mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 03:23:34 +01:00
134 lines
3 KiB
Python
134 lines
3 KiB
Python
"""
|
|
Locations are wrappers around a Numpy N-dimensional
|
|
array.
|
|
"""
|
|
|
|
import numpy as np
|
|
from functools import partial
|
|
|
|
try:
|
|
from travelsignal import TravelSignal
|
|
except ModuleNotFoundError:
|
|
from .travelsignal import TravelSignal
|
|
|
|
class Location:
|
|
"""
|
|
A location is a point designated by a spatial coordinate x.
|
|
"""
|
|
|
|
def __init__(self, x):
|
|
self.x = np.asarray(x)
|
|
|
|
def __repr__(self):
|
|
return "Location({})".format(repr(self.x))
|
|
|
|
def __getitem__(self, key):
|
|
return self.x[key]
|
|
|
|
def __setitem__(self, key, val):
|
|
self.x[key] = val
|
|
|
|
# math
|
|
def __add__(self, other):
|
|
if isinstance(other, Location):
|
|
other = other.x
|
|
|
|
return self.__class__(self.x + other)
|
|
|
|
def __sub__(self, other):
|
|
if isinstance(other, Location):
|
|
other = other.x
|
|
|
|
return self.__class__(self.x - other)
|
|
|
|
def __mul__(self, other):
|
|
return self.__class__(self.x * other)
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, Location):
|
|
other = other.x
|
|
|
|
return np.all(self.x == other)
|
|
|
|
# math alias functions
|
|
__radd__ = __add__
|
|
__rsub__ = __sub__
|
|
__rmul__ = __mul__
|
|
|
|
class Receiver(Location):
|
|
"""
|
|
A location able to trace a signal over time.
|
|
|
|
Optionally applies a transformation to the traced signal.
|
|
"""
|
|
def __repr__(self):
|
|
return "Receiver({})".format(repr(self.x))
|
|
|
|
def recv(self, travel_signal: TravelSignal) -> TravelSignal:
|
|
"""
|
|
Return a function that traces the signal as a function of time
|
|
at the receiver's location
|
|
"""
|
|
return partial(travel_signal, x_f=self.x)
|
|
|
|
receive = recv
|
|
|
|
class Emitter(Location):
|
|
"""
|
|
Emit a signal from position x_0 (and time t_0)
|
|
"""
|
|
def emit(self, travel_signal: TravelSignal) -> TravelSignal:
|
|
return partial(travel_signal, x_0=self.x)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d import axes3d
|
|
|
|
# 2D showcase
|
|
source = Emitter([1,1])
|
|
|
|
antennae = [
|
|
Receiver([2,3]),
|
|
Receiver([10,10]),
|
|
Receiver([-2,-3]),
|
|
Receiver([-10,0]),
|
|
]
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_title("Geometry of Emitter(s) and Antennae")
|
|
ax.set_ylabel("y")
|
|
ax.set_xlabel("x")
|
|
ax.plot(*source.x, '*', label="Emitter")
|
|
|
|
for j, ant in enumerate(antennae):
|
|
ax.plot(*ant.x, '+', label="Antenna {}".format(j))
|
|
|
|
ax.legend()
|
|
fig.show()
|
|
|
|
# 3D showcase
|
|
source = Emitter([1,1,1])
|
|
|
|
antennae = [
|
|
Receiver([2,3,0]),
|
|
Receiver([10,10,-5]),
|
|
Receiver([-2,-3,9]),
|
|
Receiver([-10,0,-5]),
|
|
]
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111, projection='3d')
|
|
|
|
ax.set_title("Geometry of Emitter(s) and Antennae")
|
|
ax.set_xlabel("x")
|
|
ax.set_ylabel("y")
|
|
ax.set_zlabel("z")
|
|
ax.plot([source.x[0]], *source.x[1:], '*', label="Emitter")
|
|
|
|
for j, ant in enumerate(antennae):
|
|
ax.plot([ant.x[0]], *ant.x[1:], '+', label="Antenna {}".format(j))
|
|
|
|
ax.legend()
|
|
plt.show()
|