mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-05 01:13:40 +01:00
287 lines
8.9 KiB
Python
287 lines
8.9 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from scipy import stats
|
|
from scipy import special
|
|
from scipy import optimize
|
|
from itertools import zip_longest
|
|
|
|
def expectation(x,pdfx):
|
|
dx = x[1]-x[0]
|
|
return np.sum(x*pdfx*dx)
|
|
|
|
def variance(x,pdfx):
|
|
mu = expectation(x,pdfx)
|
|
dx = x[1]-x[0]
|
|
return np.sum((x**2*pdfx*dx))-mu**2
|
|
|
|
def random_phase_sum_distribution(theta, sigma, s=1):
|
|
theta = np.asarray(theta)
|
|
ct = np.cos(theta)
|
|
st = np.sin(theta)
|
|
k = s/sigma
|
|
pipi = 2*np.pi
|
|
return (np.exp(-k**2/2)/pipi) + (
|
|
(pipi**-0.5)*k*np.exp(-(k*st)**2/2)) * (
|
|
(1.+special.erf(k*ct*2**-0.5))*ct/2)
|
|
|
|
def gaussian_phase_distribution(theta, sigma, s=1):
|
|
theta = np.asarray(theta)
|
|
k=s/sigma
|
|
return (2*np.pi)**-0.5*k*np.exp(-(k*theta)**2/2)
|
|
|
|
def phase_comparison_figure(
|
|
measured_phases,
|
|
true_phases,
|
|
plot_residuals=True,
|
|
f_beacon=None,
|
|
hist_kwargs={},
|
|
sc_kwargs={},
|
|
text_kwargs={},
|
|
colors=['blue', 'orange'],
|
|
legend_on_scatter=True,
|
|
secondary_axis='time',
|
|
fit_gaussian=False,
|
|
fit_randomphasesum=False,
|
|
mean_snr=None,
|
|
return_fit_info=False,
|
|
**fig_kwargs
|
|
):
|
|
"""
|
|
Create a figure comparing measured_phase against true_phase
|
|
by both plotting the values, and the residuals.
|
|
"""
|
|
default_fig_kwargs = dict(sharex=True)
|
|
default_hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
|
default_text_kwargs = dict(fontsize=14, verticalalignment='top')
|
|
default_sc_kwargs = dict(alpha=0.6, ls='none')
|
|
|
|
do_hist_plot = hist_kwargs is not False
|
|
if hist_kwargs is False:
|
|
hist_kwargs = {}
|
|
|
|
do_scatter_plot = sc_kwargs is not False
|
|
if sc_kwargs is False:
|
|
sc_kwargs = {}
|
|
|
|
fig_kwargs = {**default_fig_kwargs, **fig_kwargs}
|
|
hist_kwargs = {**default_hist_kwargs, **hist_kwargs}
|
|
text_kwargs = {**default_text_kwargs, **text_kwargs}
|
|
sc_kwargs = {**default_sc_kwargs, **sc_kwargs}
|
|
|
|
fig, axs = plt.subplots(0+do_hist_plot+do_scatter_plot, 1, **fig_kwargs)
|
|
|
|
if not hasattr(axs, '__len__'):
|
|
axs = [axs]
|
|
|
|
if f_beacon and secondary_axis in ['phase', 'time']:
|
|
phase2time = lambda x: x/(2*np.pi*f_beacon)
|
|
time2phase = lambda x: 2*np.pi*x*f_beacon
|
|
|
|
if secondary_axis == 'time':
|
|
functions = (phase2time, time2phase)
|
|
label = 'Time $\\varphi/(2\\pi f_{beac})$ [ns]'
|
|
else:
|
|
functions = (time2phase, phase2time)
|
|
label = 'Phase $2\\pi t f_{beac}$ [rad]'
|
|
|
|
secax = axs[0].secondary_xaxis('top', functions=functions)
|
|
|
|
# Histogram
|
|
fit_info = {}
|
|
if do_hist_plot:
|
|
i=0
|
|
|
|
axs[i].set_ylabel("#")
|
|
|
|
this_kwargs = dict(
|
|
ax = axs[i],
|
|
text_kwargs=text_kwargs,
|
|
hist_kwargs={**hist_kwargs, **dict(label='Measured', color=colors[0], ls='solid')},
|
|
mean_snr=mean_snr,
|
|
fit_distr=[],
|
|
)
|
|
|
|
if fit_gaussian:
|
|
this_kwargs['fit_distr'].append('gaussian')
|
|
|
|
if fit_randomphasesum:
|
|
this_kwargs['fit_distr'].append('randomphasesum')
|
|
|
|
_, fit_info = fitted_histogram_figure(
|
|
measured_phases,
|
|
**this_kwargs
|
|
)
|
|
|
|
if not plot_residuals: # also plot the true clock phases
|
|
_bins = fit_info['bins']
|
|
axs[i].hist(true_phases, color=colors[1], label='Actual', ls='dashed', **{**hist_kwargs, **dict(bins=_bins)})
|
|
|
|
# Scatter plot
|
|
if do_scatter_plot:
|
|
i=1
|
|
axs[i].set_ylabel("Antenna no.")
|
|
axs[i].plot(measured_phases, np.arange(len(measured_phases)), marker='x' if plot_residuals else '3', color=colors[0], label='Measured', **sc_kwargs)
|
|
|
|
if not plot_residuals: # also plot the true clock phases
|
|
axs[i].plot(true_phases, np.arange(len(true_phases)), marker='4', color=colors[1], label='Actual', **sc_kwargs)
|
|
|
|
if not plot_residuals and legend_on_scatter:
|
|
axs[i].legend()
|
|
|
|
fig.tight_layout()
|
|
|
|
if return_fit_info:
|
|
return fig, fit_info
|
|
|
|
return fig
|
|
|
|
|
|
def fitted_histogram_figure(
|
|
amplitudes,
|
|
fit_distr = None,
|
|
calc_chisq = True,
|
|
text_kwargs={},
|
|
hist_kwargs={},
|
|
mean_snr = None,
|
|
ax = None,
|
|
**fig_kwargs
|
|
):
|
|
"""
|
|
Create a figure showing $amplitudes$ as a histogram.
|
|
If fit_distr is a (list of) string, also fit the respective
|
|
distribution function and show the parameters on the figure.
|
|
"""
|
|
default_hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step', label='hist')
|
|
default_text_kwargs = dict(fontsize=14, verticalalignment='top')
|
|
|
|
if isinstance(fit_distr, str):
|
|
fit_distr = [fit_distr]
|
|
|
|
hist_kwargs = {**default_hist_kwargs, **hist_kwargs}
|
|
text_kwargs = {**default_text_kwargs, **text_kwargs}
|
|
|
|
if ax is None:
|
|
fig, ax = plt.subplots(1, 1, **fig_kwargs)
|
|
else:
|
|
fig = ax.get_figure()
|
|
|
|
text_kwargs['transform'] = ax.transAxes
|
|
|
|
counts, bins, _patches = ax.hist(amplitudes, **hist_kwargs)
|
|
|
|
fit_info = []
|
|
if fit_distr:
|
|
min_x = min(amplitudes)
|
|
max_x = max(amplitudes)
|
|
|
|
bin_centers = bins[:-1] + np.diff(bins) / 2
|
|
|
|
dx = bins[1] - bins[0]
|
|
scale = len(amplitudes) * dx
|
|
|
|
xs = np.linspace(min_x, max_x)
|
|
|
|
for distr in fit_distr:
|
|
fit_params2text_params = lambda x: x
|
|
fit_ys = None
|
|
fit_params = None
|
|
cdf = None
|
|
|
|
if 'rice' == distr:
|
|
name = "Rice"
|
|
param_names = [ "$\\nu$", "$\\sigma$" ]
|
|
distr_func = stats.rice
|
|
|
|
fit_params2text_params = lambda x: (x[0]*x[1], x[1])
|
|
|
|
elif 'gaussian' == distr:
|
|
name = "Norm"
|
|
param_names = [ "$\\mu$", "$\\sigma$" ]
|
|
distr_func = stats.norm
|
|
|
|
elif 'rayleigh' == distr:
|
|
name = "Rayleigh"
|
|
param_names = [ "$\\sigma$" ]
|
|
distr_func = stats.rayleigh
|
|
|
|
fit_params2text_params = lambda x: (x[0]+x[1]/2,)
|
|
|
|
elif 'randomphasesum' == distr:
|
|
name = "RandPhaseS"
|
|
param_names = [ "$\\sigma$", 's']
|
|
pdf = random_phase_sum_distribution
|
|
|
|
bounds = ((0,0.9999), (np.inf,1))
|
|
fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
|
|
fit_ys = pdf( xs, *fit_params)
|
|
|
|
fit_params2text_params = lambda x: (x[1], x[0])
|
|
|
|
elif 'gaussphase' == distr:
|
|
name = 'GaussPhase'
|
|
param_names = [ "$\\sigma$", 's']
|
|
pdf = gaussian_phase_distribution
|
|
|
|
|
|
bounds = ((0,0.9999), (np.inf,1))
|
|
fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
|
|
fit_ys = pdf( xs, *fit_params)
|
|
|
|
fit_params2text_params = lambda x: (x[1], x[0])
|
|
|
|
else:
|
|
raise ValueError('Unknown distribution function '+distr)
|
|
|
|
label = name +"(" + ','.join(param_names) + ')'
|
|
|
|
if fit_ys is None:
|
|
fit_params = distr_func.fit(amplitudes)
|
|
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
|
cdf = distr_func.cdf
|
|
|
|
ax.plot(xs, fit_ys, label=label)
|
|
|
|
chisq_strs = []
|
|
if calc_chisq and cdf:
|
|
ct = np.diff(cdf(bins, *fit_params))*np.sum(counts)
|
|
if True: # stabilise the chisquare derivation
|
|
ct *= np.sum(counts)/np.sum(ct)
|
|
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
|
chisq_strs = [
|
|
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
|
]
|
|
|
|
# change parameters if needed
|
|
text_fit_params = fit_params2text_params(fit_params)
|
|
|
|
text_str = "\n".join(
|
|
[label]
|
|
+
|
|
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, text_fit_params, fillvalue='?') ]
|
|
+
|
|
chisq_strs
|
|
)
|
|
|
|
this_info = {
|
|
'name': name,
|
|
'param_names': param_names,
|
|
'param_values': text_fit_params,
|
|
'text_str': text_str,
|
|
}
|
|
|
|
if chisq_strs:
|
|
this_info['chisq'] = c2t[0]
|
|
this_info['dof'] = len(fit_params)
|
|
|
|
fit_info.append(this_info)
|
|
|
|
loc = (0.02, 0.95)
|
|
ax.text(*loc, "\n\n".join([info['text_str'] for info in fit_info]), **{**text_kwargs, **dict(ha='left')})
|
|
|
|
if mean_snr:
|
|
text_str = f"$\\langle SNR \\rangle$ = {mean_snr: .1e}"
|
|
loc = (0.98, 0.95)
|
|
ax.text(*loc, text_str, **{**text_kwargs, **dict(ha='right')})
|
|
|
|
return fig, dict(fit_info=fit_info, counts=counts, bins=bins)
|