdQopdR1SqmplQ9XFE4IIURtbf29GNszjLmbs7Dbm75w2GbXbM06XNX62hJCA33o2MaHnQecS3I37D3E/kMlTBoQ0fTMQgjRQppMcpVSM4CXgNHAGY7HMf0ehBBCuMakgRFkFZayfm9Bk/Om5x2hpMLW+PBhxyEuvA1pB51LcuckZeJtMXF2344tWgYhhGiMM+PkDgXitDNjjXm41XeudlksV96b3dX3gffUbZNYEstVsSbGdcTHYmLOpkzOiA5uNFZypnGzlbgWTnL7RrRlyY72dO3Wo9H5bHbN3KQsEmLDjrmrYXO5+lglhDi1NdmSC2wBOrV2QYQQQjgn0MfC+N4dmLs5G1sTXRZSMovwMit6dghq0TLERbTBZtfsaKLLwtr0fHIOl3HRQOmqIIRwLWeS3FAgRSn1m1Lqp8pHaxdMCCFEwy4aEEFucRmrdzU+2kByZiE9OwQdOy7tCars/rC5gVEeKs1JysTXy8SE3h1aNL4QQjTF2dv6CmD4O8bNGlzRbSE1NRVwzek5V8ZydTyJJbE8Ndb43h3w9zbzc1IWo2JC642VU1TKyp15TBsV3WJxK0W29ye4IpeZv6/iuuH1Dwtmtdn5dXM2E/p0JMDHma+bxrn6WCWEOLU5M7rC4poPwApc1fpFE0II0RA/bzMT+3Rk3pYsKmz2euf5am0GVrvm+hFRLR7fZFJMio8gMeMQaTmH651n5a488o6UM2lAw3dZE0KI1uLU+SulVLxS6kWlVDrwDLC1VUslhBCiSRcNCKfgaAXL03KPec1qs/PFmr2M6RlKt9CAVol/Qb9wvEyKz1ftrff1OZuyCPA2k9BLuioIIVyvwSRXKRWrlHpcKbUVeBPIwLgN8Di5GYQQQrjfWb3CCPKxMCcp65jX5m/LIauwlCmt0IpbqX2AN2f1CuO79fs4Umat9Vq51c6vW7I4p28nfL3MrVYGIYRoSGOdpLYBS4FJWus0AKXUfS4p1UlqSv8pLovlynuzu/o+8J66bRJLYrk6lo/FzDl9O/FbcjaPT4qjja9XVaynf0gjoq0v41vxgq+QkBCmjuvH4i+382NiZq2+ufO3HqCo1MpFLdhVwdXHKiHEqa2xJPdy4BpgoVJqHvAl0DL3hDxF3T36bpfF8oQv4JMhnsSSWJ4e64YRXfkxcT9/+XQdn908jJCQEHYdLGbpjlwePCcWi7llR1WoKSQkhPHBwfRZnMVnK9O5dlgkSilSMov453dJdA8LYEzPsBaNJ4QQzmrw6Ke1/l5rfTXQG1gE3Ad0VEq9o5Q6x0XlE0II0YhBXdvzytXxrE3P566ZG6iw2Zm5ei9eZsVVZ0S2enylFFNGRLEt+zAb9hawO/cIUz9eQ6CPhRm3DG/xocuEEMJZTY7porU+AswEZiqlgoErgYeB31u5bCedN5cZXZFd0aKbl2eMfemKlgtXxnJ1PIklsU6HWBcPjKCopILHftjCnR8uYsXOPM4bFEOHIN9WiVepcrsuiY/gv79s5fX5aaTlFGPXmhm3jKBzO79WiSctukIIZzTrJ7bWOl9r/Z7WenxrFehkNmPzDGZsnuGSWHl5eVUHdE+K5ep4EktinS6xbhgRxT/O7cWv69MoPFTQqhecVarcrgAfC5cP6cLi1IMUllTw6U3DiOkQ2GrxhBDCGSc+OrcQQoiTwl8TepC1dxfpuUc4I7q9S2PffGY3tuwv5MFze9G/S1uXxhZCiPpIkiuEEB5CKcXUkdFVz12pa4g/3945yqUxhRCiMXJFgBBCCCGE8DhKa93yK1XqILCnxVfseUKBY29VJFxB6t59pO7dR+rePaTe3Ufq3n1cWfdRWutjxitslSRXOEcptU5rPdTd5TgdSd27j9S9+0jdu4fUu/tI3bvPyVD30l1BCCGEEEJ4HElyhRBCCCGEx5Ek173ed3cBTmNS9+4jde8+UvfuIfXuPlL37uP2upc+uUIIIYQQwuNIS64QQgghhPA4kuQKIYQQQgiPI0muEEIIIYTwOJLkCiGEEEIIjyNJrhBCCCGE8DiS5AohhBBCCI8jSa4QQgghhPA4ltZYaWhoqI6Ojm6NVbvV9rztAPQK6eXmkgjhmY4eNT5j/v7yGXOHljjGyXsohHC19evX52qtw+pOb5UkNzo6mnXr1rXGqt0qYXoCAIumLXJrOYTwVBs3JgAwaNAit5bjdNUSxzh5D4UQrqaU2lPfdOmuIIQQQgghPI4kuUIIIYQQwuO0SncFTyXdFIRoXXKKWwghREuRllwhhBBCCOFxJMkVQgghhBAeR5LcZkiYnlB19bEQouVt3JhQdXW+EEIIcSIkyRVCCCGEEB5HklwhhBBCCOFxJMkVQgghhBAeR4YQa4Zp8dPcXQQhPFqnTtPcXQQhhBAeQpLcZpAkV4jWFR4+zd1FEEII4SGku4IQQgghhPA4kuQ2w/TE6UxPnO7uYgjhsbKyppOVNd3dxRBCCOEBJMltBklyhWhd2dnTyc6e7u5iCCGE8ACS5AohhBBCCI8jSa4QQgghhPA4kuQKIYQQQgiPI0OINcOiaYvcXQQhPNqgQYvcXQQhhBAeQlpyhRBCCCGEx5EkVwghhBBCeBxJcpshYXoCCdMT3F0MITzWxo0JbNyY4O5iCCGE8ACS5AohhBBCCI8jSa4QQgghhPA4kuQKIYQQQgiPI0OINcO0+GnuLoJw0r59+1i+fDlXX321u4simqFTp2nuLoIQQggPIUluM0iSe+qYP38+KSkpkuSeYsLDp7m7CEIIITyEdFcQHmfZsmXcf//9fPvtt8THx7N79253F0kIIYQQLiZJbjNMT5zO9MTp7i6GaMLo0aM544wz+PHHH0lMTKRbt27uLpJwUlbWdLKypru7GKKO77//HqUU27Ztq5q2b98+vvrqKzeWSgghGidJbjNIknvq2L59O7169ar6/6mnnpIW3VNAdvZ0srOnu7sYoo5Zs2YxdOhQvvzyy6pp8+fPZ8OGDW4slRBCNE6SXOFx8vLyaNu2LV5eXpSUlHDnnXfy5Zdf8re//Y2ioiJ3F0+IU0pxcTGLFy/mo48+YtasWYB0CRJCnBrkwjPhcXbv3k1ERAQAb7/9NlOmTKG0tJSBAweSlJTE6NGj3VxCIU4dP/zwAxMnTmTAgAEEBASwYcOGqi5BL730Ev369XN3EYUQol7Skis8Tu/evcnNzaVfv37MnTuX0NBQIiMj2bx5M3379nV38YQ4pcyaNYurrroKgKuuuqqqNbdulyAhhDjZSEtuMyyatsjdRRBOCAwMZM2aNQB888033HLLLXh7e3PTTTfRvn17N5dONGbQoEXuLoKoIS8vjzVr1jB79mwArr76as466ywefvjhqi5BQghxspKW3BNUVlbGjh073F0M0YArr7ySUaNGMWvWLG644QZ3F0fUkJuby4EDB9xdDNGIb7/9lvPOO6+qz223bt3o1KkTKSkpREREUFBQwL59+9xcSiGEqJ8kuceprKyMd999l549e/LKK6+4uziiES+88AIdOnRwdzFEHUuXLqVPnz7ce++9ZGVlubs4og6r1cqrr77KF198wZAhQ4iOjiY6OpqtW7fy8ccfk5uby+DBg4mLi+O2224jPT3d3UUWQohapLtCMyRMT8ButzMsZRifffYZ0dHRPPDAA/Tq1Yt58+a5u3hCnFL8/Px48803+fbbb4mNjWXChAncdls24eG+0m3BzZ5++mnee+892rdvz3PPPceAAQNQStU7b1FREbNnz2bAgAGceeaZ/OUvR+jePcDFJRZCiGNJkttMthIb77//PlarFbvdzi+//MKvv/7q7mIJcco6evQofn5+zJ07l759o7niis7uLtJpTWvN66+/TlFREaGhoSxYsICFCxc2ukxJSQkBAQH88ccfdOvWRZJcIcRJQZLcZvIK8KKgoICvv/6ap556Ch8fH55//nnGjBnj7qIJcUrJzMzkscce46effuKuu+7i3nvvJT39UncX67SnlCInJ4c5c+bw5JNPcuDAAZ577jkuuOCCY+bNy8vj8ccfZ9asWfzlL3/hwQcfZP/+q9xQaiGEOJYkucfBbDZz7bXXctVVV/H111+zYMECSXKFaKaNGzcSFRXFjh07qka9kG6dJwelFJMmTeKiiy5izpw5LFiwoN4kd8uWLbRt25Zt27ZV9Xvfv9/VpRVCiPpJktsM0+Kn1fq/MtkVQjTfhRdeyIUXXlhrWqdO09xTGFGvymR30qRJ9b5+1llncdZZZ7m4VEII4RxJcpuhbpIrhGhZ4eHT3F0EIYQQHkKGEBNCCCGEEB5HktxmmJ44nemJ091dDCE8VlbWdLKypru7GEIIITyAJLnNIEmuEK0rO3s62dnT3V0MIYQQHkCSXCGEEEII4XEkyRVCCCGEEB5HklwhhBBCCOFxZAixZlg0bZG7iyCERxs0aJG7iyCEEMJDSEuuEEIIIYTwOJLkCiGEEEIIjyNJbjMkTE8gYXqCu4shhMfauDGBjRsT3F0MIYQQHkCSXCGEEEII4XEkyRVCCCGEEB5HklwhhBBCCOFxZAixZpgWP83dRRDCo3XqNM3dRRBCCOEhJMltBklyhWhd4eHT3F0EIYQQHkK6KwghhBBCCI8jSW4zTE+czvTE6e4uhhAeKytrOllZ091dDCGEEB5AktxmkCRXiNaVnT2d7Ozp7i6GEEIIDyBJrhBCCCGE8DiS5AohhBBCCI8jSa4QQgghhPA4Smvd8itV6iCwp8VX7HlCgVx3F+I0JXXvPlL37iN17x5S7+4jde8+rqz7KK11WN2JrZLkCucopdZprYe6uxynI6l795G6dx+pe/eQencfqXv3ORnqXrorCCGEEEIIjyNJrhBCCCGE8DiS5LrX++4uwGlM6t59pO7dR+rePaTe3Ufq3n3cXvfSJ1cIIYQQQngcackVQgghhBAeR5JcIYQQQgjhcSTJdQGl1JVKqWSllF0pNbTOa/9SSqUppbYrpc6tMX2IUmqz47XXlVLK9SX3LEqpJ5VS+5VSiY7HBTVeq/d9EC1HKXWeo37TlFIPu7s8nk4ple44hiQqpdY5pgUrpf5QSu1w/G3v7nJ6AqXUx0qpHKXUlhrTGqxrOd60nAbqXo71rUwpFamUWqiU2urIb/7umH5S7feS5LrGFuAyYEnNiUqpOOAaoC9wHvC2UsrsePkd4Dagp+NxnstK69n+p7WOdzx+gSbfB9ECHPX5FnA+EAdc66h30brGOfb1yh/XDwPztdY9gfmO/8WJm86xx+h661qONy1uOvV/P8qxvnVZgQe01n2AEcBdjvo9qfZ7SXJdQGu9VWu9vZ6XLgG+1FqXaa13A2nAMKVUONBGa71SG1cGfgZMdl2JTzv1vg9uLpOnGQakaa13aa3LgS8x6l241iXAp47nnyLHlRahtV4C5NeZ3FBdy/GmBTVQ9w2Rum8hWussrfUGx/PDwFagMyfZfi9Jrnt1BjJq/L/PMa2z43nd6eLE3a2USnKc4qo8jdLQ+yBajtSx62ngd6XUeqXUbY5pHbXWWWB8SQEd3FY6z9dQXctnwTXkWO8iSqloYBCwmpNsv5ckt4Uopf5USm2p59FYa1V9/Wx1I9NFE5p4H94BegDxQBbwcuVi9axK6rtlSR273pla68EYXUTuUkqNdXeBBCCfBVeQY72LKKUCge+Ae7XWRY3NWs+0Vq97S2sHOF1orScex2L7gMga/3cBMh3Tu9QzXTTB2fdBKfUBMMfxb0Pvg2g5UscuprXOdPzNUUp9j3Fq8IBSKlxrneXoFpXj1kJ6tobqWj4LrUxrfaDyuRzrW49SygsjwZ2ptZ7tmHxS7ffSkutePwHXKKV8lFLdMC4wW+No4j+slBrhGFVhKvCjOwvqCRwfuEqXYlwQCA28D64un4dbC/RUSnVTSnljXIDwk5vL5LGUUgFKqaDK58A5GPv7T8CNjtluRI4rramhupbjTSuTY33rc+QmHwFbtdav1HjppNrvpSXXBZRSlwJvAGHAXKVUotb6XK11slLqayAF40rFu7TWNsdid2JcNeoH/Op4iBPzolIqHuMUSTpwO0AT74NoAVprq1LqbuA3wAx8rLVOdnOxPFlH4HvjewgL8IXWep5Sai3wtVLqFmAvcKUby+gxlFKzgAQgVCm1D3gCeJ566lqONy2rgbpPkGN9qzsTmAJsVkolOqY9wkm238ttfYUQQgghhMeR7gpCCCGEEMLjSJIrhBBCCCE8jiS5QgghhBDC40iSK4QQQgghPI4kuUIIIYQQwuNIkiuEEEIIITyOJLlCCOEkpVSIUirR8chWSu13PC9WSr3dCvGmK6V2K6XuOM7lFzrKNrSlyyaEECc7uRmEEEI4SWudB8QDKKWeBIq11i+1cth/aK2/PZ4FtdbjlFKLWrg8QghxSpCWXCGEOEFKqQSl1BzH8yeVUp8qpX5XSqUrpS5TSr2olNqslJrnuN87SqkhSqnFSqn1Sqnf6tyKtKE405VSryulViildimlrnBMD1dKLXG0Km9RSo1p3S0WQoiTnyS5QgjR8noAFwKXAJ8DC7XW/YES4EJHovsGcIXWegjwMfCsk+sOB0YDF2HcQhPgOuA3rXU8MBBIbJnNEEKIU5d0VxBCiJb3q9a6Qim1GTAD8xzTNwPRQC+gH/CHUgrHPFlOrvsHrbUdSFFKdXRMWwt87Eief9BaJ7bIVgghxClMWnKFEKLllQE4ktEKrbV2TLdjNC4oIFlrHe949Ndan9OcdTsoR5wlwFhgPzBDKTW1JTZCCCFOZZLkCiGE620HwpRSIwGUUl5Kqb7HuzKlVBSQo7X+APgIGNwyxRRCiFOXdFcQQggX01qXOy4ae10p1RbjWPwqkHycq0wA/qGUqgCKAWnJFUKc9lT1WTQhhBAnE6XUdGDO8Q4h5ljHIuBBrfW6liqXEEKcCqS7ghBCnLwKgadP5GYQQHegokVLJYQQpwBpyRVCCCGEEB5HWnKFEEIIIYTHkSRXCCGEEEJ4HElyhRBCCCGEx5EkVwghhBBCeJz/B+5yncXwKhStAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 864x288 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, axes = beacon_sync_figure(\n",
|
|
" time, impulses, beacons,\n",
|
|
" delta_t = (B + [0,-0])/f_beacon + t_phi,\n",
|
|
" beacon_offsets = phase2time(beacon_init_phase, f_beacon) + t_phi,\n",
|
|
" impulse_offsets = impulses_offsets,\n",
|
|
" f_beacon = f_beacon,\n",
|
|
" show_annotations = True\n",
|
|
")\n",
|
|
"axes[0].set_title(\"Beacons synchronised, Period alignment\")\n",
|
|
"fig.show()\n",
|
|
"if True:\n",
|
|
" fname = 'figures/08_beacon_sync_synchronised_period_alignment'\n",
|
|
"\n",
|
|
" # Dump figure\n",
|
|
" fig.savefig(fname +'.pdf')"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|