m-thesis-introduction/simulations/airshower_beacon_simulation/bc_baseline_phase_deltas.py

137 lines
4.8 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
fname = "ZH_airshower/mysim.sry"
c_light = 3e8*1e-9
show_plots = not True
ref_ant_id = None # leave None for all baselines
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
time_diffs_fname = 'time_diffs.hdf5' if not True else antennas_fname
fig_dir = "./figures" # set None to disable saving
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# run over all baselines
if ref_ant_id is None:
print("Doing all baselines")
baselines = list(combinations(antennas,2))
# use ref_ant
else:
ref_ant = antennas[ref_ant_id]
print(f"Doing all baselines with {ref_ant.name}")
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
# For now, only one beacon_frequency is supported
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
# Get phase difference per baseline
phase_diffs = np.empty( (len(baselines), 2) )
for i, base in enumerate(baselines):
if i%1000==0:
print(i, "out of", len(baselines))
# read f_beacon from the first antenna
f_beacon = base[0].beacon_info[freq_name]['freq']
# Get true phase diffs
try:
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
true_phases_diff = lib.phase_mod(lib.phase_mod(true_phases[1]) - lib.phase_mod(true_phases[0]))
except IndexError:
# true_phase not determined yet
print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
true_phases_diff = np.nan
# save phase difference with antenna names
phase_diffs[i] = [f_beacon, true_phases_diff]
beacon.write_baseline_time_diffs_hdf5(time_diffs_fname, baselines, phase_diffs[:,1], [0]*len(phase_diffs), phase_diffs[:,0])
# Read actual phases from antenna hdf5
actual_antenna_measured_phases = { a.name: 2*np.pi*a.attrs['clock_offset']*f_beacon for a in antennas }
# Compare actual time shifts
my_phase_diffs = []
for i,b in enumerate(baselines):
actual_phase_measured_diff = lib.phase_mod( lib.phase_mod(actual_antenna_measured_phases[b[1].name]) - lib.phase_mod(actual_antenna_measured_phases[b[0].name]))
# remove phase due to time delay from transmitter difference
tds = np.array([ lib.geometry_time(tx, ant, c_light=c_light) for ant in base])
delta_td = tds[1] - tds[0]
delta_td_phase = lib.phase_mod(delta_td*2*np.pi*f_beacon)
actual_phase_diff = lib.phase_mod( actual_phase_measured_diff - delta_td_phase)
my_phase_diffs.append(actual_phase_diff)
# Make a plot
if True:
N_base = len(baselines)
N_ant = len(antennas)
phase_residuals = lib.phase_mod(phase_diffs[:,1] - my_phase_diffs)
fig, axs = plt.subplots(2, 1, sharex=True)
axs[0].set_title("Measured phase difference - Actual phase difference")
axs[0].set_xlabel("Phase $\\Delta\\varphi = \\varphi_{meas} - \\varphi_{true}$")
axs[0].tick_params(bottom=True, labelbottom=True)
#axs[1].tick_params(top=True, labeltop=True, bottom=False, labelbottom=False)
if True:
forward = lambda x: x/(2*np.pi*f_beacon)
inverse = lambda x: 2*np.pi*x*f_beacon
secax = axs[0].secondary_xaxis('top', functions=(forward, inverse))
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
i=0
axs[i].set_ylabel("#")
axs[i].hist(phase_residuals, bins='sqrt', density=False)
i=1
axs[i].set_ylabel("Baseline\n combination #")
if not True:
axs[i].plot(my_phase_diffs, np.arange(N_base), ls='none', marker='+', label='actual time shifts')
l = axs[i].plot(phase_diffs[:,1], np.arange(N_base), ls='none', marker='x', label='calculated')
axs[i].legend()
else:
axs[i].plot(phase_residuals, np.arange(N_base), ls='none', marker='x')
fig.tight_layout()
if fig_dir:
fig.savefig(path.join(fig_dir, __file__ + f".F{freq_name}.pdf"))
if show_plots:
plt.show()