mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-11-14 02:23:32 +01:00
256 lines
8.9 KiB
Python
Executable file
256 lines
8.9 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# vim: fdm=indent ts=4
|
|
|
|
__doc__ = \
|
|
"""
|
|
Show the curve for signal-to-noise ratio vs N_samples
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from mylib import *
|
|
|
|
rng = np.random.default_rng()
|
|
|
|
def noisy_sine_realisation_snr(
|
|
N = 1,
|
|
f_sample = 250e6, # Hz
|
|
t_length = 1e4 * 1e-9, # s
|
|
|
|
noise_band = passband(30e6, 80e6),
|
|
noise_sigma = 1,
|
|
|
|
# signal properties
|
|
f_sine = 50e6,
|
|
signal_band = passband(50e6 - 1e6, 50e6 + 1e6),
|
|
sine_amp = 0.2,
|
|
sine_offset = 0,
|
|
return_ranges_plot = False,
|
|
cut_signal_band_from_noise_band = False,
|
|
rng=rng
|
|
):
|
|
"""
|
|
Return N signal to noise ratios determined on
|
|
N different noise + sine realisations.
|
|
"""
|
|
N = int(N)
|
|
|
|
init_params = np.array([sine_amp, f_sine, None, sine_offset])
|
|
|
|
axs = None
|
|
snrs = np.zeros( N )
|
|
time = sampled_time(f_sample, end=t_length)
|
|
for j in range(N):
|
|
samples, noise = noisy_sine_sampling(time, init_params, noise_sigma, rng=rng)
|
|
|
|
|
|
# determine signal to noise
|
|
noise_power = bandpower(noise, f_sample, noise_band)
|
|
if cut_signal_band_from_noise_band:
|
|
lower_noise_band = passband(noise_band[0], signal_band[0])
|
|
upper_noise_band = passband(signal_band[1], noise_band[1])
|
|
|
|
noise_power = bandpower(noise, f_sample, lower_noise_band)
|
|
noise_power += bandpower(noise, f_sample, upper_noise_band)
|
|
|
|
signal_power = bandpower(samples, f_sample, signal_band)
|
|
|
|
snrs[j] = np.sqrt(signal_power/noise_power)
|
|
|
|
# make a nice plot showing what ranges were taken
|
|
# and the bandpowers associated with them
|
|
if return_ranges_plot and j == 0:
|
|
combined_fft, freqs = ft_spectrum(samples+noise, f_sample)
|
|
freq_scaler=1
|
|
|
|
# plot the original signal
|
|
if False:
|
|
_, ax = plt.subplots()
|
|
ax = plot_signal(samples+noise, sample_rate=f_sample/freq_scaler, time_unit='us', ax=ax)
|
|
|
|
# plot the spectrum
|
|
if True:
|
|
_, axs = plot_combined_spectrum(combined_fft, freqs, freq_scaler=freq_scaler, freq_unit='MHz')
|
|
|
|
# indicate band ranges and frequency
|
|
for ax in axs:
|
|
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4)
|
|
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='purple', alpha=0.3, label='noiseband')
|
|
ax.axvspan(signal_band[0]/freq_scaler, signal_band[1]/freq_scaler, color='orange', alpha=0.3, label='signalband')
|
|
|
|
# indicate initial phase
|
|
axs[1].axhline(init_params[2], color='r', alpha=0.4)
|
|
|
|
# plot the band powers
|
|
if False:
|
|
powerax = axs[0].twinx()
|
|
powerax.set_ylabel("Bandpower")
|
|
else:
|
|
powerax = axs[0]
|
|
|
|
powerax.hlines(np.sqrt(signal_power), noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['orange'], zorder=5)
|
|
powerax.hlines(np.sqrt(noise_power), noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['purple'], zorder=5)
|
|
|
|
powerax.set_ylim(bottom=0)
|
|
|
|
axs[0].legend()
|
|
|
|
# plot signal_band pass signal
|
|
if True:
|
|
freqs = np.fft.fftfreq(len(samples), 1/f_sample)
|
|
bandmask = bandpass_mask(freqs, band=signal_band)
|
|
fft = np.fft.fft(samples)
|
|
fft[ ~bandmask ] = 0
|
|
bandpassed_samples = np.fft.ifft(fft)
|
|
|
|
_, ax3 = plt.subplots()
|
|
ax3 = plot_signal(bandpassed_samples, sample_rate=f_sample/freq_scaler, time_unit='us', ax=ax3)
|
|
ax3.set_title("Bandpassed Signal")
|
|
|
|
|
|
return snrs, axs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from argparse import ArgumentParser
|
|
from myscriptlib import save_all_figs_to_path_or_show
|
|
|
|
rng = np.random.default_rng(1)
|
|
|
|
parser = ArgumentParser(description=__doc__)
|
|
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
|
|
|
|
args = parser.parse_args()
|
|
default_extensions = ['.pdf', '.png']
|
|
|
|
if args.fname == 'none':
|
|
args.fname = None
|
|
|
|
###
|
|
t_lengths = np.linspace(1, 50, 50) # us
|
|
N = 50e0
|
|
fs_sine = [33.3, 50, 73.3] # MHz
|
|
fs_sample = [250, 500] # MHz
|
|
if False:
|
|
# show t_length and fs_sample really don't care
|
|
fs_iter = [ (fs_sample[0], f_sine, t_lengths) for f_sine in fs_sine ]
|
|
fs_iter2 = [ (fs_sample[1], f_sine, t_lengths/2) for f_sine in fs_sine ]
|
|
|
|
fs_iter += fs_iter2
|
|
del fs_iter2
|
|
else:
|
|
fs_iter = [ (f_sample, f_sine, t_lengths) for f_sample in fs_sample for f_sine in fs_sine ]
|
|
|
|
if False:
|
|
f_sine = fs_sine[0]
|
|
f_sample = fs_sample[0]
|
|
N = 1 # Note: keep this low, N figures will be displayed!
|
|
N_t_length = 10
|
|
for t_length in t_lengths[-N_t_length-1:-1]:
|
|
snrs = np.zeros( int(N))
|
|
for i in range(int(N)):
|
|
delta_f = 1/t_length
|
|
signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f)
|
|
noise_band = passband(30, 80) # MHz
|
|
|
|
snrs[i], axs = noisy_sine_realisation_snr(
|
|
N=1,
|
|
t_length=t_length,
|
|
f_sample=f_sample,
|
|
|
|
# signal properties
|
|
f_sine = fs_sine[0],
|
|
sine_amp = 1,
|
|
noise_sigma = 1,
|
|
|
|
noise_band = noise_band,
|
|
signal_band = signal_band,
|
|
|
|
return_ranges_plot=False,
|
|
rng=rng,
|
|
)
|
|
|
|
axs[0].set_title("SNR: {}, N:{}".format(snrs[i], t_length*f_sample))
|
|
axs[0].set_xlim(
|
|
(f_sine - 20*delta_f)/1e6,
|
|
(f_sine + 20*delta_f)/1e6
|
|
)
|
|
|
|
print(snrs, "M:",np.mean(snrs))
|
|
|
|
plt.show(block=False)
|
|
else:
|
|
#original code
|
|
sine_amp = 1
|
|
noise_sigma = 4
|
|
|
|
my_snrs = np.zeros( (len(fs_iter), len(t_lengths), int(N)) )
|
|
for i, (f_sample, f_sine, t_lengths) in enumerate( fs_iter ):
|
|
for k, t_length in enumerate(t_lengths):
|
|
return_ranges_plot = ((k==0) and not True) or ( (k==(len(t_lengths)-1)) and True) and i < 1
|
|
|
|
delta_f = 1/t_length
|
|
signal_band = passband( *(f_sine + 2*delta_f*np.array([-1,1])) )
|
|
noise_band=passband(30, 80) # MHz
|
|
|
|
my_snrs[i,k], axs = noisy_sine_realisation_snr(
|
|
N=N,
|
|
t_length=t_length,
|
|
f_sample = f_sample,
|
|
|
|
# signal properties
|
|
f_sine = f_sine,
|
|
sine_amp = sine_amp,
|
|
noise_sigma = noise_sigma,
|
|
|
|
noise_band = noise_band,
|
|
signal_band = signal_band,
|
|
|
|
return_ranges_plot=return_ranges_plot,
|
|
rng=rng
|
|
)
|
|
|
|
if return_ranges_plot:
|
|
ranges_axs = axs
|
|
|
|
# plot the snrs
|
|
fig, axs2 = plt.subplots()
|
|
fig.basefname="signal_to_noise_vs_N"
|
|
axs2.set_xlabel("$N = T*f_s$")
|
|
axs2.set_ylabel("SNR")
|
|
|
|
for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter):
|
|
# plot the means
|
|
l = axs2.plot(t_lengths*f_sample, np.mean(my_snrs[i], axis=-1), marker='*', ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black')
|
|
|
|
color = l[0].get_color()
|
|
|
|
for k, t_length in enumerate(t_lengths):
|
|
t_length = np.repeat(t_length * f_sample, my_snrs.shape[-1])
|
|
axs2.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1]))
|
|
|
|
|
|
axs2.legend()
|
|
|
|
# plot snrs vs T
|
|
fig, axs3 = plt.subplots()
|
|
fig.basefname="signal_to_noise_vs_T"
|
|
axs3.set_xlabel("time [us]")
|
|
axs3.set_ylabel("SNR")
|
|
|
|
for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter):
|
|
# plot the means
|
|
l = axs3.plot(t_lengths, np.mean(my_snrs[i], axis=-1), marker='o', ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine, f_sample), markeredgecolor='black', markeredgewidth=1)
|
|
|
|
color = l[0].get_color()
|
|
|
|
for k, t_length in enumerate(t_lengths):
|
|
t_length = np.repeat(t_length , my_snrs.shape[-1])
|
|
axs3.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1]))
|
|
|
|
|
|
axs3.legend()
|
|
|
|
### Save or show figures
|
|
save_all_figs_to_path_or_show(args.fname, default_basename=__file__, default_extensions=default_extensions)
|