Astroparticle Physics 2919/20

Lectures:

- 04.02.2020 1. Historical introduction, basic properties of cosmic rays
- 06.02.2020 2. Hadronic interactions and accelerator data
- 11.02.2020 3. Cascade equations
- 13.02.2020 <u>4. Electromagnetic cascades</u>
- 18.02.2020 <u>5. Extensive air showers</u>
- 20.02.2020 6. Detectors for extensive air showers
- 27.02.2020 7. High energy cosmic rays and the knee in the energy spectrum of cosmic rays
- 03.03.2020 8. Radio detection of extensive air showers
- 05.03.2020 9. Acceleration, astrophysical accelerators and beam dumps
- 10.03.2020 10. Extragalactic propagation of cosmic rays
- 12.03.2020 11. Ultra high energy cosmic rays
- 17.03.2020 12. Astrophysical gamma rays and neutrinos
- 14.04.2020 13. Neutrino astronomy
- 12.05.2020 14. Gamma-ray astronomy

http://particle.astro.ru.nl/goto.html?astropart1920

lecture 13 Neutrino astronomy Gaisser chapter 18

18	Neutr	Neutrino astronomy		
	18.1	Motivation for a kilometer-scale neutrino telescope	357	
	18.2	From DUMAND to IceCube and beyond	358	
	18.3	Signals and backgrounds in a neutrino detector	359	
	18.4	Event types	362	
	18.5	Searching for point sources of neutrinos	363	
	18.6	Observation of astrophysical neutrinos	365	
	18.7	Sources of astrophysical neutrinos	368	
	18.8	Multi-messenger astronomy	372	

IceCube:

Building a New Window on the Universe

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator
- what next?

icecube.wisc.edu

Cosmic Horizons – Microwave Radiation 380.000 years after the Big Bang

wavelength = 10^{-3} m \Leftrightarrow energy = 10^{-4} eV

Cosmic Horizons – Optical Sky

wavelength = 10^{-6} m \Leftrightarrow energy = 1 eV

Cosmic Horizons – Gamma Radiation

wavelength = 10^{-15} m \Leftrightarrow energy = 1 GeV

Cosmic Horizons – Gamma Radiation

wavelength = 10^{-21} m \Leftrightarrow energy = 10^3 TeV

- 20% of the Universe is opaque to the EM spectrum
- non-thermal Universe powered by cosmic accelerators
- probed by gravity waves, neutrinos and cosmic rays

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

PeV photons interact with microwave photons (411/cm³) before reaching our telescopes enter: neutrinos

Neutrinos? Perfect Messenger

- electrically neutral
- essentially massless
- essentially unabsorbed
- tracks nuclear processes
- reveal the sources of cosmic rays
 - ... but difficult to detect: how large a detector?

cosmic rays interact with the microwave background

$$p + \gamma \rightarrow n + \pi^+ and p + \pi^0$$

cosmic rays disappear, neutrinos with EeV (10⁶ TeV) energy appear

$$\pi \rightarrow \mu + \upsilon_{\mu} \rightarrow \{e + \upsilon_{\mu} + \upsilon_{e}\} + \upsilon_{\mu}$$

1 event per cubic kilometer per year ...but it points at its source!

nonthermal universe: cosmic accelerators

accelerator must contain the particles

challenges of cosmic ray astrophysics:

dimensional analysis, difficult to satisfy
accelerator luminosity is high as well

the sun constructs an accelerator

coronal mass ejection→ 10 GeV protons

accomodating energy and luminosity are challenging

LHC accelerator should have circumference of Mercury orbit to reach 10²⁰ eV!

Cosmic Ray Spectra of Various Experiments

cosmic ray accelerators: where, how?

gravitational energy from collapsing star converted into particle acceleration

LHC filling the orbit of Mercury

supernova remnants

Chandra Cassiopeia A

gamma ray bursts

active galaxy

Caller Agentication

particle flows near supermassive black hole

blazar geometry

atmospheric neutrino spectrum (energy measurement) well understood

IceCube

francis halzen

• IceCube

- cosmic neutrinos: two independent
 observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator
- what next?

M. Markov 1960

M.Markov : we propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

ultra-transparent ice below 1.5 km

instrument 1 cubic kilometer of natural ice below 1.45 km

photomultiplier tube -10 inch

architecture of independent DOMs

10 inch pmt

HV board

LED flasher board

main

board

... each Digital Optical Module independently collects light signals like this, digitizes them,

...time stamps them with 2 nanoseconds precision, and sends them to a computer that sorts them events...

muon track: color is time; number of photons is energy

neutrinos are detected by looking for Cherenkov radiation from secondary particles (muons, particle showers)

Nov.12.2010, duration: 3,800 nanosecond, energy: 71.4TeV

93 TeV muon: light ~ energy

energy measurement (> 1 TeV)

Run 433700001 Event 0 [Ons, 40000ns]

energy reconstruction of electromagnetic showers

89 TeV radius ~ number of photons time ~ red \rightarrow purple

Run 113641 Event 33553254 [Ons, 16748ns]

Signals and Backgrounds cosmic ray astrophysical neutrino atmospheric neutrino atmospheric muon

... you looked at 10msec of data !

muons detected per year:

• atmospheric* μ ~ 10¹¹ • atmospheric** $\nu \rightarrow \mu$ ~ 10⁵ • cosmic $\nu \rightarrow \mu$ ~ 10

* 3000 per second

** 1 every 6 minutes

• rejecting atmospheric muons

• rejecting atmospheric neutrinos

through-going (tracks) 10^{9} μ 10^{8} Downgoing Muons 10^{7} Misreconstructed Muons ×10⁸ 10^{6} Filtered Data 10^{5} Events μ ×10³ 10^{4} Atmospheric Neutrinos 10^{3} and the second 10^{2} Final Sample -20-50% neutrino efficiency 10 Vμ E⁻² Diffuse Flux -0.5 0.5 -1 0 1 cos θ

selection cuts for on-line numu extraction

Cut Level	Selection criterion	Atms. μ	Data	Atms. v_{μ}	Astro.
		(mHz)	(mHz)	(mHz)	×10 ⁻³ (mHz)
0	$\cos \theta_{\text{MPE}} \le 0$	1010.5	1523.81	7.166	6.23
1	$SLogL(3.5) \le 8$	282.49	504.44	5.826	5.62
2	$N_{\text{Dir}} \ge 9$	8.839	22.01	3.076	4.06
3	$((\cos \theta_{\text{MPE}} > -0.2) \text{ AND } (L_{\text{Dir}} \ge 300 \text{ m})$				
	OR	1.124	4.30	2.313	3.69
	$(\cos \theta_{\text{MPE}} \le -0.2) \text{ AND } (L_{\text{Dif}} \ge 200 \text{ m}))$				
4	$\Delta_{\text{Split/MPE}} < 0.5$	0.100	2.15	1.899	3.26
5	$((\cos \theta_{\rm MPE} \le -0.07)$				
	OR	0.080	2.08	1.880	3.25
	$((\cos \theta_{\text{MPE}} > -0.07) \text{ AND } (\Delta_{\text{SPE/Bayesian}} \ge 35)))$				
6	$(\cos \theta_{\text{MPE}} \le -0.04)$				
	OR	0.075	2.06	1.875	3.24
	$((\cos \theta_{\text{MPE}} > -0.04) \text{ AND } (\Delta_{\text{SPE/Bayesian}} \ge 40)))$				

Table 2. IceCube neutrino selection cuts and corresponding passing event rate for the IC-2012 season. At an final selection an event has to fulfill all cut criteria to pass the selection (i.e. a logical AND condition between the cut levels is applied). The atmospheric-neutrino flux is based on the prediction by Honda [71], but atmospheric-muon rate is calculated from CORSIKA simulations. The event rate for IceCube data stream corresponds to the total livetime of 332.36 days. The astrophysical neutrino flux is estimated assuming $dN/dE = 1 \cdot 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1} (\frac{E}{\text{GeV}})^{-2}$. (Atms. = atmospheric, Astro. = astrophysical)

isolated neutrinos interacting *inside* the detector (HESE)

up-going muon tracks (UPMU)

total energy measurement all flavors, all sky astronomy: angular resolution superior (<0.5°)

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent
 observations

\rightarrow muon neutrinos through the Earth

- \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator
- what next?

distribution of the parent neutrino energy corresponding to the energy deposited by the secondary muon inside IceCube

~ 550 cosmic neutrinos in a background of ~340,000 atmospheric atmospheric background: less than one event/deg²/year

after 7 years \rightarrow 6.4 sigma

120 cosmic neutrinos/year/flavor

 $\begin{array}{c} 430 \text{ TeV inside} \\ \text{detector} \\ \text{PeV } \nu_{\mu} \\ \text{no air shower} \end{array}$

all cosmic neutrinos are isolated by self-veto

