mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
271 lines
9.7 KiB
Python
Executable file
271 lines
9.7 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# vim: fdm=indent ts=4
|
|
|
|
"""
|
|
Find beacon phases in antenna traces
|
|
And save these to a file
|
|
"""
|
|
|
|
import h5py
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import aa_generate_beacon as beacon
|
|
import lib
|
|
|
|
if __name__ == "__main__":
|
|
from os import path
|
|
import sys
|
|
import matplotlib
|
|
import os
|
|
if os.name == 'posix' and "DISPLAY" not in os.environ:
|
|
matplotlib.use('Agg')
|
|
|
|
from scriptlib import MyArgumentParser
|
|
parser = MyArgumentParser()
|
|
|
|
group1 = parser.add_mutually_exclusive_group()
|
|
group1.add_argument('--AxB', dest='use_AxB_trace', action='store_true', help='Only use AxB trace, if both AxB and beacon are not used, we use the antenna polarisations.')
|
|
group1.add_argument('--beacon', dest='use_beacon_trace', action='store_true', help='Only use the beacon trace')
|
|
|
|
parser.add_argument('--N-mask', type=float, default=500, help='Mask N_MASK samples around the absolute maximum of the trace. (Default: %(default)d)')
|
|
|
|
args = parser.parse_args()
|
|
|
|
f_beacon_band = (49e-3,55e-3) #GHz
|
|
allow_frequency_fitting = False
|
|
read_frequency_from_file = True
|
|
N_mask = int(args.N_mask)
|
|
|
|
use_only_AxB_trace = args.use_AxB_trace
|
|
use_only_beacon_trace = args.use_beacon_trace # only applicable if AxB = False
|
|
|
|
show_plots = args.show_plots
|
|
|
|
figsize = (12,8)
|
|
|
|
print("use_only_AxB_trace:", use_only_AxB_trace, "use_only_beacon_trace:", use_only_beacon_trace)
|
|
|
|
####
|
|
fname_dir = args.data_dir
|
|
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
|
|
|
fig_dir = args.fig_dir # set None to disable saving
|
|
|
|
if not path.isfile(antennas_fname):
|
|
print("Antenna file cannot be found, did you try generating a beacon?")
|
|
sys.exit(1)
|
|
|
|
# read in antennas
|
|
with h5py.File(antennas_fname, 'a') as fp:
|
|
if 'antennas' not in fp.keys():
|
|
print("Antenna file corrupted? no antennas")
|
|
sys.exit(1)
|
|
|
|
group = fp['antennas']
|
|
|
|
f_beacon = None
|
|
if read_frequency_from_file and 'tx' in fp:
|
|
tx = fp['tx']
|
|
if 'f_beacon' in tx.attrs:
|
|
f_beacon = tx.attrs['f_beacon']
|
|
else:
|
|
print("No frequency found in file.")
|
|
sys.exit(2)
|
|
f_beacon_estimate_band = 0.01*f_beacon
|
|
|
|
elif allow_frequency_fitting:
|
|
f_beacon_estimate_band = (f_beacon_band[1] - f_beacon_band[0])/2
|
|
f_beacon = f_beacon_band[1] - f_beacon_estimate_band
|
|
else:
|
|
print("Not allowed to fit frequency and no tx group found in file.")
|
|
sys.exit(2)
|
|
|
|
N_antennas = len(group.keys())
|
|
# just for funzies
|
|
found_data = np.zeros((N_antennas, 3))
|
|
|
|
# Determine frequency and phase
|
|
for i, name in enumerate(group.keys()):
|
|
h5ant = group[name]
|
|
|
|
# use E_AxB only instead of polarisations
|
|
if use_only_AxB_trace:
|
|
traces_key = 'E_AxB'
|
|
if traces_key not in h5ant.keys():
|
|
print(f"Antenna does not have '{traces_key}' in {name}")
|
|
sys.exit(1)
|
|
|
|
traces = h5ant[traces_key]
|
|
t_trace = traces[0]
|
|
test_traces = [ traces[1] ]
|
|
orients = ['E_AxB']
|
|
|
|
# Only beacon
|
|
elif use_only_beacon_trace:
|
|
traces_key = 'filtered_traces'
|
|
if traces_key not in h5ant.keys():
|
|
print(f"Antenna file corrupted? no '{traces_key}' in {name}")
|
|
sys.exit(1)
|
|
|
|
traces = h5ant[traces_key]
|
|
t_trace = traces[0]
|
|
test_traces = [traces[4]]
|
|
orients = ['B']
|
|
|
|
# use separate polarisations
|
|
else:
|
|
traces_key = 'filtered_traces'
|
|
if traces_key not in h5ant.keys():
|
|
print(f"Antenna file corrupted? no '{traces_key}' in {name}")
|
|
sys.exit(1)
|
|
|
|
traces = h5ant[traces_key]
|
|
t_trace = traces[0]
|
|
test_traces = [traces[i] for i in range(1,4)]
|
|
orients = ['Ex', 'Ey', 'Ez']
|
|
|
|
# Really only select the first component
|
|
if True:
|
|
test_traces = [test_traces[0]]
|
|
orients = [orients[0]]
|
|
|
|
# TODO: refine masking
|
|
# use beacon but remove where E_AxB-Beacon != 0
|
|
# Uses the first traces as reference
|
|
if N_mask and orients[0] != 'B':
|
|
N_pre, N_post = N_mask//2, N_mask//2
|
|
|
|
max_idx = np.argmax(test_traces[0])
|
|
|
|
low_idx = max(0, max_idx-N_pre)
|
|
high_idx = min(len(t_trace), max_idx+N_post)
|
|
|
|
t_mask = np.ones(len(t_trace), dtype=bool)
|
|
t_mask[low_idx:high_idx] = False
|
|
|
|
t_trace = t_trace[t_mask]
|
|
for j, t in enumerate(test_traces):
|
|
test_traces[j] = t[t_mask]
|
|
orients[j] = orients[j] + ' masked'
|
|
|
|
# Do Fourier Transforms
|
|
# to find phases and amplitudes
|
|
if True:
|
|
freqs, beacon_phases, amps = lib.find_beacon_in_traces(
|
|
test_traces, t_trace,
|
|
f_beacon_estimate=f_beacon,
|
|
frequency_fit=allow_frequency_fitting,
|
|
f_beacon_estimate_band=f_beacon_estimate_band
|
|
)
|
|
else:
|
|
# Testing
|
|
freqs = [f_beacon]
|
|
t0 = h5ant.attrs['t0']
|
|
|
|
beacon_phases = [ 2*np.pi*t0*f_beacon ]
|
|
amps = [ 3e-7 ]
|
|
|
|
# choose highest amp
|
|
idx = np.argmax(amps)
|
|
if False and len(beacon_phases) > 1:
|
|
#idx = np.argmax(amplitudes, axis=-1)
|
|
raise NotImplementedError
|
|
|
|
frequency = freqs[idx]
|
|
beacon_phase = beacon_phases[idx]
|
|
amplitude = amps[idx]
|
|
orientation = orients[idx]
|
|
|
|
# Correct for phase by t_trace[0]
|
|
corr_phase = lib.phase_mod(2*np.pi*f_beacon*t_trace[0])
|
|
if False:
|
|
# Subtract phase due to not starting at t=0
|
|
# This is already done in beacon_find_traces
|
|
beacon_phase = lib.phase_mod(beacon_phase + corr_phase)
|
|
|
|
# for reporting using plots
|
|
found_data[i] = frequency, beacon_phase, amplitude
|
|
|
|
if (show_plots or fig_dir) and (i == 0 or i == 72):
|
|
p2t = lambda phase: phase/(2*np.pi*f_beacon)
|
|
|
|
fig, ax = plt.subplots(figsize=figsize)
|
|
ax.set_title(f"Beacon at antenna {h5ant.attrs['name']}\nF:{frequency:.2e}, P:{beacon_phase:.4f}, A:{amplitude:.1e}")
|
|
ax.set_xlabel("t [ns]")
|
|
ax.set_ylabel("Amplitude")
|
|
|
|
if True:
|
|
# let the trace start at t=0
|
|
t_0 = min(t_trace)
|
|
extra_phase = corr_phase
|
|
else:
|
|
t_0 = 0
|
|
extra_phase = -1*corr_phase
|
|
|
|
for j, trace in enumerate(test_traces):
|
|
ax.plot(t_trace - t_0, test_traces[j], marker='.', label='trace '+orients[j])
|
|
|
|
myt = np.linspace(min(t_trace), max(t_trace), 10*len(t_trace)) - t_0
|
|
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, t0=0, phase=beacon_phase+extra_phase), ls='dotted', label='simulated beacon')
|
|
|
|
ax.axvline( p2t(lib.phase_mod(-1*(beacon_phase+extra_phase), low=0)), color='r', ls='dashed', label='$t_\\varphi$')
|
|
|
|
ax.axvline(0,color='grey',alpha=0.5)
|
|
ax.axhline(0,color='grey',alpha=0.5)
|
|
|
|
ax.legend()
|
|
|
|
if fig_dir:
|
|
old_xlims = ax.get_xlim()
|
|
ax.set_xlim(min(t_trace)-t_0-10,min(t_trace)-t_0+40)
|
|
|
|
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.zoomed.pdf"))
|
|
|
|
ax.set_xlim(*old_xlims)
|
|
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.pdf"))
|
|
|
|
# save to file
|
|
h5beacon_info = h5ant.require_group('beacon_info')
|
|
|
|
# only take n_sig significant digits into account
|
|
# for naming in hdf5 file
|
|
n_sig = 3
|
|
decimal = int(np.floor(np.log10(abs(frequency))))
|
|
freq_name = str(np.around(frequency, n_sig-decimal))
|
|
|
|
# delete previous values
|
|
if freq_name in h5beacon_info:
|
|
del h5beacon_info[freq_name]
|
|
|
|
h5beacon_freq_info = h5beacon_info.create_group(freq_name)
|
|
|
|
h5attrs = h5beacon_freq_info.attrs
|
|
h5attrs['freq'] = frequency
|
|
h5attrs['beacon_phase'] = beacon_phase
|
|
h5attrs['amplitude'] = amplitude
|
|
h5attrs['orientation'] = orientation
|
|
|
|
print("Beacon Phases, Amplitudes and Frequencies written to", antennas_fname)
|
|
|
|
# show histogram of found frequencies
|
|
if show_plots or fig_dir:
|
|
if True or allow_frequency_fitting:
|
|
fig, ax = plt.subplots(figsize=figsize)
|
|
ax.set_xlabel("Frequency")
|
|
ax.set_ylabel("Counts")
|
|
ax.axvline(f_beacon, ls='dashed', color='g')
|
|
ax.hist(found_data[:,0], bins='sqrt', density=False)
|
|
if fig_dir:
|
|
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_freq.pdf"))
|
|
|
|
if True:
|
|
fig, ax = plt.subplots(figsize=figsize)
|
|
ax.set_xlabel("Amplitudes")
|
|
ax.set_ylabel("Counts")
|
|
ax.hist(found_data[:,2], bins='sqrt', density=False)
|
|
if fig_dir:
|
|
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_amp.pdf"))
|
|
|
|
if show_plots:
|
|
plt.show()
|