
© 2006 Wouter Verkerke, NIKHEF

Exercises

Exercises A

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.1 – Hello world

•  The goal of this exercise is to verify that computer and
compiler setup are functioning correctly.
–  To verify that your setup runs fine, compile and run the “hello

world” example

#include <iostream>
using namespace std ;

int main() {
 cout << “Hello World” << endl ;
 return 0 ;
}

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.2 – Counting chars in a string

•  The goal of this exercise is to learn basic pointer skills.
–  We will write a C++ program that analyzes the character content of a string

that is given to you by the user of your program. The program should
display the number of uppercase and lowercase characters, the number of
digits and the number of ‘other’ characters.

•  Approach
a)  First write a small program that reads in a string from the terminal up to a

newline character and prints that same string again to the terminal.
–  Use a ‘classical string’ in this exercise, i.e. an array of characters, not the STL class string.

–  You can read a string from the command using the std::cin.getline(char* str, int len)

b)  Add code that loops over the string and looks at the string one character at
a time through a pointer. You are not allowed to use an integer index
variable. Think about the following

•  How do you create a pointer and how do you make it point to the first character of the string?

•  How do you make the pointer point to the next character in the string?

•  How do you know that you’re at the end of your string?

c)  Finally add code that determines if each given character is uppercase,
lowercase, a digit or otherwise.

•  Think about how character literals work. First write a line of code that determines if a given
character is the uppercase A.

•  Now modify this code to determine if the character is any upper case letter A-Z. Before you start
this find out what the ASCII table looks like (e.g. Google ASCII table) and exploit the ordering of
the ASCII characters.

•  Add similar code for lowercase characters, digits and ‘other’ characters and make your program
print how many of each are in the string.

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.3 – Joining strings

•  The goal of this exercise is to learn about string manipulation
and dynamic memory allocation
–  Examine the following program

–  Write the missing join() and joinb() routines that will concatenate
character strings

–  Function joinb() should insert a blank between the two strings, function
join() shouldn’t

#include <iostream>
using namespace std ;

char* join(const char*, const char*) ;
char* joinb(const char*, const char*) ;

int main() {

 cout << join("alpha","bet") << endl ;
 cout << joinb("duck","soup") << endl ;

 return 0 ;
}

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.3 – Joining strings
•  Approach – writing join()

a)  Add an empty body for the function join() below the main function in your
program code.

b)  Comment out the line using joinb() for now so you can test your join() code.
c)  What is the return type of join()? When you return a pointer in a function, it

should point to a memory object you have allocated, so add some code that
allocates a string to which the return value pointer can point to.

d)  Explain why you should use new[] to allocate this memory.
e)  What length should the allocated string be? Write your code such that exactly

the right amount of memory is allocated. Do you need to allocate memory for
the terminating NULL character?

•  Hint you can use the Standard Library routine strlen(), declared in <string.h> to determine the length
of a string

f)  Use the Standard Library routine strcat() to implement the concatenation part
of join(). Before you do so, first initialize your return value string to a null
string. (Think about what a null string looks like)

g)  Who is responsible for deleting the returned memory? Is there a leak? How
would you fix it?

•  Approach – writing joinb()
h)  Start joinb() as a copy of join() and modify the concatenation part to insert

a space between the two input strings
i)  Do any other parts of the code need to be modified?

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.4 – Effect of memory leaks

•  Write a small program that deliberately leaks memory

•  Watch what happens to the process memory allocation
using the UNIX ‘top’ command in a separate window
–  What happens when memory runs out?

© 2006 Wouter Verkerke, NIKHEF

Exercise 1.5 – Base 32 printing of integers

•  The goal of this exercise is to learn how to use the bit-wise operators
–  Integers can be represented in several bases. Base-10 is the default (digits 0-9) but also

Base-16 or hexadecimal (digits 0-9,A-F) is common in computing
–  What are the advantages of base-16 over base-10 in computing?

•  Approach: write a program that reads in an unsigned integer and print
it in a base-32 implementation

-  You can represent base-32 number with decimals 0-9 followed by characters A-V (just
like hex numbers, which only go up to F)

a)  Write a small program that reads in an unsigned integer.

b)  Determine how many bits there are in an integer (use sizeof) and calculate how many
base-32 digits you need to represent an integer

c)  Allocate a temporary storage array of short ints to hold each digit.
d)  Extract the first base-32 digits by isolating the 5 rightmost bits of the input integer. You

can do this by masking out the remaining 27 bits using the bit-wise AND operator with a
well chosen ‘masking’ integer. Store the digits value in the temporary array.

e)  Process the remaining 5-bit digit by shifting all bits in the input integer to the right and
repeating the above procedure until you are at the end.

f)  Now that you have parsed the input into 5-bit digits, print them in base-32
representation. First make a char[] lookup table that converts a small integer (<32)
used as index into that array into a Base-32 char (0-9,A-V).

g)  Think about the order in which to print the digits. We started parsing at the least
significant digit, but when you print you should start with the most significant digit.
Write your print loop such that it takes that into account.

