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The evolution of the number and energy spectra of photons and eectons In an air

shor initiated ya mgle electron or photn1nc1et at the t of the atmoshere
is governed by the coupled equations (5.25 and 5.26) introduced earlier. In Chap-
ter 5 we discussed solutions subject to power-law boundary conditions. For an air
shower, the same equations have to be solved subject to an appropriate §-function

boundary condition at t = 0. The standard approach is a Monte Carlo computer
code, such as GEANT [191] or EGS [192]. To give insight into the basic structure
of electromagnetic cascades, as well as for historical perspective, we devote this
chapter to a discussion of approximate formulas that contain the essential physics
and set the stage for the discussion of more complicated hadronic cascades in the
next chapter.
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The ﬁrst two terms on the rlght 51de of Eq ”6must be combmed (usmg the
relation 5.19) to remove the infrared divergence at v — 0.
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A Matthews Heitler Model — Electromagnetic Cascades

pair production y > e++e-
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n i
after n splitting lengths: = =nXoln2 and N =2"=exp (E)

energy per particle £ = Ey/N  critical energy E, = 85 MeV

number of particles at shower maximum B,
N _QnC_EO n _ln(Eg)
max — _ Eg c — 1n2

JRH, Mod. Phys. Lett. A 22 (2007) 1533
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A Matthews Heitler Model —

Cascades

Electromagnetic
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Nl'nax oC EO al’ld Xrnax oC ln(EO).
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15.1.2 General form of solution

In eneral the particle content of any air shower (number of partlcles of each

51e as fu'c1n of ' | ‘n X ) is gln ‘ ‘he sl f e op*da

de equtlos " 1) Jet th dlta‘ tln r" onltn ' 9) If
etraferfnt-ls F scle _.o' - theh'herels'n dimensional qtlt in
the prbl‘ and edlmesmnes quatlty, E; N;(E;, Eo, X) must be afunctlon

3 ) Let us call thlS dimensionless function ’

X) = E. N, (E,, EO,X). ', (15.4)
The yield function, F;, gives the number of partlcles of type i per logarithmic
interval of fractional energy. The yield depends only on the ratio of the particle
energy, E;, to the total energy, Ej, of the air shower. This result holds only to the

extent that scaling is valid and only when decay and continuous energy loss can be

neglected. It is rxlelyvlld _forhlgh energy hadrons and_for electrons and
photons Wlth E > E in a1r showers
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5.1 Basic equation and boundary conditions

The linear development of a cascade of particles in the atmosphere can be described
by a system of equations of the form \
| § dNi(E;, X) N:(E;, X) Ni(
P i dX

E.. X
d

Ai i
J ~
+Zro Filli B)) NiEp X) 4,
— | E; Aj g
j l

Here, N;(E;, X)dE; is the flux of particles of type i at slant depth X in the atmo-
sphere with energies in the interval E to E + dE. Note that X is measured from the
top of the atmosphere downward along the direction of the particle that initiated the
cascade, as shown in Figure 5.1. The probability that a particle of type j interacts
in traversing an infinitesimal element of the atmosphere is dX /A ;(E;), where A ;
is the interaction length in air of particles of type j. Similarly, dX /d;(E;) is the
probability that a particle of type j decays in dX. All three quantities X, A; and d;
must be expressed in consistent units, and we use g/cm?. Energy loss by ionization
is not included in Eq. 5.1 because it is not important for hadrons in the atmosphere
or for high-energy electrons.
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S. 2 Boundary condltlons

We will need solutions of the cascade equation 5.1 subject to two physically
important boundary conditions that correspond to two quite different types of
experiments. The boundary conditions are

dN 1
N(E.0) = No(E) = — ~ LTE* preeem (5.8)

cm? srs GeV/A

and

(5.9) 4

where A here is the mass number of an incident nucleus. q..8 is relevant for
a detector that simply measures the rate at which particles of a given type pass
through. The explicit power law approximation is based on data with primary
energy less than a TeV, but it is useful as a guide up to a PeV. Eq. 5.9 is the bound-
ary condition relevant for an air shower experlment that traces the development
of a cascade through the atmor "An example is an array of detectors on the
ground with a fast-timing capability that can be triggered to measure the coincident,
extended shower front initiated at the top of the atmosphere by a single particle.
In the case of a ground array, the primary particle has to have sufficient energy to
give a measurable cascade at the surface of the Earth. Cherenkov and fluorescence
detectors can trace the development of showers through the atmosphere.
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The function Fj; (E,, E;) in Eq. 5.1 is the dimensionless partlcle yield that fol-
lows from the 1nclusnv Cross section (1ntegrated OVer transverse momentum) for
a particle of energy E; to collide with an air nucleus and produce an outgoing

particle i Wlth energy E < E In general we deﬁne

(5.4)

where dn; is the number of particles of type i produced on average in the energy
bin dE; around E; per collision of an incident particle of type j. All quantities
in Eq. 5.4 are defined in the lab system. The relation to center-of-mass quantities
can be derived from the definitions in Table 4.1. From Eq. 4.15 it follows that for
energetic secondaries, 1.e. those with E. » my .

E./E, = x; ~ x™. (5.5)

(We always define CMS as a projectile on a target nucleon even when that nucleon
is bound in a nucleus, because nuclear blndlng energies will usually be much lower
than energies of interest in cosmic ray problems we consider.)
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It 1s interesting to eXpress the 1entalﬂux Ni(E;, that results from a

X),

) F(&, X) d&, (15.5)

F(&, X) d&;. (15.6)

ote the similarity between the role f a whole cascade (repreented here by F )

' th role of 1dv1dua1 nteracmns in the spectrum- weighted moments : gen

. 5.48. The 1ntr1 1nE' 15.61s a tmlghte'ot of a whole
cascade. In fact, in the late 1940 it was not clear experimentally whether elementary
multiple production occurs at all or whether events with more than one created pion
required interactions of the projectile with several separate target nucleons inside
a nucleus. This is the question of “multiple” versus “plural” production discussed
by Heitler and others in Volume 21 of Reviews of Modern Physics, 1949.
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In general, the spectrum-wei
air — 1,

1
Zj,- = J;) (XL)y_l Fji(xL) de, (548)

determine the uncorrelated fluxes of energetic particles in the atmosphere [197,
198]. For y = 1, it follows from Eq. 5.4 that Z;;(1) is simply the average fraction
of the interaction energy that goes into particles of type i in interactions of particles
of type j. For y > 1 the contribution to the moment from x; — 0 vanishes. Thus,
for a steep primary spectrum, the uncorrelated fluxes depend on the behavior of
the inclusive cross sections only in the forward fragmentation region (x* > 0 in
Eqs. 4.15 and 5.5). This is why the ©™ /™ ratio remains large and greater than 1,
which we will discuss in Chapter 6. It 1s also why Approximation A remains useful
for uncorrelated fluxes of energetic particles, because hadronic scaling (Eq. 5.45)
is more nearly valid in the fragmentation regions than elsewhere.

For later reference, we give here a table (Table 5.2) of spectrum-weighted
moments.” This table is analogous to the Table 5.1 for electrons and photons. The
Z-factors from Ref. [199] are tabulated for y = 1, y = 1.7 and y = 2.0. For
comparison, we also show the Z-factors at y = 1.7 for the first edition of this
book [200] and for a new version of Sibyll [155]. Since the primary spectrum is
not a perfect power-law over the whole energy region, it is also important to see
how the Z-factors depend on spectral index. This is shown in Figure 5.2 for inte-
gral spectral indexes between y = 1 (momentum fraction) and y = 2.4 (above the
knee).
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15.2 Analytic solutions in cascade theory

The coupled cascade equtlons for photons (Eq. 5 20) and electrons (Eq : ~A

are given 1nAChapt' h'deendontlcle
as t = X(g/cm?)/X. For air the radiation length 1S XO ~ 37 g/cm Analytic
forms for solutions of the electromagnetic cascade equations subject to power law
boundary conditions were presented in Chapter Here we dlSCUSS the elatlon of

and distance expressed

‘Theparadlgmforparametlt1 of air showers (hadronic as well as electro-

magnetic) 1s the work on electromagnetic cascades summarized in the 1941 review
by Rossi & Greisen [194]. Since the details are available in their paper and in
Rossi’s 1952 book [498], we will outline the results here as briefly as possible con-
sistent with motivating the forms of the parametrizations and summarizing their
essential features. The same approach can be used for hadronic air showers, as we
note in the following chapter.
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5 . 4»1 ‘ Cascadee / uations |

The coupled equatlons for electromagnetlc cascades are an instance of Eq. 5
They are ' ‘

(5.20)

and

drm T(E,t w0 dn,_,
i _ 2B, L dne

dE’ (5.21)
dr )\brems

+2 JOO (W', 1) dy—e gy
E VAU 4Ed ’

where y (W, 1)dW is the number of photons in dW at depth  and 7 (E, )dE is

the number of e~ in dE at depth 7. For energies that are large compared to the

critical energy, collisional losses and Coulomb scattering can be neglected and the

scaling functions 5.13 and 5.16 can be used. This is Approximation A.

Jorg R. Hérandel, APP 2019/20
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The starting point is to show that the Mellin transforms of y (W, t) and 7 (E, t)
satisfy the same parametrlc equations (5 30,5.31) as the coefficients f,(¢) and
f () that enter the solutions for power-law boury conditions derived in Chap-
ter 5. This is done by taking the Mellin transform of Eqs. 5.25 and 5.26. The Mellin
transform of a function F (W) is d | S

(15.7)

Transforming the last term of Eq 5.25, for example 1nvolves calculating

% ldv W |
J w? T(—,t)p(v)dW = J dvgp(v)v’ My (s, t) = C(s)My(s, t).
0 o U v 0
e e e . ( 1 5 . 8)

Given the correspondence My (s,1) ~ f(t) and M, (s,t) ~ f,(f), the same
analysis in terms of elementary solutions of the form M(s, t)ocexp(At) as in
Eqgs. 5.32 to 5.35 applies. (C(s) and other relevant functions are given in Table 5.1.)
For a cascade generated by a single photon of energy W, the boundary con-
ditions are f,(0) = M (O "= (W,)* and M, (0) ~~ 0, which follow from
) . Wo)andJr ' = 0. ras'le1c1dent eletron of energy Eo, he

condltlons are M = and M

Jorg R. Hérandel, APP 2019/20 15



Table 5.1 gives some values for the spectrum-weighted moments and other
parameters of electromagnetic cascade theory in the conventional notation of [ 194].
In terms of these definitions, Eqs. 5.28 and 5.29 may be rewritten as

] B0 = C6) 50 = 0 (530)

and

(5.31)

By solving Eq. 5.30 for f, and substituting the result into Eq. 5.31 we get a second
order differential equation for f,. Similarly, substituting f, from Eq. 5.31 into
Eq. 5.30, we get the equation for f),. Both f; () and f, () satisfy the same second
order differential equation,

" + (A+09)f + (Aoy — BC) f = 0, (5.32)

which has elementary solutions of the form focexp(At), where A(s) satisfies the
quadratic equation obtained by substitution of the exponential form into Eq. 5.32,

A2 4+ (A+o09)A + (Aoy — BC) = 0. (5.33)

Joérg R. Hérandel, APP 2019/20
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This 1s A »:‘roxAi(.nation A With the
identifications,
dn 1%
L = (=), 5.22
dWdt ¢(E’ ) ( )
dn E
/ y—e
= — 5.23
T W(W,) (5.23)
and
Weve - £ (5.24)
dEdr E'" '

the cascade equations 5.20 and 5.21 can be written in scaling form:

dv 1(5.25) |

4

)\brems 1 ‘

The first two terms on the rght side of Eq. 5.26 must be combined (sing the
relation 5.19) to remove the infrared divergence at v — 0.
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The air shower solutions are then obtained by inverting the Mellin transforms,

| [ 0+50
)/(W,f) - % W_(S+l) f}/(Sst)dss (159)
—i00+5g

for photons, with a similar expression for electrons. Solutions subject to §-function
boundary conditions are thus convolutions of the elementary solutions for power
law boundary conditions.

ItlS only 1n the 1nversno of the ellm transforms that appr0x1at10ns are

‘Eq‘ 15.9 y saddlvnt method To simplify the formulas and to motivate
the standard parametrizations it is also useful to make some numerical approxima-
tions to the Mellin transform functions. The function A;(s) is positive for s < 1

and negative for s > 1. An a
05<s<2is

roximation that is good to better than 2% for

5 (s — 1 — 3Ins). | (15.10)

The other root of Eq. 5.33 (7_ 1S a gatv and larger in magnitude than
L1(s), so that only the term with A; is important for 7 > 1.

Jorg R. Hérandel, APP 2019/20 18



As S| ec1ﬁc examples we consider the solutlons for electrons plus positrons for a

Bl
A(s) — Aa(s)

The corresponding express10n for an incident electron 1S

FLe(s,1) ~

(Wo)* exp|Ai1(s)t]. (15.11)

oo + Xl(s)
Ar(s) — Aa(s)

The inverse transform of f; 2 (s, 1), for example, gives

(Eo)® exp[r(s)t]. (15.12)

) B d_EL {00+50 B(S)
(O =1 IR b e L
—io0+s0 { Vs[ri(s) = )‘Z(S)]} (1519

1
x exp|Ai(s)t + sy + 5 Ins|ds.

Here y = ln( Ey / ) " (a quantity called “lethargy” in the context of radiation shield-
ing). The factors in curly brackets have been arranged to cancel a 1/4/s behavior
of A1(s) — Az(s) at small 5. The rapidly varying part of the s-dependence in the
integrand is thus all in the argument of the exponent.

Jorg R. Hérandel, APP 2019/20
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The roots of Eq. 5.33 are

2x1(s) = —[A(s) + oo] + {[A(s) — 00]* + 4B(s)C(s)}

B v

(5.34)
and

20(s) =

)

~[A(s) + 00] — {[A(s) — 00]* + 4B(s)C(s)}2.  (5.35)

The solutions, f,(f) and f;(f), are linear combinations of the elementary solu-
tions exp|A?| and exp|i,t| appropriate for the boundary conditions at injection

For example, for a power-law distribution Ofln_jCCth photons wnth y
f y( )W 5+') 'at the top of the atmosphere

s 0 —

fo(t) = ny( ) {eklt e

Pl 5.36
— } (5.36)

/nt} i

(5.38) §
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The saddle point approximation for the integral in Eq. 15.14 consists of expand-
ing the argument of the exponent to second order in a Taylor series about s, where
5 1s the solution of S . a - .

d 1
— (A1 (s)t + 5y + =Ins| = 0.
< [M(s) + sy + S Ins]
The slowly varying part of the integrand in curly brackets 1s approximated by

its value at s = §. This leaves a Gaussian integral which can be evaluated by
integrating along the contour through the saddle point at 5.

The same procedure can be carried out to find the corresponding approximation
for electrons generated by an incident electron and for photons in showers of either
type. Integral spectra also have the same form. (From Eq. 15.13 it is apparent that
integral spectra differ from the corresponding differential spectra by an extra factor

of 1/s in the integrand.) In general, the integral to be approximated is of the form

1 i00+§ )
I(t,5) = o ds {F(s)}exp|ri(s)t +sy —nlns]|, (15.15)
—i00+3

where n is given in Table 15.1. The condition for the location of the extremum is

MG+ y — = = 0. (15.16)
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Table 15.1 Quantztles m the Rossz & Grelsen

approxlmatzons
n F(s)
. B 1 B(s)
+ e~ from y 2 VS [A1(s)—Ra(s)]
N B + oo+Ai1(s)
+ e~ frome 0 hi(s)—22(s)
from 0 ~rat
y y r(s)=na(s)
N 1 Vs C(s)
y from e+ T3 hi(s)—2a(s)
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Expanding the argument of the integrand about § gives

I(t,5) ~ F(5) exp|r((5)t + 5§y — nln5]

1 i00+5§ (s - §)2
X% s ds exp[(A](s)t + n/s?) |
F(5) exp|r(5)t + 5y — nlns§]|

Ao £ Vor (15:17)

The depth of maximum, 7., occurs appr0x1mately when the argument of the

exponentla 1S @ maximum, e

{i[xl<s>r+sy—n1ns]} B hal) = mb) =0 asis)
ds dt

(In this equation and below, the bar over s is understood.) The factor in square
brackets vanishes by Eq. 15.16, and A;(s) = O for s = 1. It therefore follows from
Eq. 15.16 that Tiya = —(y —n)/A}(1). With the approximation 15.10, A1 (1) ~ —1
and

(15.19)

1n1t1ated by electronsr than for photon 1n1t1ated 'showers )
3 . =2 - ; g R. Horandel, APP 2019/20 23




The parameter s, related to f and y by Eq. 15.16, is called the age parameter.
Since I(t)ocexp[A;(s) ], the number of shower partlclesrln a given energy range
1ncreases with depth for Vs" (1 when A|(s) is positive), reaches a maxi-
mum when s — 1, and ¢ eclns for s > 1 (when A(s) is negatlve) With the

RS ]

approximation of Eq. 15. ]O

2n + 3t
§ = ———, (15.20)
t + 2y
and
A(s) ~ 1.5/s%. (15.21)

From Eqs. 15.14 and 15.17 one can see that in general the energy spectrum of
particles in a shower will be of the form S

TN ‘
| — = — (—0> exp|Ai(s)t] x (functionof's). §

| (15.22)
| dE Eo \ E

Slnce s dcpcnds only logarlthmlcally ony = ln(EO/ E the encrgydcpencncels

éhef | 'artlcles becom e as e shdevelo ps. t‘m'xm s =1, and the
spectrum is~ E~ (Note that because s does depend on y, these statements apply
only for limited ranges of energy.)
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Appr01mat10ns like Eq. 15.17 are used with s as a parameter. For each value
of s one finds thcoresplg t fE 15.16. The value of / (t(s), s) is then
plotted at this value of 7. With the help of Eqgs. 15.10 and 15.20, the exponent in
Eq. 15.17 can be written in the following conventional form:

3
exp|ri(s)t + sy — nlns| = exp[n(l —Ins) + (1 — Elns)]. (15.23)

Explicitly, for example for the integral spectra,

I'I(ei)(> E,t) ~ exp|t(1 — 5 Ins)]

(V21)12 hi(s) — ra(s) /1.5t + 1

Vset 3 ]

@] Visiros ot el
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At maximum T = In(Eo/E) — n,and s = 1, so’

VIn(Ey/E) — 033 E

(15.26)

i‘ I'[("i)(> E.t) ~

and

0.14 E,
VIn(Eg/E) — 025 E

(> E, 1) ~ (15.27)

Note the similarity’; »r » pai( 15. 19) and size at .‘
¢ maximum (Egs. 15.26 and 15.27) here as compared with those obtained above with

| the simple Heitler branching model (Egs. 15.2 and 15.1).
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15.3 Approxnmatlons for totalnumber of partlcles

What is measured by a scintillator that samples an air shower front 1s the signal
produced by all the electrons and positrons incident on the scintillator plus the sig-
nal produced by photons that convert in the scintillator.” One would therefore like
a formula for the total number of electrons and positrons down to, say, 20 MeV.
Energy loss and Coulomb scattering must be taken into account, and Approxima-

tion A is no longer adequate. The conventional form used for the total number of

electrons In a photon 1n1t1ated hwer 0 enry 'Eo is (Gesn 1956) [499]

(15.28)

where By = In(Ey/E,.) and s , 1 and y | ﬁo are related by Eq 15.20 with n =
Thls srmple xpressmn 1S smllar in form to the Approximation A solutions, but
deth of axrmumthat | depends on the crltlcalenergy rather | than energy of

te phOn
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The approximation 15.28 is plotted in Figure 15.2 to illustrate how showers
evolve over a wide range of primary energy. Shower maximum occurs for s = 1.
Therefore from Eq. 15.20 with n = 0,

"“L Xl(lizlll;() = X0Tmax = XolIn (E_>

C

(15.29)

and

(15.30)

Analogous relations for charged particles in hadron-induced showers will be

discussed in the following chapter.
Figure 15.2 shows how Eq. 15.28 for electromagnetic cascades evolves over a

wide range of primary photon energy. Similar relations among shower age, depth of
maximum and size at maximum can be applied in the analysis of showers initiated
by primary cosmic rays.
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Figure 15.2 Shower size as a function of slant depth for photon-initiated show-
ers in half-decade intervals of primary energy from 316 GeV (lowest curve) to
107 GeV (highest curve). The dashed lines trace the locus of size at specific
shower ages across the same range of energies.
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15.4 Fluctuations

For a given primary energy, fluctuations in the size of a shower measured at a
particular depth in the atmosphere arise both from fluctuations in starting point
and from ﬂuctuatlons in the way the shower develops. An incident photon interacts

with probblly —dt ) s(t{) 00 ep[ 0'0t1] is the dlstrlbutlon of

SInN ~ )k](s)cSt ~ 14(s -1 - 3lns)

"‘“‘M"’“m PRV

| overall ﬂuctuatlons are somewhat larger. In summary, fluctuations in a sample of
! showers of the same energy observed at the same slant depth are approximately
log-normal, reflecting the multiplicative character of the cascade process. This is
clearly a general property of the branching process that will also hold for hadron- '
initiated showers. Fluctuations in proton-initiated showers may be larger because
| the interaction lengths for protons and mesons in the shower are larger than the
§ electromagnetic radiation length.
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15.5 Lateral spread
To obtain the lateral distribution of the particles in a shower front, it 1s necessary
to include not only the opening angles in palr production and bremsstrahlung, but
also multiple Coulomb scattering. In fact, it is the latter that determines the charac-
teristic size of the shower front. The lateral spread of an electromagnetlc hower 1S
determined by the Mollere unit, rﬂtt‘ra unit Of ltera éa'é to C lr‘n’
sttemg For n ultll lmb stterllehlura 1967) SOO] o

(15.33)

ES 2 :4
FXO ~ 9.3 g/lem”, | (15.34)

C

which is 78 m at sea level.* For 't athe characteristic spread,
Re ~ r1 E./E, is smaller.
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For calculatlons of showers in three dimensions it is necessary to solve equations

fo ' ‘ ,_\, ). Apprx1teolut0's obtained by Kamata & Nishimura
(1958) [50 l] and by Greisen (1956) [499] are compared in the article in Handbuch
der Physik by Nishimura (1967) [500]. Greisen’s form of the lateral distribution of
electrons is known as the Kfou]a o

(15.35)

T nomallzal is deﬁeds'tht o

2w Jx xf(x)dx = 1. (15.37)
0

The correlation between shower age and shape of the lateral distribution implied
by Eq. 15.35 has been used to correlate a fitted value of s for a shower with its stage
of development. This is problematic since real showers have hadronic cores that
continually feed the electromagnetic component through 7° — 2y. In addition,
Monte Carlo simulations of electromagnetic cascades in air find steeper lateral
distributions than the NKG distribution [502] and [503]. Nevertheless, the general
form of the NKG functlon or modlﬁcatlons of it, have proved usem |

"obve ( O
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Fig. 2. Lateral distributions of electrons above a 5 MeV kinetic
energy for zenith angles below 18°. The lines show NKG
functions of fixed age parameter s = 1.65 but varying scale ra-
dius 7. (see the text).



