1
0
Fork 0
This repository has been archived on 2021-01-12. You can view files and clone it, but cannot push or open issues or pull requests.
uni-m.astroparticle/2019-20/presentation/presentation.tex

625 lines
15 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[showdate=true]{beamer}
\usetheme{Antibes}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen=left}
%\setbeameroption{show notes}
%\setbeameroption{hide notes}
%\setbeameroption{show only notes}
%%%%% Remove Subsection bar from header
\makeatletter
\setbeamertemplate{headline}
{%
\begin{beamercolorbox}[wd=\paperwidth,colsep=1.5pt]{upper separation line head}
\end{beamercolorbox}
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.125ex,%
leftskip=.3cm,rightskip=.3cm plus1fil]{title in head/foot}
\usebeamerfont{title in head/foot}\insertshorttitle
\end{beamercolorbox}
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.125ex,%
leftskip=.3cm,rightskip=.3cm plus1fil]{section in head/foot}
\usebeamerfont{section in head/foot}%
\ifbeamer@tree@showhooks
\setbox\beamer@tempbox=\hbox{\insertsectionhead}%
\ifdim\wd\beamer@tempbox>1pt%
\hskip2pt\raise1.9pt\hbox{\vrule width0.4pt height1.875ex\vrule width 5pt height0.4pt}%
\hskip1pt%
\fi%
\else%
\hskip6pt%
\fi%
\insertsectionhead
\end{beamercolorbox}
% Code for subsections removed here
}
\makeatother
\usepackage{amsmath}
%%%%% Add Frame Number
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber
}
\title{The KM3NeT project\\ ARCA + ORCA}
\date{April 21st, 2020}
\author{E.T. de Boone}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\begin{frame}
\frametitle{Papers}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{images/paper-prototype.png}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{images/paper-letter-of-intent.png}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Astrophysical vs Atmospheric Neutrino}
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{images/neutrino_sources.png}
%{\tiny \href{https://doi.org/10.1140/epjh/e2012-30014-2}{10.1140/epjh/e2012-30014-2}}
\end{figure}
\end{frame}
\note[itemize]{
\item Distinction Atmospheric vs Astrophysical
\begin{itemize}
\item steep decline for > TeV
\item lower energies
\end{itemize}
\item Observatories: IceCube, ANTARES
\begin{itemize}
\item IceCube: 100 GeV - several PeV
\item ANTARES: 10 GeV - 100 TeV
\end{itemize}
\item Types of events
\begin{itemize}
\item Tracklike (through-going)
\item Showerlike
\end{itemize}
}
%%%%%%%%%%%%%%%%%%
%% General Info %%
%%%%%%%%%%%%%%%%%%
\section{General Info}
\subsection{KM3NeT}
\begin{frame}
\frametitle{KM3NeT}
Cubic Kilometer Neutrino Telescope
\begin{itemize}
\item Deep-sea neutrino telescope
\note[item]{ Observation Principle IceCube }
\item Three locations in the Mediterranean Sea
\note[item]{ Locations: Toulon (FR), Sicily (It), Pylos (Gr) }
\note[item]{ Properties Water }
\bigskip
\pause
\item 2 Main objectives
\begin{itemize}
\item Determine the Neutrino Mass Hierarchy
\item Observe the Universe with highly energetic Neutrinos
\end{itemize}
\end{itemize}
\end{frame}
\note[itemize] {
\item Neutrino Mass Hierarchy
\begin{itemize}
\item Neutrino's have mass
\item flavour eigenstates $neq$ mass eigenstates
\end{itemize}
\item Universe
\begin{itemize}
\item Objectives to confirm icecube findings
\item Counterpart to IceCube - Galactic Plane in FoV
\end{itemize}
}
\begin{frame}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/km3net-infrastructure.jpg}
\end{figure}
\end{frame}
\note[itemize] {
\item Spread over large part of mediterranean sea
\item Reason for locations: deep water
\item Succesor to and experience from: \begin{itemize}
\item ANTARES (Fr)
\item NEMO (It) - Pilot
\item NESTOR (Gr) - Pilot
\end{itemize}
\item Greece is pending future funding
}
\begin{frame}
\frametitle{KM3NeT}
\begin{itemize}
\item 2 main objectives
\begin{itemize}
\item Determine the Neutrino Mass Hierarchy
\item Observe the Universe using Neutrinos
\end{itemize}
\bigskip
\pause
\item 2 main experiments
\begin{itemize}
\item ORCA: Oscillation Research with Cosmics in the Abyss
\item ARCA: Astroparticle Research with Cosmics in the Abyss
\end{itemize}
\end{itemize}
\end{frame}
\note[itemize] {
\item ORCA in Fr, ARCA in Italy
\item Combined sensitivity from GeV to above PeV: 6 orders of magnitude
\item ORCA:
\begin{itemize}
\item Focus on atmospheric neutrinos
\item densely packed $\mapsto$ GeV to TeV $\nu$'s
\end{itemize}
\item ARCA:
\begin{itemize}
\item Focus on (extra)galactic neutrinos
\item sparsely packed $\mapsto$ TeV to PeV $\nu$'s
\end{itemize}
\item shared technology
}
%% Technology %%
\section{Detector Design}
\begin{frame}
\frametitle{Detector Design}
\pause
\begin{figure}
\includegraphics[width=0.8\textwidth]{images/principal-idea-neutrino-telescope-icecube-with-text.png}
\end{figure}
\end{frame}
\note[itemize]{
\item Old design => Markov 1960 multiple predecessors
\item compare with IceCube, ANTARES, DUMAND
\bigskip
\item Cherenkov light
\item Digital-Optical Module
}
%%
\begin{frame}
\frametitle{Detector Prototypes}
\begin{columns}
\column{0.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-ppm-du-schematic.png}
\end{figure}
\column{0.5\textwidth}
\begin{itemize}
\item Digital Optical Module \\(Apr 2013)
\item Detection Unit (3 DOMs)\\(May 2014)
\item Detection Unit (18 DOMs)\\(Dec 2015)
\end{itemize}
\end{columns}
\end{frame}
%%
\begin{frame}
\begin{columns}
\column{0.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-building-block-du.png}
\end{figure}
\column{0.4\textwidth}
Building Block
\begin{itemize}
\item 115 strings
\item 18 Digital Optical Modules per string
\item 31 Photo Multiplier Tubes per DOM
\end{itemize}
\end{columns}
\end{frame}
\note[itemize]
{
\item lattice structure (also on prev slides)
\item data transmission fibre-optics (1 Gbps per DOM)
\item $31 \times 18 = 558$ PMTs per string
\item $558 \times 115 = 64 170$ PMTs per block
}
% Digital Optical Modules
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{ Digital Optical Modules }
\begin{columns}
\column{.4\textwidth}
Sensors
\begin{itemize}
\item 31 PMTs per DOM \\ $\mapsto$ $1400 \mathrm{cm}^2$
\item Acoustic Sensor
\item Compass
\item Accelerometers
\end{itemize}
\column{.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-build-dom-with-piezo.png}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item PMT: gain $10^6$
\item PMT: compare amount with IceCube: 1:31
\item Acoustics: resolution to 20 cm $\mapsto$ 1 ns
}
%%
\begin{frame}
\frametitle{ DOM Data }
\begin{columns}
\column{.4\textwidth}
\begin{itemize}
\item Data each 8ns
\begin{itemize}
\item Start Time ($0.3$ photo-electrons)
\item Time over Threshold
\end{itemize}
\bigskip
\item ``All Data to Shore''
\item $2^{24} \times 8\mathrm{ns} \approx 134\mathrm{ms}$\note{ uplink: 25 Gb/s $\mapsto $ reduction of data by $10^5$}
\end{itemize}
\column{.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-arca-simulated-time-distribution.png}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item DOM uplink 1Gbps
}
% Calibration
%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Calibration}
\begin{itemize}
\item Nanosecond level precision
\begin{itemize}
\item Time between PMTs in the same DOM
\item Time between DOMs
\end{itemize}
\end{itemize}
\end{frame}
\note[itemize]
{
\item 8ns data
\item $1\mathrm{ns} \times c = 30\mathrm{cm}$ $\mapsto$ $\Delta x \approx 2.40\mathrm{m}$
}
%%
\begin{frame}
\frametitle{Calibration}
Time between PMTs in the same DOM
\begin{itemize}
\item $^{40}K$ decay in sea water
\end{itemize}
\begin{figure}
\includegraphics[width=1.1\textwidth]{images/km3net-ppm-du-field-of-view-dom-3.png}
\end{figure}
\end{frame}
\note[itemize]
{
\item $^{40}$K decay
\begin{itemize}
\item $\lambda_{1/2}$ Gyr
\item 150 Cherenkov $\gamma$ per decay
\end{itemize}
}
%%
\begin{frame}
\frametitle{Calibration}
\begin{columns}
\column{.4\textwidth}
\begin{figure}
\vskip -1.5em
\includegraphics[width=0.5\textwidth]{images/km3net-build-detection-string.png}
\end{figure}
\column{.6\textwidth}
Time between DOM
\begin{itemize}
\item LED nanobeacon
\item Acoustic Piezo sensor
\end{itemize}
\begin{figure}
\includegraphics[width=.7\textwidth]{images/km3net-build-dom-with-piezo.png}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item LED: 470nm, fully controlled from shore ($I$, $f$)
\item comparison of timings on the same string
\item Acoustics: position calibration
}
%%
\begin{frame}
\frametitle{Background Effects}
\begin{itemize}
\item $^{40}$K decay in seawater
\item Bioluminescence
\item Dust in water
\end{itemize}
\end{frame}
\note[itemize]
{
\item $^{40}$K is background but also calibrator
\item bioluminescence: marine sciences, effect of upto 10\%
\item
}
% Events
%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Event Triggers}
\begin{columns}
\column{0.6\textwidth}
Multiple Triggers
\begin{itemize}
\item L0: 0.3 photo-electrons in PMT (in DOM)
\item L1: 2 hits in separate PMTs within 25ns
\item L2: use orientation of PMTs
\end{itemize}
\column{0.4\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/Neutrino-candidate-in-KM3NeT-ORCA6.jpg}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item L1:
\begin{itemize}
\item 1kHz per DOM of which 0.6 is $^{40}K$ decay.
\item study gives relative time offset mostly 10 ns.
\end{itemize}
\item L2: halves the remaining hits
\item Causality: $25\mathrm{ns} \mapsto 7.5\mathrm{m}$
}
%%
\begin{frame}
\frametitle{Event Triggers: Muon Tracks and Showers}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-track-length-estimation.png}
\end{figure}
\end{frame}
\note[itemize]
{
\item Various Trigger Algorithms
\item Muon track
\item directional filter $\sim 10^\circ$ $\mapsto$ 200 directions cover $4\pi$
\item shower events
}
%%%%%%%%%%%%%%%%%%
%% Physics %%
%%%%%%%%%%%%%%%%%%
%% ORCA
\section{ORCA - Particle Physics}
\begin{frame}
\frametitle{ORCA - Particle Physics}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-orca-locations-france.png}
\end{figure}
\end{frame}
%%
\begin{frame}
\frametitle{ORCA - Particle Physics}
\begin{columns}
\column{.4\textwidth}
\begin{itemize}
\item 1 Building Block
\item dense packing $\mapsto$ sensitivity GeV to TeV
\end{itemize}
\column{.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-orca-footprint.png}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item depth: 2500m
\item height: 150m
\item width: \textit{see frame}
\item instrumented volume: 8 Million tonnes of water
\item horizontal distance 20m
\item vertical distance 6m
}
\begin{frame}
\begin{figure}
\includegraphics[width=\textwidth]{images/neutrino-signal-background.png}
\end{figure}
\end{frame}
%\subsection{Neutrino Mass Hierarchy}
%%
\begin{frame}
\frametitle{Neutrino Oscillations}
\begin{center}
\begin{itemize}
\item Pontecorvo - Maki - Nakagawa - Sakata matrix
\item 3 angles, 1 phase
\end{itemize}
\begin{figure}
\includegraphics[width=.8\textwidth]{images/neutrino-oscillation.jpg}
\end{figure}
\end{center}
\end{frame}
\note[itemize]
{
\item solar neutrino puzzle
\item
\item mass eigenstates $\neq$ flavour eigenstates, mass squared diff
}
%%
\begin{frame}
\frametitle{Neutrino Mass Hierarchy}
\begin{figure}
\includegraphics[width=\textwidth]{images/neutrino-mass-hierarchies.png}
\end{figure}
\end{frame}
\note[itemize]
{
\item vaccum oscillations insensitive to sign of mass sq. diff.
\item matter is sensisitive $\mapsto$ different cross-sections for $\nu$ and $\bar{\nu}$
\item effect largest for $E_\nu \approx 30 GeV/\rho$ $\mapsto$ $1 - 20 GeV$ in KM3NeT
\item cannot measure charge
\item $\sigma(\nu N) \approx 2\sigma(\bar{\nu} N)$
}
%%
\begin{frame}
\includegraphics[width=\textwidth]{images/km3net-orca-significance-nmh.jpg}
\end{frame}
%%%%%%%%%%%%%%%
%% ARCA
%%%%%%%%%%%%%%%
\section{ARCA - Astroparticle Physics}
\begin{frame}
\frametitle{ARCA - Astroparticle Physics}
\begin{columns}
\column{.5\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-arca-locations-italy.png}
\end{figure}
\column{.5\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/km3net-arca-block-division.png}
\end{figure}
\end{columns}
\end{frame}
\note[itemize]
{
\item horizontal distance 90m
\item vertical distance 36m
\item depth 3.5km
}
%%
\begin{frame}
\frametitle{Differences between ARCA and ORCA}
\begin{figure}
\includegraphics[width=\textwidth]{images/KM3NeT-ARCA-and-ORCA-comparison-area.png}
\end{figure}
\end{frame}
%% Diffuse
\begin{frame}
\frametitle{IceCube and Expected Signal}
\begin{itemize}
\item Signals from 10 TeV to above 1 PeV
\item 54 events with reconstructed energy above 30TeV (2016, IceCube)
\end{itemize}
\pause
\begin{figure}
\includegraphics[width=.7\textwidth]{images/km3net-arca-significance-diffuse-neutrinos.png}
\end{figure}
\end{frame}
%%
\begin{frame}
\frametitle{Expected Signals: Diffuse Flux from Galactic Plane}
\begin{figure}
\includegraphics[width=\textwidth]{images/galactic-plane-1-GeV-gamma-rays.png}
\end{figure}
\end{frame}
\note[itemize]
{
\item TeV $\gamma$-ray emmission from GP
\item same hadronic processes lead to high-energy $\nu$'s
}
%%
\begin{frame}
\frametitle{Expected Signals: Diffuse Flux from Galactic Plane}
\begin{figure}
\includegraphics[width=0.9\textwidth]{images/km3net-arca-significance-diffuse-galactic-plane.png}
\end{figure}
\end{frame}
%% Point like
\begin{frame}
\frametitle{Expected Signals: Point like sources}
\begin{itemize}
\item Good Angular Resolution
\item Galactic Sources can be probed
\end{itemize}
\end{frame}
%\subsection{Glashow Resonance}
% \begin{frame}
% \frametitle{Glashow Resonance}
% \begin{figure}
% \includegraphics[width=0.9\textwidth]{images/km3net-arca-eff-area-glashow-resonance.png}
% \end{figure}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Recap}
\begin{itemize}
\item Deep-sea Cubic Kilometer Neutrino Telescope in the Mediterranean Sea
\item 2 objectives $\mapsto$ 2 experiments
\begin{itemize}
\item ARCA: Astrophysics Research with Cosmics in the Abyss
\item ORCA: Oscillation Research with Cosmics in the Abyss
\end{itemize}
\item Significant results expected within a few years of observations
\end{itemize}
\pause
\begin{center}
\vspace{1em}
Question Time
\end{center}
\end{frame}
\begin{frame}
\frametitle{}
\end{frame}
\begin{frame}
\frametitle{Deployment of Strings}
\url{https://www.youtube.com/watch?v=7HKHW0hLxt4&list=PLL9OR_-tW5qOtfZigqVpzMmTSwkMjCT1s&index=8}
\end{frame}
\end{document}