diff --git a/presentation/images/charged_and_neutral_neutrino_interactions.pdf b/presentation/images/charged_and_neutral_neutrino_interactions.pdf deleted file mode 100644 index 3c03909..0000000 Binary files a/presentation/images/charged_and_neutral_neutrino_interactions.pdf and /dev/null differ diff --git a/presentation/presentation.tex b/presentation/presentation.tex index 42fb903..bff78f7 100644 --- a/presentation/presentation.tex +++ b/presentation/presentation.tex @@ -2,8 +2,9 @@ \documentclass{beamer} \usepackage{amsmath} +\usepackage{amssymb} \usepackage{tikz} -%\usepackage[english]{babel} +\usepackage[english]{babel} %\title{Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector} \title{ IceCube Neutrino Astronomy } @@ -19,7 +20,7 @@ \begin{document} -\begin{frame} +\begin{frame}[noframenumbering] \titlepage \end{frame} \note{} @@ -39,12 +40,12 @@ % % %%%%%%%%%%%%%%%%%%%%% -\begin{frame}{Overview} +\begin{frame}[noframenumbering]{Overview} \tableofcontents \end{frame} \section{ Neutrino Astronomy } -\begin{frame}{ History of Neutrino Astronomy } +\begin{frame}{ Neutrino Astronomy: History } \begin{itemize} \item First observation of neutrino in 1956 \item Deep Underwater Muon and Neutrino Detector, Hawaii (1990) @@ -54,7 +55,7 @@ \end{itemize} \end{frame} -\begin{frame}{ Basics of Neutrino Astronomy} +\begin{frame}{ Neutrino Astronomy: Basics } \begin{itemize} \item Neutrino interacts in atmosphere, ice or water \item Charged particle gets into the ice or water and emit Cherenkov photons @@ -70,16 +71,13 @@ \end{column} \end{columns} \end{frame} -\begin{frame}{ Production of Neutrinos } - Many sources of neutrinos +\begin{frame}{ Neutrino Astronomy: Production } + Neutrinos produced in sources and CR interactions \begin{itemize} - \item CR interactions: + \item Main CR interactions: \begin{itemize} - \item \begin{equation*} p + \gamma_{bg} \to p + \pi^0 \to p + \gamma + \gamma - \end{equation*} - \item \begin{equation*} -p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar{\nu_\mu} + \nu_e - \end{equation*} + \item $ p + \gamma_{bg} \to p + \pi^0 \to p + \gamma + \gamma $ + \item $ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar{\nu_\mu} + \nu_e $ \end{itemize} \end{itemize} \end{frame} @@ -99,6 +97,9 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar \end{itemize} \end{frame} +\begin{frame}{IceCube observatory: Digital Optical Module} + \includegraphics[width=\textwidth]{images/icecube-4-Aartsen_2017_DOM.pdf} +\end{frame} \subsection{Event Detection and Background} @@ -114,14 +115,46 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar \end{frame} \begin{frame}{Event Detection} - \begin{itemize} - \item Tracklike: distinct track - \item Showerlike: spherical light pattern due to well-localised particle shower - \end{itemize} + \begin{columns}[t] + \begin{column}{.5\textwidth} + \begin{block}{Tracklike} + \begin{itemize} + \item Distinct track -- caused by $\mu^{-}$ + \item Angular resolution $\lesssim 1\deg$ + \item Energy resolution not so good + \end{itemize} + \end{block} + \end{column} + \begin{column}{.5\textwidth} + \begin{block}{Showerlike} + \begin{itemize} + \item Spherical light pattern due to well-localised particle shower + \item Angular resolution $\sim 15\deg$ + \item Energy resolution $\sim 15\%$ + \end{itemize} + \end{block} + \end{column} + \end{columns} \includegraphics[width=\textwidth]{images/simulation_of_cherenkov_propagation.png} \end{frame} \begin{frame}{Event Detection} + \begin{columns}[t] + \begin{column}{.5\textwidth} + \begin{block}{Tracklike} + \begin{itemize} + \item d + \end{itemize} + \end{block} + \end{column} + \begin{column}{.5\textwidth} + \begin{block}{Showerlike} + \begin{itemize} + \item d + \end{itemize} + \end{block} + \end{column} + \end{columns} \begin{columns}[t] \begin{column}{.5\textwidth} @@ -144,7 +177,11 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar \end{frame} \begin{frame}{Background} - $10^{-6}$ events due to neutrino interaction + \begin{itemize} + \item 2500 to 2900 events per second + \item $\sim 10^{5}$ atmospheric neutrinos vs. $\lesssim 10^3$ cosmic neutrinos per year + \item $10^{-6}$ events due to neutrino interaction + \end{itemize} \end{frame}