mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-03 00:33:33 +01:00
184 lines
6.1 KiB
Python
Executable file
184 lines
6.1 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import numpy.fft as ft
|
|
|
|
import aa_generate_beacon as beacon
|
|
from view_orig_ant0 import plot_antenna_geometry
|
|
import lib
|
|
from earsim import Antenna
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from os import path
|
|
import sys
|
|
import matplotlib
|
|
import os
|
|
if os.name == 'posix' and "DISPLAY" not in os.environ:
|
|
matplotlib.use('Agg')
|
|
|
|
from scriptlib import MyArgumentParser
|
|
parser = MyArgumentParser()
|
|
parser.add_argument('ant_idx', default=[72], nargs='*', type=int, help='Antenna Indices')
|
|
parser.add_argument('-p', '--polarisations', choices=['x', 'y', 'z', 'b', 'AxB', 'n', 'b+n'], action='append', help='Default: x,y,z')
|
|
parser.add_argument('--geom', action='store_true', help='Make a figure containg the geometry from tx to antenna(s)')
|
|
parser.add_argument('--ft', action='store_true', help='Add FT strenghts of antenna traces')
|
|
|
|
args = parser.parse_args()
|
|
|
|
figsize = (12,8)
|
|
|
|
plot_ft_amplitude = args.ft
|
|
plot_geometry = args.geom
|
|
|
|
fig_dir = args.fig_dir
|
|
show_plots = args.show_plots
|
|
|
|
if not args.polarisations:
|
|
args.polarisations = ['x','y', 'z']
|
|
|
|
####
|
|
fname_dir = args.data_dir
|
|
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
|
tx_fname = path.join(fname_dir, beacon.tx_fname)
|
|
|
|
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
|
_, __, txdata = beacon.read_tx_file(tx_fname)
|
|
beacon_amp = np.max(txdata['amplitudes'])# mu V/m
|
|
|
|
idx = args.ant_idx
|
|
|
|
if not idx:
|
|
if not True:
|
|
idx = [0, 1, len(antennas)//2, len(antennas)//2+1, -2, -1]
|
|
elif not True:
|
|
idx = np.arange(1, 20, 2, dtype=int)
|
|
elif True:
|
|
# center 6 antennas
|
|
names = [55, 56, 57, 65, 66, 45, 46]
|
|
|
|
idx = [ i for i, ant in enumerate(antennas) if int(ant.name) in names ]
|
|
|
|
for i_fig in range(2):
|
|
name_dist=''
|
|
|
|
if i_fig == 1: #read in the raw_traces
|
|
_, __, antennas = beacon.read_beacon_hdf5(antennas_fname, traces_key='prefiltered_traces')
|
|
name_dist='.raw'
|
|
|
|
|
|
fig1, axs = plt.subplots(1+plot_ft_amplitude*1 +0*1, figsize=figsize)
|
|
if not plot_ft_amplitude:
|
|
axs = [axs]
|
|
axs[0].set_xlabel('t [ns]')
|
|
axs[0].set_ylabel('[$\mu$V/m]')
|
|
|
|
if i_fig == 1:
|
|
axs[0].set_title("UnFiltered traces")
|
|
else:
|
|
axs[0].set_title("Filtered traces")
|
|
|
|
if True:
|
|
axs[0].set_xlim(-250, 250)
|
|
|
|
if plot_ft_amplitude:
|
|
axs[1].set_xlabel('f [GHz]')
|
|
axs[1].set_ylabel('Power')
|
|
|
|
if len(axs) > 2:
|
|
axs[2].set_ylabel("Phase")
|
|
axs[2].set_xlabel('f [GHz]')
|
|
axs[2].set_ylim(-np.pi,+np.pi)
|
|
|
|
colorlist = []
|
|
for i in idx:
|
|
ant = antennas[i]
|
|
|
|
n_samples = len(ant.t)
|
|
samplerate = (ant.t[-1] - ant.t[0])/n_samples
|
|
|
|
axs[0].axvline(ant.t[0], color='k', alpha=0.5)
|
|
|
|
mydict = {}
|
|
for p in args.polarisations:
|
|
pattr = 'E'+str(p)
|
|
if p == 'b':
|
|
pattr = 'beacon'
|
|
elif p == 'n':
|
|
pattr = 'noise'
|
|
elif p == 'AxB':
|
|
pattr = 'E_AxB'
|
|
elif p =='b+n':
|
|
mydict[p] = getattr(ant,'noise') + beacon_amp*getattr(ant, 'beacon')
|
|
continue
|
|
|
|
mydict[p] = getattr(ant, pattr)
|
|
|
|
if 'b' in mydict:
|
|
mydict['b'] *= beacon_amp
|
|
|
|
for j, (direction, trace) in enumerate(mydict.items()):
|
|
l = axs[0].plot(ant.t, trace, label=f"$E_{{{direction}}}$ {ant.name}", alpha=0.7)
|
|
|
|
#if False and j == 0 and 't0' in ant.attrs:
|
|
# axs[0].axvline(ant.attrs['t0'], color=l[0].get_color(), alpha=0.5)
|
|
|
|
colorlist.append(l[0].get_color())
|
|
|
|
if not plot_ft_amplitude:
|
|
continue
|
|
|
|
fft, freqs = lib.get_freq_spec(trace, 1/samplerate)
|
|
|
|
axs[1].plot(freqs, np.abs(fft)**2, color=l[0].get_color())
|
|
|
|
if True:
|
|
cft = lib.direct_fourier_transform(f_beacon, ant.t, trace)
|
|
amp = (cft[0]**2 + cft[1]**2)
|
|
|
|
#axs[0].axhline(amp, color=l[0].get_color())
|
|
|
|
print(amp)
|
|
phase = np.arctan2(cft[0],cft[1])
|
|
axs[1].plot(f_beacon, amp, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
|
|
if len(axs) > 2:
|
|
axs[2].plot(f_beacon, phase, color=l[0].get_color(), marker='3', alpha=0.8, ms=30)
|
|
|
|
if plot_ft_amplitude:
|
|
fig1.legend(loc='center right', ncol=min(2, len(idx)))
|
|
else:
|
|
axs[0].legend(loc='upper right', ncol=min(3, len(idx)))
|
|
|
|
# Keep trace plot symmetric around 0
|
|
max_lim = max(np.abs(axs[0].get_ylim()))
|
|
axs[0].set_ylim(-max_lim, max_lim)
|
|
|
|
# Keep spectrum between 0 and 100 MHz
|
|
if len(axs) > 1:
|
|
xlims = axs[1].get_xlim()
|
|
axs[1].set_xlim(max(0, xlims[0]), min(0.1, xlims[1]))
|
|
if False: # extra zoom
|
|
axs[1].set_xlim(f_beacon - 0.01, f_beacon + 0.01)
|
|
|
|
if fig_dir:
|
|
fig1.savefig(path.join(fig_dir, path.basename(__file__) + f".trace{name_dist}.pdf"))
|
|
|
|
if plot_geometry:
|
|
if len(mydict) == 1:
|
|
geom_colorlist = colorlist
|
|
else:
|
|
# only take the colour belonging to mydict[0]
|
|
geom_colorlist = [ colorlist[len(mydict)*(i)] for i in range(len(colorlist)//len(mydict)) ]
|
|
|
|
fig2, axs2 = plt.subplots(1, figsize=figsize)
|
|
plot_antenna_geometry(antennas, ax=axs2, plot_max_values=False, color='grey', plot_names=False)
|
|
plot_antenna_geometry([ antennas[i] for i in idx], ax=axs2, colors=geom_colorlist, plot_max_values=False)
|
|
|
|
axs2.plot(tx.x, tx.y, marker='X', color='k')
|
|
axs2.set_title("Geometry with selected antennas")
|
|
if fig_dir:
|
|
fig2.savefig(path.join(fig_dir, path.basename(__file__) + f".geom.pdf"))
|
|
|
|
if show_plots:
|
|
plt.show()
|