m-thesis-introduction/simulations/airshower_beacon_simulation/show_beacon_amplitude_antennas.py
2022-11-21 13:43:58 +01:00

96 lines
3.1 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
__doc__ = \
"""
Show the beacon amplitude per antenna.
"""
import numpy as np
import h5py
import matplotlib.pyplot as plt
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
import os.path as path
fname = "ZH_airshower/mysim.sry"
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
subtitle = ""
if True:
beacon_frequencies = np.array([ant.attrs['beacon_freq'] for ant in antennas])
beacon_amplitudes = np.array([ant.attrs['beacon_amplitude'] for ant in antennas])
beacon_phases = np.array([lib.phase_mod(ant.attrs['beacon_phase_measured']) for ant in antennas])
else:
subtitle = " Phases from t0"
beacon_frequencies = np.array([ f_beacon for ant in antennas ])
beacon_amplitudes = np.array([ 1 for ant in antennas ])
beacon_phases = np.array([ lib.phase_mod(ant.attrs['t0']*beacon_frequencies[i]*2*np.pi) for i, ant in enumerate(antennas)])
#####
sizes = 64
if True:
vals = beacon_phases
colorlabel = '$\\varphi$'
sizes = 64*(beacon_amplitudes/np.max(beacon_amplitudes))**2
else:
vals = beacon_amplitudes
colorlabel = "[$\\mu$V/m]"
x = [ a.x for a in antennas ]
y = [ a.y for a in antennas ]
#####
fig, axs = plt.subplots()
axs.set_title(f"Amplitude at beacon frequency at each antenna\nf at A0: {beacon_frequencies[0]}GHz" + subtitle)
axs.set_aspect('equal', 'datalim')
axs.set_xlabel('[m]')
axs.set_ylabel('[m]')
if True:
if True:
# underlie a calculate phase field
if True: # only fill for antennas
xs = np.linspace( np.min(x), np.max(x), 4*np.ceil(len(antennas)**0.5) -1 )
ys = np.linspace( np.min(y), np.max(y), 4*np.ceil(len(antennas)**0.5) -1)
else: # make field from halfway the transmitter
xs = np.linspace( (tx.x - np.min(x))/2, np.max(x), 500)
ys = np.linspace( (tx.y - np.min(y))/2, np.max(y), 500)
phases, (xs, ys) = lib.phase_field_from_tx(xs, ys, tx, f_beacon*1e9,return_meshgrid=False)
sc2 = axs.scatter(xs, ys, c=phases, alpha=0.5, zorder=-5, cmap='Spectral_r')
fig.colorbar(sc2, ax=axs)
sc = axs.scatter(x, y, c=vals, s=sizes, cmap='Spectral_r', edgecolors='k', marker='X')
axs.plot(tx.x, tx.y, marker='X', color='k')
#for i, freq in enumerate(beacon_frequencies):
# axs.text(f"{freq:.2e}", (x[i], y[i]))
fig.colorbar(sc, ax=axs, label=colorlabel)
else:
phases, (xs, ys) = lib.phase_field_from_tx(x, y, tx, f_beacon*1e9, return_meshgrid=False)
phase_diffs = vals - lib.phase_mod(phases)
phase_diffs = lib.phase_mod(phase_diffs)
print(phases)
sc = axs.scatter(xs, ys, c=phase_diffs, s=sizes, cmap="Spectral_r")
axs.plot(tx.x, tx.y, marker='X', color='k')
fig.colorbar(sc, ax=axs, label=colorlabel)
fig.savefig(__file__ + ".pdf")
plt.show()