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lecture 6

Detectors for extensive air

showers
16 Extensive air showers
16.1 Basic features of air showers
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Fig. 1. All-particle energy spectrum of cosmic rays as measured directly with detectors above the atmosphere and with air shower detectors. At low
energies, the flux of primary protons is shown.



Measurement of Cosmic Rays at E>10 TeV
Extensive Air Showers

flux falls ~E-27 --> E=1015eV: 1 particle/m?/a
atmosphere acts as an absorber/calorimeter

vertical atmospheric depth 1035 _2_
cm?

~ 127
~ 30X

--> calorimetric measurement
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16.7 Particle detector arrays

Surface detector arrays consist of a set of particle detectors that are typically
arranged in a regular pattern. Depending on the energy range the experiment is opti-
mized for, the distance between the detector stations can vary from ~15 m (KAS-
CADE [536], Tibet AS-y [537]) up to more than 1000 m (Telescope Array [30],
Auger Observatory [29]).

Showers are detected by searching for time coincidences of signals in neighbor-
ing detector stations. The arrival direction can then be determined from the time
delay of the shower front reaching the different detectors. The shower comprises
a disk of particles that is a few meters thick in the center, increasing up to a few
hundred meters at large lateral distances. Only at small lateral distances can the
curvature of the shower front be approximated as a sphere. The angular resolution
of the reconstructed arrival direction depends on the distance and accuracy of time
synchronization between the detector stations and the number of particles detected
per station (for defining the arrival time of the shower front). Air shower arrays
reach angular resolutions of typically 1 — 2° for low-energy showers and better
than 0.5 for large showers.
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Measurement methods
particles at ground

cascade of secondary particles allows to sample the shower
at specific points

4

detector coverage
1015eV: 1% (15 m)
1020 eV: 108 (1.5 km)

1 1 ]

example: KASCADE 40000 m2 total area
500 m2 e/m detectors (~1.2%), detector distance 13 m



KArisruhe Shower Core and Array DEtector

”

'shower components

—

-~ T-Antoni et al, Nucl. Instr. & Meth. A 513 (2004) 490
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KArisruhe Shower Core and Array DEtector
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Event reconstruction in the scintillator array

electromagnetic component

e/y-Detectors, Run 1. Event 71089, 96-03-05 22:07:48.956078

shower core Or=25-55m

shower direction |[[0=0.5°—-1.2°

shower size IN/N.=6-12 %

14

energy deposit [Me‘t’fmg] particle arrival time [ns]
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KASCADE Hadron-Calorimeter
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Reconstruction of hadrons

Unaccompanied hadron
E,=6.6 TeV

—

——

spatial resolution: angular resolution: energy resolution:
~10-12cm [, ~1°-3° = 250
o(E) 9] ~

E o \/E[ GeV
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Hadronic shower core
E, ~ 6 PeV

Number of reconstructed hadrons N, = 143
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to determine the properties of the primary particle,
we measure the number of

- electrons Ne

-muons [V,

- hadrons Vi

--> measure the lateral density distribution Pe,u,h(T)

Ne,,u,h:/ 277 pe o n (7)dr
0

we need a suitable parametrization

o) (o)

ra: Moliere radius = 0.25 Xo

in air ~80 m for electrons (analytically derived)
~400 m for muons (empirical)
~15 m for hadrons (empirical)
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Electron, muon, and hadron lateral distributions measured in

air showers by the KASCADE experiment
KASCADE Collaboration

. Perhaps trivial,
although experimentally very important, is the fact
that in measurements, the shower particles are al-
ways sampled over a limited range of core dis-
tances r; < r < r, only — in most cases, with an
area coverage in this range not much exceeding 1%
— while showers are often referred to in terms of
integrated numbers of particles,

N = 2nrp(r)dr

I

The total particle numbers, N, for different ?

kinds and energy ranges of shower particles are
obtained by choosing »; =0 and r, = oo and are
traditionally used both as measures for the pri-
mary energy in an individual experiment as well as
a means for comparison of different experiments.

pNKG(ra SaNe) —

(1)

Greisen also noted that Eq. (2), except for the
last factor, is a close approximation to the ana-
lytical calculations for electromagnetic showers
performed by Kamata and Nishimura [3] if a
shower age parameter of s=1.25 is assumed.
Greisen’s approximation to the Nishimura-

Kamata functions for 0.5 < s < 1.5 1s referred to
as the NKG function:

N, T@45-s)
r3, 2nl(s)[(4.5 — 2s)

s—2 s—4.5
v r

X (—) (1 +—) )
'™ ™M

parameters (s, 1)



Deviations of the experimental LDF from the
‘G function (Eq. (3)) have been discussed 1n the
literature Trequently (Section 1) and are subject to
more detailed studies presented below. It turns out
that the NKG function can describe the KAS-
CADE clectron LDF over the core distance range
10-200 m surprisingly well, but the best agreement

1s achieved with parameters far away from the
T. Antoni et al. | Astroparticle Physics 14 (2001) 245-260 ©0 nventional assumption of ry ~ 80 m. When fit-

ting N., rv, and s simultaneously, the measured
LDFs can be reproduced at the 1% level for
rm ~20-30 m and s ~ 1.6-1.8. -
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Fig. 2. Lateral distributions of electrons above a 5 MeV kinetic
energy for zenith angles below 18°. The lines show NKG
functions of fixed age parameter s = 1.65 but varying scale ra-
dius r. (see the text).



T. Antoni et al. | Astroparticle Physics 14 (2001) 245-260 249

Table 1

KASCADE detector components used in this analysis?
Detector Channels Separation (m) Total area (m?) Threshold Ey;, Particle
Array e/y 252 13 490 5 MeV e
Array u 192 13 622 230 MeV x secl v
Trigger 456 - 208 490 MeV x secl v
MWPCs 26080 — 129 2.4 GeV x secl T
Calorimeter 38368 - 304 50 GeV Hadrons

4 Detection thresholds refer to the particle energies above the absorber material of the detectors.

5. Muon lateral distributions

The KASCADE experiment measures lateral
distributions of muons for three different energy
thresholds (Table 1). In the following, we group
the showers in bins of truncated muon numbers
N". Punch-through and efficiency corrections are
applied as described in Section 3. Ranges of core
distances for the different muon energy thresholds
are limited by the uncertainties in the punch-
through corrections at small core distances and by
the geometry of the KASCADE detector array.
Since N, /N:lr rises with the shower size, the impact
of punch-through corrections becomes more se-
vere at higher energies and the minimum core
distances have to be increased correspondingly.
For showers with cores inside KASCADE, the
upper limit is about 220 m for array detectors and
100 m for central detector components.
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Fig. 7. Lateral distribution of muons above 230 MeV kinetic
energy measured with the array detectors. The lines indicate
NKG functions fitted to the data. Error bars are of statistical
nature including an uncertainty of 10% on the punch-through
correction applied.
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The core posmon of the shower is found by fitting the signal S(r) of the detec-
tor stations with a lateral distribution nctl(LF) tailored for the response of
the particular array. The parameters of the lateral distribution can be determined
from data directly using vertical showers. Because the NKG function (Eq. 153)
was devloped to describe EM showers onllus mdlﬁe_versmns have e
deloe to dscrle the charged rtlcles 1n morcolex dOl’llC wes An
example of a modified NKG formis

per(m™?) = f(x) = Ci(s)xCD(A+x)07 (1 + CxY),  (16.29)
where x = r/ry, and the normalization constant is?
N,
Ci(s) = ——5[B(s,45—2s)+ CyB(s +d,45—d —2s)] .
2mr,

The scale for the NKG lateral distribution function is the Moli¢re unit, which at the
depth of the Akeno array of 920 g/cm?, for example, is | ~ 85 m. For showers of
size N, ~ 10° at sea level, Greisen [538] uses s = 1.25,d = 1 and C, = 0.088.
Nagano et al. [539] at 920 g/cm? use d = 1.3 and C, = 0.2 with s fitted for each
shower. The modified NKG form used for the surface array of Auger is

—p —B
S(r) = € (ri) (1 + ;) . (16.30)

A list of often-used LDF parametrizations can be found in [540]. In general,
one of the fitting parameters accommodates fluctuations in shape while another

characterizes the density at a particular distance, r;.
: Jorg R. Hérandel, APP 2019/20 25



For arrays that can separate muons from e— 1t IS usefu]to have a separate lateral

r sde to en -

_7) [ (25) 1 125 _0.75 (l r ) —2.5
27T (1.25)T(1.25) \ 320 320/
(16.31)

The distribution i1s normalized so that N, is the total number of muons in the

shower at the surface.
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F1G. 4. Mu-meson energy spectra at various distances froni extensive air-shower
axes, measured by Bennett (8). The data cover a wide range of shower sizes, 10°<
N< 107, and each solid curve refers to a considerable interval of radius, with mean
values indicated. The dashed curve refers to mesons that were not coincident with
detected showers. The solid curves were computed with the following expression for
the density of mesons (per sq. m.) with energy above E (Bev) at distance 7(m.) from

the axis of showers containing N charged particles: B Jérg R. Horandel, APP 2019/20
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The Pierre Auger Observatory
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The detection principle

AE = 18% stat. 22% syst. CO;;?tli((;;]reay PIERRE
AO < 1° / AUGER
air shower
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To reconstruct the energy of a shower, a measured ground parameter is defined.
Examples are the number of detected partlcles at ground calculated by 1ntegrat1ng
the lateral distribution or a signal density at a specific lateral distance. The latter is

illustrated in Figure 16.5 for the Auger surface detector array. The measured signals
of the detector stations of one particular event are reconstructed with the LDF of
Eq. 16.30 with different values of S. A ﬁx point is found at a core distance of about
rOpt = l lOO m [541] The 51gnal (1 e. 11e desty) tndfr tldlStaC 1s“

thedeteeto‘rs and 1S not related to shower-to-shower fluctuations.

Jorg R. Horandel, APP 2019/20 32
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Figure 16.5 Example of the determination of the optimum distance for measuring
the particle density of an air shower in the Pierre Auger Observatory (see text).
The detector signal is expressed in units of the signal expected for vertical muons
(vertical equivalent muons, VEM). From [541].
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particle type from air-shower measurements

The most_promising surface-detector approach is the separate measurement
of the number of eletros ad rnons The crrSpondlngbrdlctS for air
showers simulated with the hadronic interaction models EPOS [146, 161] and
Sibyll [158] (interactions with £ > 80GeV) and FLUKA [193] (interactions
with £ < 80 GeV) are shown in Figure 16.6. The simulation results confirm the
predictions of the superposition model (16.19) with N, ocE7, o ~ 0.90 and a rel-

ative difference in the muon number between iron and proton showers of ~ 40%.
The difference in the number of electrons at each energy is mainly related to the
shallower depth of shower maximum of iron showers relative to proton showers.

With the energy transferred to the EM shower component being closely related
to (and anti-correlated with) the number of muons at ground, one can devise an
almost model-independent estimator for the primary energy

EO = Eem + Ehad ® E N(max) + EdecNﬂs (16-32)

~

where E., > E,. is a typlcal energy scale one has to assign to electrons to
compensate for the non-detected photons. In practical applications, the energy is
parametrized asIn £ = aln N, + bIn N, + ¢, with a, b, ¢ being parameters deter-
mined from simulations. A similar expression can be written for In A to find the
primary mass; see [540, 544]. Depending on the distance of the observation level to
the depth of the typical shower maximum, fluctuations in the particle numbers can

be large and need to be accounted for in energy and composition reconstruction.

Jorg R. Hérandel, APP 2019/20
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Figure 16.6 Predicted correlation between the number of muons and electrons of
vertical showers at sea level. The simulations were done with CORSIKA [640]
using the same cutoff energies for the secondary particles as in Figure 16.1.
The curves encircle approximately the one-sigma range of the fluctuations.
From [33], © 2011 by Annual Reviews (www.annualreviews.org), reproduced
with permission.
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KASCADE-Grande — Lateral distributions
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KASCADE-Grande — Lateral distributions
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Muon production height - KASCADE muon tracking detector
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16.8 Aosperi Cherenkov light detectors

The large number of Cherenkov photons emitted by charged particles traversing
a medium with refractive index n > 1 can be used for efficient detection of air
showers in a wide range of energies. The atmospheric Cherenkov technique is use-
ful both for y-ray astronomy and for study of cosmic ray air showers. Imaging
atmospheric Cherenkov telescopes (IACTs) can detect showers with thresholds
down to 30 GeV [566, 567]. Their reach at high energy, however, is limited to
~ 100 TeV by their relatively small effective area. Non-imaging Cherenkov detec-
tors can be set up similar to an array of particle detectors, offering the possibility

to instrument very large areas at ground and reach very high energy [568, 569].
Typically only the Cherenkov light of the abundant secondary particles in an air
shower is detected, but also the direct Cherenkov light of the primary particle can
be measured [570, 571]. From the point of view of cosmic ray physics, the advan-
tage of a Cherenkov array is that it can reconstruct depth of shower maximum at
energies lower than those accessible to fluorescence telescopes.

- non-imaging detector

- Imaging Atmospheric Cherenkov Telescope (IACT)
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The phenomenology of atmospherlc Cherenkov emlssmn is largely determined
y th sston angle and energy threshold depend on the index of refraction
as a function of altitude. It is convenient to express the threshold of particle energy
E for Cherenkov light emission in terms of the Lorentz y -factor

n(h)
A

with £ = ym and m the particle mass. The altitude dependence of the refractive

HOUT LIPS

index n(h) is a function of the local air density and satisfies approximately

(16.33)

pair(h)

n(h) =1+ 0.000283
( ) pair(o)

, (16.34)

where p,;, 1s the density of air. The energy threshold for electrons and the
Cherenkov angle ¢y, in air, cosfcp, = 1/(Bn(h)), are given in Table A.2 as a
function of altitude. Typical values at A = 10km are ¢, = 0.8 (12 mrad)

and a threshold of y = 72, corresponding to _o t and
E = 7.6 GeV for muons.
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this radius. to ltle ulob'scatemg the oef prtlcedino move
ular distribution follows in first approximation

parallel to the shower axis. The an

an exponential

AN, 1, E
|V — —¢0/%, By = 0.83 | —2
¢ de o MeV

(16.35)

with Ey, being the Cherenkov energy threshold [527, 532]. Typical values of
6y are in the range 4...6°. The interplay of the altitude-dependent Cherenkov
angle and the emission height leads to a characteristic lateral distribution of pho-
tons at the ground, as illustrated in Figure 16.7. The absorption and scattering
of Cherenkov light in the atmosphere limits the detectable wavelength range to
about 300 — 450 nm, where the upper limit follows from the A~ suppression of
large wavelengths. One possible parametrization of the lateral distribution of the
Cherenkov light has the form [574]
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in addition to particles at ground (electrons, muons, hadrons) in air
showers electromagnetic radiation is produced:

- Cherenkov radiation c
charged particles moving with a speed v ~ Vair = ——
emitt Cherenkov radiation . 1

Yy
Y

air close to ground 7 ~ 1.000283 cos©. =
n-v n

= 0. < 1.4° in air
Cherenkov threshold F, =22 MeV E, =4.4 GeV
--> most Cherenkov light is emitted from relativistic
electrons

(VPNWJ pachk

O, ~ smaller / focusing effect due to increase of n with
/// \ increasing depth --> n(h) = @c — f(h)
0. ~ bigger , & % ring with ~100 m diameter on the ground

e.g. 1 TeV gamma ray produces ~3*106

v M Cherenkov photons 300-500 nm
l' S
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Figure 16.7 Left: Illustration of the relation between production height and
Cherenkov opening angle for producing the observed Cherenkov light distribu-
tion at ground. Right: Simulated lateral distributions of Cherenkov light produced
by proton-induced showers of different zenith angle [572]. The simulations were
done for a height of 2000 m above sea level.
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One possible rametrlzatlonof the lateraldlstrlbutlono the
Cherenkovllght has theform [54]

C(r) ‘ 12 exp 120 »— '30rn < r < .'

Clzo (r/120m) : l20m<r
with the parameters Ci20, a and b
Clear, moonless nights are required for taking data with air Cherenkov detec-
tors, resulting in an effective duty cycle of 10 — 15%. Also continuous monitoring

“120m
zsom o}

of the atmospheric conditions including the density profile of the atmosphere is
necessary [575].

Arrays of photodetectors are used in non-imaging Cherenkov experiments to
sample the lateral distribution of light in dark and clear nights. After reconstructing
the core position, the measured parameter C2p and the slope are linked to the prop-
erties of the primary particle. Simulations show that the density of photons at 120 m
from the core is almost directly proportional to the energy of the shower and that
the slope is related to the depth of shower maximum [573]. Examples of surface
arrays applying this non-imaging technique of shower detection via Cherenkov
light are AIROBICC [576], EAS-TOP [577], BLANCA [574], Tunka [568] and
Yakutsk [569]. The latter two are currently in operation, with Tunka being extended
from an array of originally 25 stations to 133.
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C(r) =
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Imaging Atmospheric Cherenkov Telescope (IACT)

1TeV
proton

Figure 16.8 Illustration of the stereo-detection principle of imaging atmospheric
Cherenkov telescopes [567]. The superimposed camera images are shown on the
left-hand side. The intersection of the shower axes in this combined image cor-
responds to the arrival direction of the shower. From [567], © 2009 by Annual
Reviews (www.annualreviews.org), reproduced with permission.
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- Fluorescence light
charged particles moving through the atmosphere excite
nitrogen molecules
--> fluorescence light (300-450 nm)
isotropic radiation of fluorescence light

/
{/ --> air showers can be observed
ﬁl from aside
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Fig. 2. Air-fluorescence spectrum excited by 3 MeV electrons at 800 hPa as measured by :the AIRFLY €ollaboration {32]-
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The function proposed by Gaisser and Hillas [798] gives a good phenomenolog-
1cal descrlptlon of md1v1duallas well as averaged longltudmal shower proﬁles

I XX BTNy X X — ,
Nooiw ( : ]> exp (— max) : (16.38)

X max X A

It 1s often used to extrapolate the measured shower profiles to depth ranges outside
the field of view of the telescopes and to fit for Npax and Xpax. In doing so, X
and A = 55 — 65 g/cm” are parameters of the fit. In particular, X| can be nega-
tive. The same function with X; > O interpreted as the point of first interaction is
sometimes used as a toy model to illustrate fluctuations in air shower, as discussed
in Appendix A.8.
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Figure 16.9 Profile of one shower measured with the Pierre Auger Observa-
tory [594]. The reconstructed energy of this shower is about 10!° eV. The data
are shown together with 10 simulated proton (left) and 10 iron showers (right) to
demonstrate the composition sensitivity of the depth of shower maximum. The
showers were simulated with the Sibyll interaction model [158, 520] and the

CONEX air shower package [514].
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A Hybrid Event
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Scintillator Detectors on
a 1.2 km square grid
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