m-thesis-introduction/simulations/airshower_beacon_simulation/aa_generate_beacon.py

299 lines
8.5 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Add a beacon measurement on top of the
simulated airshower.
"""
import numpy as np
import json
import h5py
import os.path as path
from copy import deepcopy
from earsim import REvent, Antenna, block_filter
import lib
tx_fname = 'tx.json'
antennas_fname = 'antennas.hdf5'
def write_tx_file(fname, tx, f_beacon):
with open(fname, 'w') as fp:
return json.dump(
dict(
f_beacon=f_beacon,
tx=dict(
x=tx.x,
y=tx.y,
z=tx.z,
name=tx.name
)
),
fp
)
def read_tx_file(fname):
with open(fname, 'r') as fp:
data = json.load(fp)
f_beacon = data['f_beacon']
tx = Antenna(**data['tx'])
return tx, f_beacon
def read_beacon_hdf5(fname, **h5ant_kwargs):
with h5py.File(fname, 'r') as h5:
tx = Antenna_from_h5ant(h5['tx'], traces_key=None)
f_beacon = tx.attrs['f_beacon']
antennas = []
for k, h5ant in h5['antennas'].items():
ant = Antenna_from_h5ant(h5ant, **h5ant_kwargs)
antennas.append(ant)
return f_beacon, tx, antennas
def Antenna_from_h5ant(h5ant, traces_key='traces', raise_exception=True, read_AxB=True, read_beacon_info=True):
mydict = { k:h5ant.attrs.get(k) for k in ['x', 'y', 'z', 'name'] }
ant = Antenna(**mydict)
if h5ant.attrs:
ant.attrs = {**h5ant.attrs}
# Traces
if traces_key is None:
pass
elif traces_key not in h5ant:
if raise_exception:
raise ValueError("Traces_key not in file")
else:
ant.t = deepcopy(h5ant[traces_key][0])
ant.Ex = deepcopy(h5ant[traces_key][1])
ant.Ey = deepcopy(h5ant[traces_key][2])
ant.Ez = deepcopy(h5ant[traces_key][3])
if len(h5ant[traces_key]) > 4:
ant.beacon = deepcopy(h5ant[traces_key][4])
# E_AxB
if read_AxB and 'E_AxB' in h5ant:
ant.t_AxB = deepcopy(h5ant['E_AxB'][0])
ant.E_AxB = deepcopy(h5ant['E_AxB'][1])
# Beacons
if read_beacon_info and 'beacon_info' in h5ant:
h5beacon = h5ant['beacon_info']
beacon_info = {}
for name in h5beacon.keys():
beacon_info[name] = dict(h5beacon[name].attrs)
ant.beacon_info = beacon_info
return ant
def init_antenna_hdf5(fname, tx = None, f_beacon = None):
with h5py.File(fname, 'w') as fp:
if tx is not None or f_beacon is not None:
tx_group = fp.create_group('tx')
tx_attrs = tx_group.attrs
if f_beacon is not None:
tx_attrs['f_beacon'] = f_beacon
if tx is not None:
tx_attrs['x'] = tx.x
tx_attrs['y'] = tx.y
tx_attrs['z'] = tx.z
tx_attrs['name'] = tx.name
return fname
def append_antenna_hdf5(fname, antenna, columns = [], name='traces', prepend_time=True, overwrite=True, attrs_dict={}):
if not overwrite:
raise NotImplementedError
with h5py.File(fname, 'a') as fp:
if 'antennas' in fp.keys():
if not overwrite:
raise NotImplementedError
group = fp['antennas']
else:
group = fp.create_group('antennas')
if antenna.name in group:
if not overwrite:
raise NotImplementedError
h5ant = group[antenna.name]
else:
h5ant = group.create_group(antenna.name)
h5ant_attrs = h5ant.attrs
h5ant_attrs['x'] = antenna.x
h5ant_attrs['y'] = antenna.y
h5ant_attrs['z'] = antenna.z
h5ant_attrs['name'] = antenna.name
for k,v in attrs_dict.items():
h5ant_attrs[k] = v
if name in h5ant:
if not overwrite:
raise NotImplementedError
del h5ant[name]
dset = h5ant.create_dataset(name, (len(columns) + 1*prepend_time, len(columns[0])), dtype='f')
if prepend_time:
dset[0] = antenna.t
for i, col in enumerate(columns, 1*prepend_time):
dset[i] = col
def read_baseline_time_diffs_hdf5(fname):
"""
Read Baseline Time Diff information from HDF5 storage.
"""
with h5py.File(fname, 'r') as fp:
group_name = 'baseline_time_diffs'
base_dset_name = 'baselines'
dset_name = 'time_diffs'
group = fp[group_name]
names = group[base_dset_name][:]
dset = group[dset_name]
f_beacon = dset[:,0]
true_phase_diffs = dset[:,1]
k_periods = dset[:,2]
return names, f_beacon, true_phase_diffs, k_periods
def write_baseline_time_diffs_hdf5(fname, baselines, true_phase_diffs, k_periods, f_beacon, overwrite=True):
"""
Write a combination of baselines, phase_diff, k_period and f_beacon to file.
Note that f_beacon is allowed to broadcast, but the others are not.
"""
if not hasattr(baselines[0], '__len__'):
# this is a single baseline
N_baselines = 1
baselines = [baselines]
true_phase_diffs = [true_phase_diffs]
k_periods = [k_periods]
f_beacon = [f_beacon]
else:
N_baselines = len(baselines)
# Expand the f_beacon list
if not hasattr(f_beacon, '__len__'):
f_beacon = [f_beacon]*N_baselines
assert len(baselines) == len(true_phase_diffs) == len(k_periods) == len(f_beacon)
with h5py.File(fname, 'a') as fp:
group_name = 'baseline_time_diffs'
base_dset_name = 'baselines'
dset_name = 'time_diffs'
group = fp.require_group(group_name)
if base_dset_name in group:
if not overwrite:
raise NotImplementedError
del group[base_dset_name]
if dset_name in group:
if not overwrite:
raise NotImplementedError
del group[dset_name]
# save baselines list
basenames = np.array([ [b[0].name, b[1].name] for b in baselines ], dtype='S')
base_dset = group.create_dataset(base_dset_name, data=basenames)
data = np.vstack( (f_beacon, true_phase_diffs, k_periods) ).T
dset = group.create_dataset(dset_name, data=data)
if __name__ == "__main__":
from os import path
remake_tx = True
fname = "ZH_airshower/mysim.sry"
tx = Antenna(x=-500,y=0,z=0,name='tx') # m
if not True: # slowest beacon to be found:
f_beacon = 10e-3 # GHz
low_bp = 5e-3 # GHz
high_bp = 80e-3 # GHz
else: # original wanted beacon
f_beacon = 51.53e-3 # GHz
# Bandpass for E field blockfilter
low_bp = 30e-3 # GHz
high_bp = 80e-3 # GHz
# Disable block_filter
if False:
block_filter = lambda x, dt, low, high: x
beacon_amplitudes = 1e-6*np.array([1e2, 0, 0]) # mu V/m
beacon_radiate_rsq = True
if beacon_radiate_rsq:
# Move tx out, and magnify beacon_amplitude (at tx)
tx = Antenna(x=-20e3,y=0,z=0,name='tx') # m
dist = lib.distance(tx, Antenna(x=0, y=0, z=0))
ampl = max(1, dist**2)
beacon_amplitudes *= ampl
####
fname_dir = path.dirname(fname)
tx_fname = path.join(fname_dir, tx_fname)
antennas_fname = path.join(fname_dir, antennas_fname)
if not path.isfile(tx_fname) or remake_tx:
write_tx_file(tx_fname, tx, f_beacon)
else:
tx, f_beacon = read_tx_file(tx_fname)
# read in antennas
ev = REvent(fname)
N_antennas = len(ev.antennas)
# initialize hdf5 file
init_antenna_hdf5(antennas_fname, tx, f_beacon)
# make beacon per antenna
for i, antenna in enumerate(ev.antennas):
t0 = lib.distance(tx, antenna)/3e8 * 1e9 # ns
beacon = lib.beacon_from(tx, antenna, f_beacon, antenna.t, t0=t0, c_light=np.inf, radiate_rsq=beacon_radiate_rsq)
traces = np.array([antenna.Ex, antenna.Ey, antenna.Ez, beacon])
# add to relevant polarisation
# and apply block filter
dt = antenna.t[1] - antenna.t[0]
for j, amp in enumerate(beacon_amplitudes):
traces[j] = block_filter(traces[j] + amp*beacon, dt, low_bp, high_bp)
append_antenna_hdf5( antennas_fname, antenna, traces, name='traces', prepend_time=True, attrs_dict=dict(t0=t0))
# Save E field in E_AxB
E = [np.dot(ev.uAxB,[ex,ey,ez]) for ex,ey,ez in zip(traces[0], traces[1], traces[2])]
append_antenna_hdf5( antennas_fname, antenna, [E], name='E_AxB', prepend_time=True)
print("Antenna HDF5 file written as " + str(antennas_fname))