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Figure 4.1 Fixed-target and collider setups for measuring particle production
at accelerators. The particle detectors are indicated in gray and might provide
tracking (of charged particles) and calorimetry. The energies of the two beams
of collider experiments are typically the same except if different particles are
accelerated such as electrons and protons or protons and nuclei.

E., = E; + E,. center of mass energy

s = (p:+ p;)* = (pa + p»)* = EZ,. Mandelstam variable (Lorentz invariant)

1/2 enerqy in fixed traget exp.
Ecn = \/s = (2Eam/, +m2 + mlz)) T aA/2E mp. onlygs;oportional gqrt(s)p
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Figure 4.2 All-particle flux of cosmic rays scaled by E> (from [33], updated).
The x axis at the top shows the equivalent nucleon—nucleon c.m. energy of the
interaction of protons of the cosmic ray flux with a nucleon of the air. The energies
reached by different colliders are marked by arrows. Fixed target experiments
have maximum beam energies of, for example, 350 GeV (NA49, NA61 at CERN)
and 800 GeV (SELEX at Tevatron), which is below the lowest energy shown here.
The LHC collider was the first accelerator that allowed the study of interactions
at energies above the knee in the cosmic ray spectrum.
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Cross section 1b = 102 cm?

L dN;

O'j —
¢a dt

cross section for process j

. ®, = dN,/(dA dt). flux of particles crossing area dA

secondary particle production: 40ap—c I dN,

- . n '; ",; ?
inclusive cross section d’ p, d, d’ p.dt

Oab—c dNab—-»c/df

Oine dNine/dt .

multiplicity of particles Ne =

Inclusive cross sections can be measured straight forward but do not
contain correlations between different particles produced.

Exclusive cross sections contain the full information of the final state.
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Figure 4.3 Comparison of cross sections measured at hadron colliders,
from [121]. Shown are the total p-p cross section and inclusive production cross
sections for jets and a number of different particles. The cross sections have been
calculated for p-p interactions (Tevatron) up to 4/s = 3.5 TeV and for p-p inter-
actions (LHC) above this energy, leading to a small discontinuity for processes

depending on the valence quark flavors.
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Final state kinematics and phase space
coverage

The general structure of the phase space distribution of final state particles pro-
duced in high-energy interactions can be derived from the parton model of hadrons
and the fact that small momentum transfers dominate the interactions between par-
tons in QCD. For example, we consider the interaction of protons at a co]llder
see Figure 4.4. Due to confinement, the parton<ar bound in hadrons | prlo - to the
collision. The Heisenberg uncertaint relatlon 1mlles A Ax I~ 1 and allows us

to estimate the typical parton momenta

1 1 E,\ 1 1
Ap| ~ — ~200MeV, Apy~—=|—|—=~<E,. (410
R mp S
If the momentum transfer of the interaction is small, the final state particles will
resemble the kinematic distribution of the initial partons. Thus, while having
typically only small transverse momenta, the secondary particles are expected to
populate a large fraction of the longitudinal phase space.

Jorg R. Hérandel, APP 2019/20 7



Final state kinematics and phase space
coverage
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Figure 4.4 Illustration of the effect of Lorentz contraction on the longitudinal
and transverse dimensions of colliding particles as seen from the lab system. The
Lorentz factor of the beam particles, here assumed to be protons, is y = E,/m,.
The transverse displacement of the particle trajectories is given by the impact

parameter b.
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In first approximation the longitudinal and transverse degrees of freedom fac-

torize. The longitudinal momentum is conveniently measured relative to the
maximum momentum a particle can have. In contrast, transverse momenta are

not re-scaled. This is reflected in the set of variables given in Table 4.1 that are
commonly used for describing the momentum of final state particles.

Table 4.1 Kinematic variables for describing secondary

particles

Variable Definition Comment

Xp =x* P{iax ~ 2\’;‘; Feynman x

XPR ix oS 23;_ radial x

mr \/ pT +m? transverse mass
Xab = XL 7. _/ al I Elab/ Ebeam

t/ o - seudoapldlty
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Often the mass of a secondary particle cannot be measured. Then the pseudora-

idity n is used as an approximation of the rapidity — the higher the momentum of
the particle relative to its mass, the better the approximation,

5mi

(4.14)

Here 6 is the polar al of t " to the beam axis. Pseudora-
pidity and rapidity of massless particles are identical.

Jorg R. Hérandel, APP 2019/20 10



Particle detectors employed in high-energy physics cover only a part o of the phase

m'of final state particles. In particular it is very difficult to measure secondary
particles close to any beam direction, and only charged particles above a detector
specific momentum threshold of typically 100 — 250 MeV can be detected reliably.
Charged particle tracking is typically achieved in an angular range equivalent to
n <3 A companson of expected particle dlStI‘lbUthI‘lS and examples of typical
phase spacoeraes are s| own m‘ lgre 71°5. The detectors allow the measure-
ment of the bulk of the secondary particles. For cosmic ray applications, however,
the energy flow is a better measure of the importance of the different phase space
regions. Many high-energy secondaries are produced with very small angles to the

beam pipe and cannot be detected.
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Figure 4.5 Phase space coverage of multi-purpose detectors at high-energy col-
liders. Shown are the charged particle multiplicity and the total energy of the final
state particles as function of pseudorapidity for different c.m. energies. The cov-
erage in pseudorapidity of the CMS detector extended by TOTEM for forward
tracking is shown as an example for LHC (/s = 13TeV) and that of the CDF
and DO detectors for the Tevatron collider (/s = 1.8 TeV).
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CALIBRATION OF HADRON INTERACTION MODELS AT LHC

p-p 450 GeV +450 GeV 2 E.,~4-10"eV
p-p 35TeV + 3.5TeV = E.,~3-10%eV
p-p 65TeV + 6.5TeV = E..,~9: 10"%eV
o Total cross section — TOTEM, ATLAS, CMS
o Multiplicity <> Central detectors

o Inelasticity/Secondary spectra <> Forward calorimeters (LHCT, ZDCs)
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Total and elastic cross sections

It is still not possible to calculate total and elastic cross sections of hadrons within
QCD "Measurements at accelerators have to be combined with phenomenologlcal
models to obtain a description of cross sections over the energy range of importance

for cosmic ray physics. In addition, at the highest energies, measurements of air
showers provide constraints on cross sections.
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Figure 4.6 Overview of total (solid symbols) and elastic (open symbols) cross
sections. The data are from the PDG compilation [10] and the curves show the
2014 fit of the PDG with a universal In? s increase at high energy; see also [124].

above ~10 GeV only weak
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on energy
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4.2.1 Elastic scattering and optical interpretation

Accounting for the rotational symmetry around the beam direction” the momentum
transfer in elastic scattering, g = p! — p,, can be expressed by the Lorentz-invariant
Mandelstam variable ¢

9*
t = q* = —4k*sin’ > (4.16)
where k = |p*| is the particle momentum and 6* the scattering angle, both

measured 1n the CMS.

Examples of elastic cross sections measured as function of 7 are shown in
Figure 4.7. At small |7|, where the main part of the cross section is located, the
t-dependence can be approximated by

(4.17)

The slope parameter By, ( increases the negy. At energies accessible
at colliders the rise is found to be proportional to In s. This dependence is expected
to change asymptotically to Bela ~ In” s at very high energy.

Jorg R. Horandel, APP 2019/20 17
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Figure 4.7 Differential cross section for elastic p-p and p-p scattering. Shown
are collider data for different c.m. energies together with a model calculation.
From [125], © 2014 by World Scientific, reproduced with permission.
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Optical models allow a very instructive interpretation of elastic scattermg data
since the de Broglie wavelength A of the Interacting particles 1s smaller than the
transverse size of the interaction region at high energy. The shape of the differ-
ential elastic cross section at small |¢| reflects the diffraction pattern produced by
particle waves emitted from the interaction region. The observed increase of By,
with energy, often referred to as shrinkage of the diffractive cone, corresponds to
an increase of the geometric size of the interaction region. We will return to this
point at the end of this Section.

Using the Lorentz-invariant scattering amplitude A(s, t), the elastic cross section
is given by

(4.18)

The scattering ampllztud’é can be é)'(panded' u.smgtheLegendrepolynomlals as a
complete set of orthogonal functions

A(s.t) = 16w » (21 + 1) ay(s) P(cosB), (4.19)

with @;(s) being complex partial wave amplitudes that depend only on the inter-
action energy.

Jorg R. Hérandel, APP 2019/20
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Each term in the sum of (4.19) corresponds to a fixed
angular momentum L = [h. Unitarity as a fundamental property of any scattering
process (1.e. the sum over the probabilities of all possible final states has to be unity)
leads to the optical theorem that provides a relation between the elastic scatterln, |
amplltude m' fbrWard dlrectlon and the total rosssectlon(seeAppenlx A2 for

Applying the otil eem, bound , s) <1 (e .‘ A.26) implies that
the contribution of individual partial waves to the total cross section is

A7
o,%(s) < k2 (21 + 1). (4.21)

energy to allow for the observed rise o Padronic cross sections. For exaple using
this bound for estimating the total cross section

(4.22)

leads to /.« . alra at k = 100 e and mx '\ 000 t LHC energies.
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4.2.2 Regge phenomenology of cross sectzons

Regge theory provides a framework for carrying out thesummatlon over the par-
tial wave amplitudes in ('19)» Cobm'rig th"e'a 'astls of unitarity
and maximum analyticity of the scattering amplitude with the empirically found
relation between the mass of hadrons and their spin, as parametrized by Regge tra-
jectories, it is possible to derive a functional form for a generic scattering amplitude
at high energy. The Re oge amplitude for the elastic scattering of particles a and b

by the exchange of particles belonging toa glven'ReggtraJecry ais

1 i oy (1) a ) ak(fj )
Ar(s, 1) = (— tre ) Bak (1) Boi(1) (i> : (4.35)

sin(7 oy (1)) 50

Jorg R. Hérandel, APP 2019/20
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Figure 4.8 Reggeon exchange diagrams. Left: The Regge amplitude is interpreted
as being built up of coupling constants and a reggeon propagator. Right: Multiple
reggeon exchanges are a natural consequence if the amplitude is con51dered as
building block of an effective field theory [127]. Excited states of the scattering
hadrons, such as high-mass resonances, can be produced as intermediate states.

interpretation the energy- inc epenént‘ unctlons" t”a'n‘ Bpr(f) can be inter-
preted as coupling constants of the reggeon k to the incoming particles a and b;
see Figure 4.8. The possible Regge trajectories to consider follow from isospin and
flavor conservation at the hadron-reggeon vertices. By including Regge trajecto-
ries that do not correspond to vacuum quantum numbers, such as the exchange of
charged pions or baryons, Eq. 4.35 can be applied to general a b — ¢ d scattering

Processcs.

Jorg R. Hérandel, APP 2019/20 22



The differential elastic cross section can be written as

1 + 7 e imax(t) ¢\ a1
Z <_ sin(7r o (1)) ) Pai(1) Box(t) (£>

k

2
daela 1

dt 167

(4.36)

In most cases it is sufficient to consider only one Regge trajectory if one is inter-
ested in the small-|7| region. The observed shrinkage of the diffraction peak, i.e.

the energy dependence of the slope parameter Be, in (4.17) 1s naturally understood
within Regge theory. With the approximation B;(t) ~ e®’ for the couplings we
obtain

Bela = 2B, + 2By, + 2a(0) In(s). (4.37)

where we have used (3.15) for the representation of the Regge trajectory. The
energy dependence of By, is thus directly linked to the slope «’(0); of the leading
Regge trajectory and thus to the spin-mass relation of the exchanged particles, with
B}, Increasing in proportion to Ins. These predictions are in good agreement with
measurements at not too high an energy (/s < 40GeV).

Joérg R. Hérandel, APP 2019/20
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The energy dependence of the total Cross sectlon at high energy is determined

by the lgst Ree mterc‘ept QU )

the’l960s' omerancuk ostulrated theex1stenceo"anoter Regge trajectory with
intercept @(0) & 1. The corresponding quasi-particle is referred to as pomeron
and has vacuum quantum numbers, which means it couples to all hadrons in a
similar way. It 1s assumed that glueballs are the bound states of the pomeron tra-
jectory but experimental searches for glueballs have been inconclusive until now.
The parameters of the pomeron trajectory are estimated from cross section data at
high energy

ap(t) ~ ap(0) + oy (1)t ~ 1.08 + 0.25GeV 1. (4.39)

Jorg R. Hérandel, APP 2019/20
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Figure 4.9 Elastic and total cross sectlon data for p-p and p-p scattermg at high
energy. The curves show the Regge-ir tal cross s by Don-
nachie and Landshoff [129] umgt' e'parameters dertved in 1992, To calculate in
addition elastic cross sections, a parametrization o Ins for the elastic slope has
been used; see lower right panel. The data are from the compilation of the Particle
Data Group [10].

The data have been ﬁtted to the parametrization

(4.41)

with universal exponents € = 0.0808 (pomeron) and n = 0.4525 (reggeon)

and particle-dependent constants X and Y. ) )
] ) Jorg R. Hérandel, APP 2019/20 25



Phenomenology of particle production

As indicated already by the energy dependence of the total and elastic cross

sections, different particle production mechanisms are of importance at low, inter-

mediate adhlh interaction enrgles . Interactions at ve very low eery, in the range
from just above the particle production threshold to about /s ~ 1 — 2GeV,
are dominated by the formation and subsequent decay of hadronic resonances.
At higher energies, up to /s ~ 100GeV, follows a region of scaling, which 1s
best described using hadronic degrees of freedom as done within Regge theory.
At energies higher than /s ~ 100 GeV, hadronic interactions are most efficiently

described in terms of partons and their interactions. In particular, the production of

partonic jets of a few GeV transverse momentum (so-called mlnuets) becomes a
dominating phenomenon at very high energies. o

Joérg R. Hérandel, APP 2019/20

26



4.3.1 Resonance region

Just above the energy threshold for particle production, the cross sections and
distributions of secondary particles can be described by isobar models [136]. In
these models, conservation of isospin* and angular momentum are the basic build-
ing blocks. The partial wave amplitudes of all Born diagrams of single particle
exchanges or fusion to a single particle/resonance, including possible resonance
excitations of the outgoing hadrons, are added up with weights and relative phases
determined by symmetry relations and comparisons to measurements.

Two examples of an isobaric process included in these models are shown in
Figure 4.11. Positive pions interacting with protons form a A" (1232) resonance
that subsequently decays into a 7© and p. The contribution of the A**(1232)
resonance dominates the 7 *-p cross section at low energy; see Figure 4.6. The
situation is similar in the case of photon absorption shown in Figure 4.11 (right)

except for the different decay channels.

nx\ //n+
>
AT (1232)
p p

Figure 4.11 Production of the A(1232) resonance in the interaction of pions (left)
and photons (right) with protons. While A™7(1232) decays only to 77 p, the

A1 (1232) decay products are 7° p and 7 n with the branching ratio 2 : 1.

Joérg R. Hérandel, APP 2019/20
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The A*7(1232) as intermediate state has spin J = 3/2. The angular distribution
of the decay products, which are again a 7™ and p, can be calculated with the
Clebsch—Gordan coefficients [ 10] and is given by

dN;
d cos 6*
with 6* being the angle between the incoming pion (photon) and the final state pion
in the c.m. system.

The smavera oed cross section for the production of a resonance with spin J
in the 1tect10 of tw'hadrns W1ths pin Sy and S, 1s given by the Brelt—ngner
cross ecin (ee’ 'Apndl'—l ?'fradrlvat)d o

27+ 1) 7 BnBoulo ¥
0SS+ DR (Vs —me)® + Th/4
The branchmg ratlos of the resonance R decaylng into the initial and ﬁnal state par-
ticles are B;, and B,,. respectively. This non-relativistic form of the Breit—Wigner
cross section 1s valid only for mz » I'ior and energy-independent branching ratios.

o« 1+ 3cos’H*, (4.50)

(4.51)
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4.3.2 Scaling region

The energy region of approximate scaling begins above the resonance region and
extends to 1/s < 100 GeV. Although the total cross sections increase by more than
10% over this energy range, the impact parameter amplitude exhibits geometric
scaling. There are a number of other empirical scaling laws that apply to this energy
range, which are probably related to the geometric scaling of the amplitude.

In 1969 Feynman [140] made the hypothesis that the Lorentz-invariant cross
section for the inclusive production of secondary particles satisfies the scaling law

daab—»c

d’p
at asymptotically high energies. This relation is now called Feynman scaling. It is a
stronger formulation of the concept of limiting fragmentation [141], in which one
assumes that only the distribution of the leading particles, stemming from the frag-

mentation of the projectile hadron (or, conversely, of that of the target) approaches
a universal form at high energy.

E

P
= Jfab—c (XF = : ,m) ; (4.53)
P, max

Joérg R. Hérandel, APP 2019/20
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Figure 4.15 Feynman-x distributions of secondary particles in p-p interactions

as measured by NA49 [152-154]. The curves show a model calculation [155].
Only the forward hemisphere is shown.
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Another important phenomenological observation, and a striking difference to
low-energy particle production, is the leadmg partzcle effect. The highest-energy
secondary particle is found to carry, on average, almost 50% of the momentum
of the projectile. Moreover, themng particle hasuntumnumbers'emg either
identical or, by exchange of a single valence quark, closely related to the projectile.
And, as expected from our considerations in Section 4.1.3, the transverse momenta

of the particles are small and follow an exponential distribution in transverse mass
(see Table 4.1)

1 dN

~ e_”'l_J_}."’"no’ (456)
m dm

with a mean value of (p; ) & 350 MeV for pions, slowly rising with energy.

Joérg R. Hérandel, APP 2019/20
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| 4 33 Mmyet regton

The emergence of particle °ets in the hadronic ﬁnal state at

s Z lOO GeV and
their successful descrlptlon bpertuatlv QCDlulalons encourae us to try
to describe particle production in terms of asymptotically free partons.

In the perturbative picture, sea partons in a hadron are quantum fluctuations and
are as such continuously generated and re-absorbed. The lifetime of partons of
momentum k and virtuality Q7 is

1 2%
VK2 — k> — 0> 07

and exceeds the typical hadronic interaction time Afp,g ~ 5 GeV~! even for per-
turbatively accessible virtualities Q> = 4 GeV~ at high energy. For the duration of
a hadronic collision process, an interacting hadron can be considered as a frozen-in
configuration of independently acting partons as long as the parton virtuality is not
too high.

Alfye ~ l/AEﬂuc ~ (4.61)

Joérg R. Hérandel, APP 2019/20

32



0 7TeV ——  Sibyll 2.1

Z|§c| © 18Tev 1 —

> & 900GeV — DPMJET 3.0.6 (Vs=7TeV)

‘@ vV 200GeV QGSJET 11-04 (Vs=7TeV &
é 5t 1071 :J ]

) : >

9 4 e ) /F..‘

Q B 10 40‘

© °

o =

B 3 E o

@ L 10 —e— LHCf (Vs=7TeV)

8 - —o— LHCf (Vs=2.76TeV)
o 1074 o —&— UA7 (Vs=630GeV)
o -

@]

—5 l 1 1 1 1 I 1 1 1 1 I 1 1 1 ] l 1 1 2
0 L L L Il Il 10
10 -8 -6 -4 -2 0 2 4 6 8 —2 —1 0 1
Pseudorapidity 7 Ybeam = Y

Figure 4.18 Particle production at collider energies. Left: inclusive charged parti-
cle distribution. The curves show the results calculated with the interaction model
Sibyll [158] (from [165], modified). Right: neutral pion production. The mea-
surements at different energies are shifted by the rapidity of the beam particle
Vbeam and compared with DPMIJET [166] and QGSJet [162, 163] predictions
(from [167]).
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4.4 Nuclear targets and projectiles

It 1s straightforward to extend the multiple scattering formalism of Section 4.3.3
to nuclei. The transverse profiles of the projectile and target particles need to
be extended to include several nucleons with positions s; in the nucleus (see
Figure 4.19). The normalization is | Anuc(b) d’b = A, with A being the mass
number of the nucleus. The spatial distribution of the nucleons is given by the
wave function of the nucleons in the nucleus. Therefore the multiple-scattering
amplitude has to be multiplied by the wave functions of the nucleon positions in
the initial and final states and integrated over these positions. While this formalism
provides a consistent treatment for cross sections as well as hadronic final states
of hadron—hadron, hadron—nucleus, and nucleus—nucleus interactions, it does not

account for possible correlations between nucleons and is not really applicable at
very low energy, where the Fermi momentum of the nucleons cannot be neglected.
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projectile

Figure 4.19 Importance of the impact parameter and the distribution of the
nucleons in the target nucleus in hadron—nucleus scattering. The number of par-
ticipating target nucleons is mainly determined by the geometric path of the

projectile through the target.
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4.4.1 Nuclear cross sections

There are three important cross sections to distinguish: the total and elastic cross
sections and the cross section for quasi-elastic scattering. The latter appears only
for nuclei and describes scattermg'processes in whicl 'anuleus disintegrates, but

no new secondary hadrons such as pions or kaons are produced. This can happen

if, for example, two nucleons of the colliding nuclei interact elastically and, due to
the recoil, one or both of the nuclei break apart.

There 1s some confusion in literature on how to refer to the different cross sec-
tions. Here we explicitly distinguish between the inelastic cross section given by
Oine = Otot — Oela and the production cross section®

Oprod = Otot — Oela — Ogela = Oine — Ogela, (4.82)

which describes all processes in which at least one new secondary hadron is
produced, independent of the status of the nuclei after the interactions [ 170].
Inelastic proton—nucleus cross sections are needed for the calculation of absorp-
tion of nuclei in the interaction with hydrogen of the ISM in cosmic ray propaga-
tion. On the other hand, it is the proton—air production cross section that is relevant

to air shower development becuseruamelastlmteractlons do not contribute to
the shower evolution.

Joérg R. Hérandel, APP 2019/20

36



Results of a cross section calculation using the Glauber model for proton-
carbon cross sections are shown in Figure 4.20 (left). Th"ziraet‘és lisedfotls’
calculation are 'glven in Appendix A.6. The expected cross sections slightly over-
estimate the measurements at high energy. This deviation is understood in terms of
missing inelastic screening corrections. The curves shown in Figure 4.20 (right)

are the result of a calculation with inelastic screening corrections following
the parametrization of [172]. The inelastic screening contribution can be mod-
eled by accounting for cross section fluctuations [173] or inelastic intermediate
states [174]. The production cross section of p-air interactions 1s shown together
with cosmic ray data in Figure 16.4.
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Figure 4.20 Comparison of predictions of the Glauber model of multiple scat-
tering with data. Shown are neutron- and proton-carbon data on the total cross
sections (see [171] and references therein) together with model calculations.
Left: standard Glauber calculation. Right: results with inelastic screening correc-
tions [172]. The deviations at the particle production threshold are related to the
Fermi motion of nucleons, which is not accounted for in the model calculations.
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- =

Cons1der1ng hadron—nucleu,s _1nteractlons an approximate and much simpler

(4.83)

{oi - [ dzb{l expl-oll T(5)]). |

which is the extension of (4.72) to nuclear targets Here 0/'4 is the inelastic cross

ne

section for hadron—nucleus scattering and ortot is the corresponding total hadron—
nucleon cross section. The function 7 (b) is the number density of target nucleons
of the nucleus at impact parameter b, folded with the impact parameter profile of

the amplitude for hadron—nucleon scattering (see Eq. 4.67)
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T(b) = JpN (;:) Ahp(l; - I;N) dz dsz, (484)

where py is the number density of nucleons at distance r = 4 /b3, + z2 from the

center of the nucleus. The production cross section o4

arod is given by an expression
very similar to (4.83) [175]

ohA — szb{l — exp[—o T (b)]}. (4.85)

prod Oine

Two limits follow directly from (4.85). If orme T (b) is very small then there is no
“shadowing”, and

me mne

AR J o’ T(b) d*b = Aot (4.86)

In the opposite limit of complete screening (orme T (b) very large) the integrand of
(4.85) 1s approximately unlty out to an effectlve nuclear radius R4, so

(4.87)

In the range of beam momentum 20 — 50 GeV/c, the A-dependence of alﬁe for
A > 1 can be approximated by (see [176])



In the range of beam momentum 20 — 50 GeV/c, the A-dependence of O'me for
A > 1 can be approximated by (see [176])

~ 45 mb A° 61 ; (4.88)

This A dependence is closer to the black dlSk llmlt of (4.87) in which ol o A23,
than to the transparent limit (4.86) in which the nuclear cross section is proportional
to the nuclear mass number A. In contrast

(4.89)

The larger exponent in Eq. 4.89 is a consequence of the fact that o,/ < ofF, so

that r-nucleus scattering is farther from the black disk limit. Thus

me / U|[1e > Utol / Utot

NA -
For the same reason O'llne

sometimes need values for inelastic cross sections between two nuclei. A standard
parametrization, used orlglnally to descrlbe emulsmn data at tens of GeV, is

increases more slowly with energy than o) . We will also

(4.90)

withd = 1.12 and Ry = 1 47fm [177]



4. 5 Hadromc mteractlon of photons

The interaction of photons with hadrons and nuclel at energies close to the par-
ticle production threshold is a key process in many astrophysical environments,
in which accelerated hadrons propagate in a background field of photons of the
cosmic microwave background (CMB) or local sources.
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Figure 4.22 Total y-p cross sectlon as function of the photon energ in the
lab system with the proton at rest. Four different components contributing to the
hadronic cross section of photons are shown, the direct component (the photon
produces directly a pion, Primakoff effect), resonance production (sum of eight
individual resonances), and multipion and diffractive interactions (inelastic and

elastic scattering of vector mesons) [138]. The cross section data are taken from
the PDG compilation [10].
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