m-thesis-introduction/airshower_beacon_simulation/dc_grid_power_time_fixes.py

323 lines
12 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Show how the Power changes when incorporating the
various clock offsets by plotting on a grid.
"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions
import numpy as np
from os import path
import joblib
from earsim import REvent
from atmocal import AtmoCal
import aa_generate_beacon as beacon
import lib
from lib import rit
def save_overlapping_traces_figure(test_location, ev, N_plot = 30, wx=200, title_extra=None, fname_distinguish='', fig_dir=None, **fig_kwargs):
P, t_, a_, a_sum, t_sum = rit.pow_and_time(test_location, ev, dt=1)
fig, axs = plt.subplots(**fig_kwargs)
axs.set_title("Antenna traces" + (("\n" + title_extra) if title_extra is not None else '') )
axs.set_xlabel("Time [ns]")
axs.set_ylabel("Amplitude [$\\mu V/m$]")
if True:
text_loc = (0.02, 0.95)
axs.text(*text_loc, '[' + ', '.join(['{:.1g}'.format(x) for x in test_location]) + ']', ha='left', transform=axs.transAxes)
a_max = [ np.amax(ant.E_AxB) for ant in ev.antennas ]
power_sort_idx = np.argsort(a_max)
for i, idx in enumerate(reversed(power_sort_idx)):
if i >= N_plot:
break
alpha = max(0.4, 1/N_plot)
axs.plot(t_[idx], a_[idx], color='r', alpha=alpha, lw=2)
if fig_dir:
if fname_distinguish:
fname_distinguish = "." + fname_distinguish
fig.tight_layout()
fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.{case}.pdf'))
fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.{case}.png'), transparent=True)
# Take center between t_low and t_high
if True:
orig_xlims = axs.get_xlim()
if not True: # t_high and t_low from strongest signal
t_low = np.min(t_[power_sort_idx[-1]])
t_high = np.max(t_[power_sort_idx[-1]])
else: # take t_high and t_low from plotted signals
a = [np.min(t_[idx]) for idx in power_sort_idx[-N_plot:]]
t_low = np.nanmin(a)
b = [np.max(t_[idx]) for idx in power_sort_idx[-N_plot:]]
t_high = np.nanmax(b)
if False:
axs.plot(a, [0]*N_plot, 'gx', ms=10)
axs.plot(b, [0]*N_plot, 'b+', ms=10)
center_x = (t_high - t_low)/2 + t_low
low_xlim = max(orig_xlims[0], center_x - wx)
high_xlim = min(orig_xlims[1], center_x + wx)
axs.set_xlim(low_xlim, high_xlim)
fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.zoomed.{case}.pdf'))
fig.savefig(path.join(fig_dir, path.basename(__file__) + f'{fname_distinguish}.trace_overlap.zoomed.{case}.png'), transparent=True)
return fig
if __name__ == "__main__":
valid_cases = ['no_offset', 'repair_none', 'repair_phases', 'repair_all']
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
atm = AtmoCal()
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('--input-fname', type=str, default=None, help='Path to mysim.sry, either directory or path. If empty it takes DATA_DIR and appends mysim.sry. (Default: %(default)s)')
group = parser.add_argument_group('figures')
for case in valid_cases:
group.add_argument('--'+case.replace('_','-'), dest='figures', action='append_const', const=case)
args = parser.parse_args()
if not args.input_fname:
args.input_fname = args.data_dir
if path.isdir(args.input_fname):
args.input_fname = path.join(args.input_fname, "mysim.sry")
wanted_cases = args.figures
if not wanted_cases or 'all' in wanted_cases:
wanted_cases = valid_cases
figsize = (12,8)
fig_dir = args.fig_dir
show_plots = args.show_plots
remove_beacon_from_traces = True
apply_signal_window_from_max = True
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
pickle_fname = path.join(fname_dir, 'res.pkl')
tx_fname = path.join(fname_dir, beacon.tx_fname)
beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname)
# create fig_dir
if fig_dir:
os.makedirs(fig_dir, exist_ok=True)
# Read in antennas from file
_, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
_, __, txdata = beacon.read_tx_file(tx_fname)
# Read original REvent
ev = REvent(args.input_fname)
bak_ants = ev.antennas
# .. patch in our antennas
ev.antennas = antennas
# Read in snr info
beacon_snrs = beacon.read_snr_file(beacon_snr_fname)
snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1g}"
##
## Setup grid
##
X = 400
zgr = 0 #not exact
dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),750,zgr+ev.core[2])
scale2d = dXref*np.tan(np.deg2rad(2.))
scale4d = dXref*np.tan(np.deg2rad(4.))
scale02d = dXref*np.tan(np.deg2rad(0.2))
Nx, Ny = 21, 21
scales = {
'scale2d': scale2d,
'scale4d': scale4d,
'scale02d': scale02d,
}
N_plot = 30
trace_zoom_wx = 100
plot_titling = {
'no_offset': "no clock offset",
'repair_none': "unrepaired clock offset",
'repair_phases': "phase resolved clock offsets repaired",
'repair_all': "final measured clock offsets repaired"
}
# For now only implement using one freq_name
freq_names = ev.antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
# Pre remove the beacon from the traces
#
# We need to remove it here, so we do not shoot ourselves in
# the foot when changing to the various clock offsets.
#
# Note that the bandpass filter is applied only after E_AxB is
# reconstructed so we have to manipulate the original traces.
if remove_beacon_from_traces:
tx_amps = txdata['amplitudes']
tx_amps_sum = np.sum(tx_amps)
for i, ant in enumerate(ev.antennas):
beacon_phase = ant.beacon_info[freq_name]['beacon_phase']
f = ant.beacon_info[freq_name]['freq']
ampl_AxB = ant.beacon_info[freq_name]['amplitude']
calc_beacon = lib.sine_beacon(f, ev.antennas[i].t, amplitude=ampl_AxB, phase=beacon_phase)
# Split up contribution to the various polarisations
for j, amp in enumerate(tx_amps):
if j == 0:
ev.antennas[i].Ex -= amp*(1/tx_amps_sum)*calc_beacon
elif j == 1:
ev.antennas[i].Ey -= amp*(1/tx_amps_sum)*calc_beacon
elif j == 2:
ev.antennas[i].Ez -= amp*(1/tx_amps_sum)*calc_beacon
# Subtract the beacon from E_AxB
ev.antennas[i].E_AxB -= calc_beacon
# Slice the traces to a small part around the peak
if apply_signal_window_from_max:
N_pre, N_post = 250, 250 # TODO: make this configurable
for i, ant in enumerate(ev.antennas):
# Get max idx from all the traces
# and select the strongest
max_idx = []
maxs = []
for trace in [ant.Ex, ant.Ey, ant.Ez]:
idx = np.argmax(np.abs(trace))
max_idx.append(idx)
maxs.append( np.abs(trace[idx]) )
idx = np.argmax(maxs)
max_idx = max_idx[idx]
low_idx = max(0, max_idx-N_pre)
high_idx = min(len(ant.t), max_idx+N_post)
ev.antennas[i].t = ant.t[low_idx:high_idx]
ev.antennas[i].t_AxB = ant.t_AxB[low_idx:high_idx]
ev.antennas[i].Ex = ant.Ex[low_idx:high_idx]
ev.antennas[i].Ey = ant.Ey[low_idx:high_idx]
ev.antennas[i].Ez = ant.Ez[low_idx:high_idx]
ev.antennas[i].E_AxB = ant.E_AxB[low_idx:high_idx]
## Apply polarisation and bandpass filter
rit.set_pol_and_bp(ev)
# backup antenna times
backup_antenna_t = [ ant.t for ant in ev.antennas ]
backup_antenna_t_AxB = [ ant.t_AxB for ant in ev.antennas ]
fig = save_overlapping_traces_figure([0,0,0], ev, N_plot=1, wx=trace_zoom_wx, title_extra = plot_titling[case], fname_distinguish=f'single', fig_dir=fig_dir, figsize=figsize)
plt.close(fig)
with joblib.parallel_backend("loky"):
for case in wanted_cases:
print(f"Starting {case} figure")
# Repair clock offsets with the measured offsets
transl_modes = {'no_offset':'orig', 'repair_phases':'phases', 'repair_all':'all'}
if case in transl_modes:
transl_mode = transl_modes[case]
measured_offsets = beacon.read_antenna_clock_repair_offsets(antennas, mode=transl_mode, freq_name=freq_name)
else:
measured_offsets = [0]*len(ev.antennas)
for i, ant in enumerate(ev.antennas):
total_clock_offset = measured_offsets[i]
ev.antennas[i].t = backup_antenna_t[i] + total_clock_offset
ev.antennas[i].t_AxB = backup_antenna_t_AxB[i] + total_clock_offset
if i == 0:
# Specifically compare the times
print("backup time, time with measured_offset, true clock offset, measured clock offset")
print(bak_ants[i].t[0], ev.antennas[i].t[0], ev.antennas[i].attrs['clock_offset'], measured_offsets[i])
#
# Plot overlapping traces at 0,0,0
#
fig = save_overlapping_traces_figure([0,0,0], ev, N_plot=N_plot, wx=trace_zoom_wx, title_extra = plot_titling[case], fname_distinguish=f'{case}.0', fig_dir=fig_dir, figsize=figsize)
plt.close(fig)
# Measure power on grid
# and plot overlapping traces at position with highest power
for scalename, scale in scales.items():
wx, wy = scale, scale
print(f"Starting grid measurement for figure {case} with {scalename}")
xx, yy, p, maxp_loc = rit.shower_plane_slice(ev, X=X, Nx=Nx, Ny=Nx, wx=wx, wy=wy, zgr=zgr)
fig, axs = rit.slice_figure(ev, X, xx, yy, p, mode='sp', scatter_kwargs=dict(
vmax=1e5,
vmin=0,
s=250,
cmap='inferno',
# edgecolor='black',
))
suptitle = fig._suptitle.get_text()
fig.suptitle("")
axs.set_title("Shower plane slice\n" + plot_titling[case] + "\n" + suptitle)
axs.set_aspect('equal', 'datalim')
axs.legend(title=snr_str)
axs.set_xlim(1.1*min(xx)/1e3, 1.1*max(xx)/1e3)
axs.set_ylim(1.1*min(yy)/1e3, 1.1*max(yy)/1e3)
if fig_dir:
fig.tight_layout()
fig.savefig(path.join(fig_dir, path.basename(__file__) + f'.X{X}.{case}.{scalename}.pdf'))
plt.close(fig)
#
# Plot overlapping traces at highest power of each scale
#
fig = save_overlapping_traces_figure(maxp_loc, ev, N_plot=N_plot, wx=trace_zoom_wx, title_extra = plot_titling[case] + ', ' + scalename + ' best', fname_distinguish=scalename+'.best', fig_dir=fig_dir, figsize=figsize)
#
# and plot overlapping traces at two other locations
#
if True:
for dist in [ 0.5, 5, 10, 50, 100]:
# only add distance horizontally
location = maxp_loc + np.sqrt(dist*1e3)*np.array([1,1,0])
fig = save_overlapping_traces_figure(location, ev, N_plot=N_plot, wx=wx, title_extra = plot_titling[case] + ', ' + scalename + f', x + {dist}km', fname_distinguish=f'{scalename}.x{dist}', fig_dir=fig_dir, figsize=figsize)
plt.close(fig)
if args.show_plots:
plt.show()