m-thesis-introduction/simulations/airshower_beacon_simulation/bd_antenna_phase_deltas.py

241 lines
8.9 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
import matplotlib as mpl
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
fname = "ZH_airshower/mysim.sry"
show_plots = True
ref_ant_id = None # leave None for all baselines
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
time_diffs_fname = 'time_diffs.hdf5' if False else antennas_fname
fig_dir = "./figures" # set None to disable saving
basenames, time_diffs, f_beacons, true_phase_diffs, k_periods = beacon.read_baseline_time_diffs_hdf5(time_diffs_fname)
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# TODO: allow multiple frequencies
if (f_beacon != f_beacons).any():
raise NotImplementedError
N_base = len(basenames)
N_ant = len(antennas)
# reshape time_diffs into N_ant x N_ant array
sigma_phase_matrix = np.full( (N_ant, N_ant), np.nan, dtype=float)
#sigma_phase_matrix = np.arange(0, N_ant**2, dtype=float).reshape( (N_ant,N_ant))
name2idx = lambda name: int(name)-1
for i, b in enumerate(basenames):
idx = (name2idx(b[0]), name2idx(b[1]))
if idx[0] == idx[1]:
# hopefully 0
pass
sigma_phase_matrix[(idx[0], idx[1])] = lib.phase_mod(true_phase_diffs[i])
sigma_phase_matrix[(idx[1], idx[0])] = lib.phase_mod(true_phase_diffs[i])
mat_kwargs = dict(
norm = Normalize(vmin=-np.pi, vmax=+np.pi),
cmap = mpl.cm.get_cmap('Spectral_r')
)
# Show Matrix as figure
if True:
fig, ax = plt.subplots()
ax.set_title("Measured phase differences Baseline i,j")
ax.set_ylabel("Antenna no. i")
ax.set_xlabel("Antenna no. j")
im = ax.imshow(sigma_phase_matrix, interpolation='none', **mat_kwargs)
fig.colorbar(im, ax=ax)
if fig_dir:
fig.savefig(path.join(fig_dir, __file__ + f".matrix.original.pdf"))
# Modify the matrix to let each column represent multiple
# measurements of the same baseline (j,0) phase difference
if True:
# for each row j subtract the 0,j element from the whole row
# and apply phase_mod
first_row = (sigma_phase_matrix[0,:] * np.ones_like(sigma_phase_matrix)).T
# Show subtraction Matrix as figure
if True:
fig, ax = plt.subplots()
ax.set_title("Subtraction matrix i,j")
ax.set_ylabel("Antenna no. i")
ax.set_xlabel("Antenna no. j")
im = ax.imshow(first_row, interpolation='none', **mat_kwargs)
fig.colorbar(im, ax=ax)
if fig_dir:
fig.savefig(path.join(fig_dir, __file__ + f".matrix.first_row.pdf"))
sigma_phase_matrix = sigma_phase_matrix - first_row
sigma_phase_matrix = lib.phase_mod(sigma_phase_matrix)
# Except for the first row, these are all separate measurements
# Condense into phase offset per antenna
if True: # do not use the first row
my_mask = np.arange(1, len(sigma_phase_matrix), dtype=int)
else:
my_mask = np.arange(0, len(sigma_phase_matrix), dtype=int)
mean_sigma_phase = np.nanmean(sigma_phase_matrix[my_mask], axis=0)
std_sigma_phase = np.nanstd( sigma_phase_matrix[my_mask], axis=0)
# Show resulting matrix as figure
if True:
fig, axs = plt.subplots(2,1, sharex=True)
axs[0].set_title("Modified measured phase differences Baseline 0,j")
axs[0].set_ylabel("Antenna no. 0")
axs[-1].set_xlabel("Antenna no. j")
im = axs[0].imshow(sigma_phase_matrix, interpolation='none', **mat_kwargs)
fig.colorbar(im, ax=axs)
axs[0].set_aspect('auto')
colours = [mat_kwargs['cmap'](mat_kwargs['norm'](x)) for x in mean_sigma_phase]
axs[1].set_ylabel("Mean Baseline Phase (0, j)[rad]")
axs[1].errorbar(np.arange(N_ant), mean_sigma_phase, yerr=std_sigma_phase, ls='none')
axs[1].scatter(np.arange(N_ant), mean_sigma_phase, c=colours,s=4)
if fig_dir:
fig.savefig(path.join(fig_dir, __file__ + f".matrix.modified.pdf"))
# write into antenna hdf5
with h5py.File(antennas_fname, 'a') as fp:
group = fp['antennas']
freq_name = None
for i, ant in enumerate(antennas):
h5ant = group[ant.name]
h5beacon_info = h5ant['beacon_info']
# find out freq_name
if freq_name is None:
freq_name = [ k for k in h5beacon_info.keys() if np.isclose(h5beacon_info[k].attrs['freq'], f_beacon)][0]
h5attrs = h5beacon_info[freq_name].attrs
idx = name2idx(ant.name)
h5attrs['sigma_phase_mean'] = mean_sigma_phase[idx]
h5attrs['sigma_phase_std'] = std_sigma_phase[idx]
##############################
# Compare actual time shifts #
##############################
antenna_time_shifts = { a.name: a.attrs['clock_offset'] for a in sorted(antennas, key=lambda a: int(a.name)) }
if True:
actual_phase_shifts = [ -1*lib.phase_mod(2*np.pi*f_beacon*v) for k,v in antenna_time_shifts.items() ]
antenna_names = [int(k)-1 for k,v in antenna_time_shifts.items() ]
for i in range(2):
plot_residuals = i == 1
colors = ['blue', 'orange']
fig, axs = plt.subplots(2, 1, sharex=True)
if True:
forward = lambda x: x/(2*np.pi*f_beacon)
inverse = lambda x: 2*np.pi*x*f_beacon
secax = axs[0].secondary_xaxis('top', functions=(forward, inverse))
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
if plot_residuals:
phase_residuals = lib.phase_mod(mean_sigma_phase - actual_phase_shifts)
fig.suptitle("Difference between Measured and Actual phases\n for Antenna $i$")
axs[-1].set_xlabel("Antenna Phase Residual $\\Delta_\\varphi$")
else:
fig.suptitle("Comparison Measured and Actual phases\n for Antenna $i$")
axs[-1].set_xlabel("Antenna Phase $\\Delta_\\varphi$")
i=0
axs[i].set_ylabel("#")
if plot_residuals:
axs[i].hist(phase_residuals, bins='sqrt', alpha=0.8, color=colors[0])
else:
axs[i].hist(mean_sigma_phase, bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured')
axs[i].hist(actual_phase_shifts, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual')
i=1
axs[i].set_ylabel("Antenna no.")
if plot_residuals:
axs[i].plot(phase_residuals, np.arange(N_ant), alpha=0.6, ls='none', marker='x', color=colors[0])
else:
axs[i].errorbar(mean_sigma_phase, np.arange(N_ant), yerr=std_sigma_phase, marker='4', alpha=0.7, ls='none', color=colors[0], label='Measured')
axs[i].plot(actual_phase_shifts, antenna_names, ls='none', marker='3', alpha=0.8, color=colors[1], label='Actual')
axs[i].legend()
fig.tight_layout()
if fig_dir:
extra_name = "measured"
if plot_residuals:
extra_name = "residuals"
fig.savefig(path.join(fig_dir, __file__ + f".phase.{extra_name}.pdf"))
##########################
##########################
##########################
actual_time_shifts = []
for i,b in enumerate(basenames):
actual_time_shift = lib.phase_mod(lib.phase_mod(antenna_time_shifts[b[0]]*2*np.pi*f_beacon) - lib.phase_mod(antenna_time_shifts[b[1]]*2*np.pi*f_beacon))
actual_time_shifts.append(actual_time_shift)
# unpack mean_sigma_phase back into a list of time diffs
measured_time_diffs = []
for i,b in enumerate(basenames):
time0, time1 = mean_sigma_phase[name2idx(b[0])], mean_sigma_phase[name2idx(b[1])]
measured_time_diffs.append(time1 - time0)
# Make a plot
if True:
fig, ax = plt.subplots()
ax.set_xlabel("Baseline no.")
ax.set_ylabel("$\\Delta t$[ns]")
if True: # indicate single beacon period span
ax.plot((-1, -1), (0, 1/f_beacon), marker='3', ms=10, label='1/f_beacon')
ax.plot(np.arange(N_base), actual_time_shifts, marker='+', label='actual time shifts')
ax.plot(np.arange(N_base), measured_time_diffs, marker='x', label='calculated')
ax.legend()
if fig_dir:
fig.savefig(path.join(fig_dir, __file__ + f".calculated_shifts.pdf"))
if show_plots:
plt.show()