
Advanced Programming

Frank Filthaut



Scope

Course aims: students with some Python programming skills but 
little beyond this 

Course coverage: 
• C++ syntax & basics 
• language binding 
• multi-threading

2



Machine Learning

Earliest incarnations (back-propagation, few layers, limited #nodes 
per layer) were “simple” but not very powerful 

Wealth of applications now in existence (e.g. unsupervised learning 
for feature recognition) are only possible thanks to great advances 
in computing power (Moore’s law) 
• millions of network parameters to be optimised 

In order to optimally exploit available computing 
resources, need efficient code

3
(GoogLeNet architecture: > 100 layers)



Compiled versus interpreted languages

• binary code: directly executable on 
specific architecture: fast but not portable 

• interpreted code: portable but significantly slower, as code needs to 
be interpreted at run time (and multiple times, in case of loops) 
• Python does convert to .pyc behind the scenes, but this is not to binary 

code

4



Practicalities: lectures

The best way to learn to “speak” a programming language is as for 
natural languages: by doing rather than by listening 

Intention: minimise time spent in lectures 
• expect one or a few more actual lectures, on specialised topics 
• towards the end of the course 

• otherwise, will only have computer tutorial sessions 
• apologies: I requested 2 blocks of 2 hours per week but got only 1, and 

this cannot be fixed anymore in a way that accommodates all 

• 1st official tutorial session next week; assistance by Edwin Chow. Will 
determine how to proceed from there

5

mailto:E.Chow@nikhef.nl?subject=CDS:%20Advanced%20Programming:


Practicalities: exercises/projects

You will pass the “exam” (no grade) upon handing in exercises to satisfaction 
• we will start with simple exercises; expectation is that towards the end, some 

of these will develop into a somewhat larger project 

Exercises will mostly follow those from another course (see separate 
material), but with modifications 
• different choice of material (also in view of previous point) 

• different way to hand in results 

You are welcome to use an IDE for your code development (as long as you 
submit source code that works with straight g++) 
• geany, gedit, kate, eclipse, atom all appear to be available on the faculty’s 

Linux systems 

You are welcome to inspect code performance (or test other aspects) using 
valgrind (also available)

6



Contents

As discussed in later sections (separate documents): 
1. basic syntax 

2. modularity & encapsulation (files and functions) 

3. class basics 

4. class design 

5. I/O streams 

6. generic programming: templates 

7. Standard Library: template library 

8. object orientation: inheritance & polymorphism 

9. exception handling 

10.language bindings 

11.threads

7



Proposed approach

Material on the previous slides is rather a lot; strive to see where 
corners can be cut 
• object orientation? (Python uses OO as well) 
• exception handling 

Would help to know your background / experience 
• will adapt selection of material / exercises (within bounds)

8


