
© 2006 Wouter Verkerke, NIKHEF 

The basics of C++ 

The basics 
of C++ 1 



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Lets start with a very simple C++ program 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Lets start with a very simple C++ program 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  Anything on line after // in C++ is 

considered a comment 



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The preprocessor of a C(++) compiler processes the 
source code before it is passed to the compiler. It can: 
–  Include other source files (using the #include directive) 

–  Define and substitute symbolic names (using the #define directive) 

–  Conditionally include source code (using the #ifdef, #else, #endif 
directives) 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Lines starting with # are directives for the 
preprocessor 

 
Here we include some standard function 

and type declarations of objects defined by 
the ‘iostream’ library  



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Let start with a very simple C++ program 

 
 

•  The main() function is the default function where all C++ 
programs begin their execution. 
–  In this case the main function takes no input arguments and returns 

an integer value 

–  You can also declare the main function to take arguments which will 
be filled with the command line options given to the program  

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Beginning of the main() 
function declaration. 



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The names std::cout and std::endl are declared in the 
‘header file’ included through the ‘#include <iostream>’ 
preprocessor directive. 

•  The std::endl directive represents the ‘carriage return / line 
feed’ operation on the terminal 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  

Use iostream library objects 
to print string to standard 

output 



© 2006 Wouter Verkerke, NIKHEF 

“Hello world” in C++ 

•  Lets start with a very simple C++ program 

 
 

•  The return value of the main() function is passed back to 
the operating system as the ‘process exit code’ 

// my first program in C++  
#include <iostream>  
 
int main () {  
  std::cout << "Hello World!“ << std::endl;  
  return 0;  
}  The return statement passes 

the return value back to the 
calling function 



© 2006 Wouter Verkerke, NIKHEF 

Compiling and running ‘Hello World’ 

•  Example using Linux, (t)csh and g++ compiler 

unix> g++ -o hello hello.cc 
 
unix> hello 
Hello World! 
 
unix> echo $status 
0 

Run executable ‘hello’ 

Convert c++ source code 
into executable 

Print exit code of last 
run process (=hello) 



© 2006 Wouter Verkerke, NIKHEF 

Outline of this section 

•  Jumping in: the ‘hello world’ application 
 

•  Review of the basics 
–  Built-in data types 

 

–  Operators on built-in types 
 

–  Control flow constructs 
 

–  More on block {} structures 
 

–  Dynamic Memory allocation 

int main() { 
   int a  = 3 ; 
   float b = 5 ; 
 
   float c = a * b + 5 ; 
 
   if ( c > 10) { 
      return 1 ; 
   } 
 
   return 0 ; 
} 



© 2006 Wouter Verkerke, NIKHEF 

Review of the basics – built-in data types 

•  C++ has only few built-in data types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  More complex types are available in the ‘Standard Library’ 
–  A standard collection of tools that is available with every compiler 

–  But these types are not fundamental as they're implement using standard C++ 

–  We will get to this soon 

type name type description 
char ASCII character, 1 byte 
int, 
signed int, unsigned int, 
short int, long int 

Integer. Can be signed, unsigned, long or 
short. Size varies and depends on CPU 
architecture (2,4,8 bytes) 

float, double Floating point number, single and double 
precision 

bool Boolean, can be true or false (1 byte) 
enum Integer with limited set of named states 

enum fruit { apple,pear,citrus }, or 
enum fruit { apple=0,pear=1,citrus} 



© 2006 Wouter Verkerke, NIKHEF 

Defining data objects – variables 

•  Defining a data object can be done in several ways 

•  Data objects declared can also be declared constant 

int main() { 
   int j ;     // definition – initial value undefined 
   int k = 0 ; // definition with assignment initialization 
   int l(0) ;  // definition with constructor initialization 
 
   int m = k + l ; // initializer can be any valid C++ expression 
 
   int a,b=0,c(b+5); // multiple declaration – a,b,c all integers    
} 

int main() { 
   const float pi = 3.14159268 ; // constant data object 
   pi = 2 ; // ERROR – doesn’t compile 
} 



© 2006 Wouter Verkerke, NIKHEF 

Defining data objects – variables 

•  Const variables must be initialized 

•  Definition can occur at any place in code 
 
 

–  Style tip: always declare variables as close as possible to point of first use 

int main() { 
   const float pi ;      // ERROR – forgot to initialize 
 
   const float e = 2.72; // OK 
   const float f =  5*e ;// OK – expression is constant 
} 

int main() { 
   float pi = 3.14159268 ;  
   cout << “pi = “ << pi << endl ; 
 
   float result = 0; // ‘floating’ declaration OK 
   result = doCalculation() ; 
} 



© 2006 Wouter Verkerke, NIKHEF 

Literal constants for built-in types 

•  Literal constants for integer types 
 

–  Hex, octal literals good for bit patterns  
(hex digit = 4 bits, octal digit = 3 bits) 

–  Unsigned literals good for numbers that are  
too large for signed integers  
(e.g. between 2^32/2 and 2^32-1) 

•  Literal constants for character types 
 

–  Escape sequences exist for special characters 

int j = 16 ;   // decimal  
int j = 0xF ;  // hexadecimal (leading 0x) 
int j = 020 ;  // octal (leading 0) 
 
unsigned int k = 4294967280U ; // unsigned literal 
 
                              
 

char ch = ‘A’ ; // Use single quotes 

inverted slash (\) \\ 
question (?) \? 
double quotes (") \" 
single quotes (') \' 
alert (beep) \a 
page feed \f 
backspace \b 
vertical tabulation \v 
tabulation \t 
carriage return \r 
newline \n 



Auto declaration type (C++ 2011) 

•  In C++ 2011, you can also omit an explicit type in 
declarations of objects that are immediately initialized 

•  In these cases the type is deduced from the initializer  

© 2006 Wouter Verkerke, NIKHEF 

auto j = 16 ;   // j is integer  
auto j = 2.3 ;  // j is double 
auto j = true ;  // j is bool 
 
 
                              
 



© 2006 Wouter Verkerke, NIKHEF 

Arrays 

•  C++ supports 1-dimensional and N-dimensional arrays 
–  Definition 

–  Array dimensions in definition must be constants 
 
 
 
 
 
 
 

–  First element’s index is always 0 

–  Assignment initialization possible 

Type name[size] ; 
Type name[size1][size2]…[sizeN] ; 

float x[3] ;    // OK 
 
const int n=3 ; 
float x[n] ;    // OK 
 
int k=5 ; 
float x[k] ;    // ERROR! 

float x[3]     = { 0.0, 5.7 , 2.3 } ; 
float y[2][2]  = { 0.0, 1.0, 2.0, 3.0 } ; 
float y[3]     = { 1.0 } ; // Incomplete initialization OK 



© 2006 Wouter Verkerke, NIKHEF 

Declaration versus definition of data 

•  Important fine point: definition of a variable is two actions 
1.  Allocation of memory for object 
2.  Assigning a symbolic name to that memory space 

 

–  C++ symbolic name is a way for programs to give understandable 
names to segments of memory  

–  But it is an artifact: no longer exists once the program is compiled  

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 



© 2006 Wouter Verkerke, NIKHEF 

References 

•  C++ allows to create ‘alias names’, a different symbolic 
name referencing an already allocated data object 
–  Syntax: ‘Type& name = othername’ 

–  References do not necessarily allocate memory 

•  Example 

–  Concept of references will become more interesting when we’ll 
talk about functions 

int x ;      // Allocation of memory for int  
             // and declaration of name ‘x’ 
int& y = x ; // Declaration of alias name ‘y’ 
             // for memory referenced by ‘x’ 
 
x = 3 ; 
cout << x << endl ; // prints ‘3’ 
cout << y << endl ; // also prints ‘3’ 



© 2006 Wouter Verkerke, NIKHEF 

References 

•  Illustration C++ of reference concept 
–  Reference is symbolic name that points to same memory as 

initializer symbol 

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 

float& y = x 



© 2006 Wouter Verkerke, NIKHEF 

Pointers 

•  Pointer is a variable that contains a memory address 
–  Somewhat similar to a reference in functionality, but fundamentally 

different in nature: a pointer is always an object in memory itself 

–  Definition: ‘TYPE* name’ makes pointer to data of type TYPE 

Memory layout C++ symbol name space 

int myArray[5] 

float x 

char name[256] 

float* y = &x 

float& y = x 



© 2006 Wouter Verkerke, NIKHEF 

Pointers 

•  Working with pointers 
–  Operator & takes memory address of symbol object (=pointer value) 

–  Operator * turns memory address (=pointer value) into symbol object 

•  Creating and reading through pointers 

•  Modifying pointers and objects pointed to  

int x = 3, y = 4 ;    
int* px ;            // allocate px of type ‘pointer to integer’ 
px = &x ;            // assign ‘memory address of x’ to pointer px 
 
cout << px << endl ; // Prints 0x3564353, memory address of x 
cout << *px << endl ;// Prints 3, value of x, object pointed to by px 
 
 
 
 
*px = 5 ;            // Change value of object pointed to by px (=x) ; 
cout << x << endl ;  // Prints 5 (since changed through px)  
px = &y ;            // Reseat pointer to point to symbol named ‘y’ 
 
cout << px << endl ; // Prints 0x4863813, memory address of y 
cout << *px << endl ;// Prints 4, value of y, object pointed to by px 

 



© 2006 Wouter Verkerke, NIKHEF 

Pointers continued 

•  Pointers are also fundamentally related to arrays 

•  Pointer (pa+1) points to next element of an array 
–  This works regardless of the type in the array 

–  In fact a itself is a pointer of type int* pointing to a[0] 
 

•  The Basic Rule for arrays and pointers 
–  a[i] is equivalent to *(a+i) 

int a[3]  = { 1,2,3} ; // Allocates array of 3 integers 
int* pa   = &a[0] ;    // Pointer pa now points to a[0] 
 
cout << *pa << endl ;     // Prints ‘1’ 
cout << *(pa+1) << endl ; // Prints ‘2’ 



© 2006 Wouter Verkerke, NIKHEF 

Pointers and arrays of char – strings 

•  Some special facilities exist for arrays of char 
–  char[] holds strings and is therefore most commonly used array 

•  Initialization of character arrays: 
–  String literals in double quotes are of type ‘char *’, i.e. 

          const char* blah = “querty”;  

    is equivalent to 

      const char tmp[7] = {‘q’,’w’,’e’,’r’,’t’,’y’,0} ; 

      const char* blah = tmp ; 

–  Recap: single quoted for a single char, double quotes for a const pointer to 
an array of chars 
 

•  Termination of character arrays  
–  Character arrays are by convention ended with a null char (\0) 

–  Can detect end of string without access to original definition 
•  For example for strings returned by “a literation expression” 



© 2006 Wouter Verkerke, NIKHEF 

Strings and string manipulation 

•  Since char[] strings are such a common object 
–  the ‘Standard Library’ provides some convenient manipulation functions 

•  Most popular char[] manipulation functions 
 
 
 
 
  
 
 
 
 

•  Tip: Standard Library also provides  ‘class string’ with superior 
handling 
–  We’ll cover class string later 

–  But still need ‘const char*’ to interact with operating system function calls 
(open file, close file, etc) 

//  Length of string 
int strlen(const char* str) ; 
 
// Append str2 to str1 (make sure yourself str1 is large enough) 
char* strcat(char* str1, const char* str2) ; 
 
// Compares strings, returns 0 if strings are identical 
int strcmp(const char* str1, const char* str2) ; 



© 2006 Wouter Verkerke, NIKHEF 

Reading vs. Writing – LValues and RValues 

•  C++ has two important concepts to distinguish read-
only objects and writeable objects 
–  An LValue is writable and can appear on the left-hand side of an 

assignment operation 

–  An RValue is read-only and may only appear on the right-hand 
side of assignment operations 
 

•  Example 
 
 int i; 
char buf[10] ; 
 

i = 5 ; // OK, i is an lvalue 
5 = i ; // ERROR, 5 is not an lvalue  
        // (it has no memory location) 
 
buf[0] = ‘c’ ;   // OK buf[0] is an lvalue 
buf = “qwerty” ; // ERROR, buf is immutably tied to char[10] 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – arithmetic operators 

•  Arithmetic operators overview 
 
 
 
 
 
 

•  Arithmetic operators are evaluated from left to right 
–  40 / 4 * 5 = (40 / 4) * 5 = 50  (not 2) 

 

•  In case of mixed-type expressions compiler 
automatically converts integers up to floats 

Name Operator 
Unary minus -x 

Multiplication x * y 

Division x / y 

int i = 3, j = 5 ; 
float x = 1.5 ; 
 
float y = i*x ; // = 4.5 ; int i promoted to float 
float z = j/i ; // = 1.0 ; ‘/’ has precedence over ‘=‘ 

Name Operator 
Modulus x % y 

Addition x + y 

Subtraction x - y 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – increment/decrement operators 

•  In/Decrement operators 
 
 
 
 
 

•  Note difference 
–  Prefix operators return value after operation 

–  Postfix operators return value before operation 

•  Examples 
 

Name Operator 
Prefix increment ++x 

Postfix increment x++ 

Prefix decrement --x 

Postfix decrement x-- 

int x=0 ;  
cout << x++ << endl ; // Prints 0 
cout << x << endl ;   // Prints 1 
  
cout << ++x << endl ; // Prints 2 
cout << x << endl ;   // Prints 2 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – relational operators 

•  Relational operators 

•  All relational operators yield bool results 

•  Operators <,<=,>=,> have precedence over ==, != 

Name Operator 
Less than x < y 

Less than or equal to x <= y 

Greater than or equal to x >= y 

Greater than x > y 

Equal to x == y 

Not equal to x != y 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – Logical operators 

•  Logical operators 
 
 
 
 
 

 

•  All logical operators take bool arguments and return bool 
–  If input is not bool it is converted to bool 

–  Zero of any type maps to false, anything else maps to true 
 

•  Logical operators are evaluated from left to right 
–  Evaluation is guaranteed to stop as soon as outcome is determined 

Name Operator 
Logical NOT !x 

Logical AND x>3 && x<5 

Logical OR x==3 || x==5 

float x, y ; 
… 
if (y!=0. && x/y < 5.2) ; // safe against divide by zero 
 

Do not confuse 
with bit-wise AND (&) 
and bit-wise OR (|) 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – Bitwise operators 

•  Bitwise operators 
 
 
 
 
 
 
 
 
 

•  Remarks 
–  Bitwise operators cannot be applied to floating point types 

–  Mostly used in online, DAQ applications where memory is limited 
and ‘bit packing is common’ 

–  Do not confuse logical or, and (||,&&) with bitwise or, and (|,&) 

Name Operator Example 
Bitwise complement ~x 0011000 ! 1100111 

Left shift x << 2 000001 ! 000100 

Right shift x >> 3 111111 ! 000111 

Bitwise AND x & y 1100 & 0101 = 0100  

Bitwise OR x | y 1100 | 0101 = 1101 

Bitwise XOR x ^ y 1100 ^ 0101 = 1001 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – Assignment operators 

•  Assignment operators 

Name Operator 
Assignment x = 5 

Addition update x += 5 

Subtraction update x -= 5 

Multiplication update x *= 5  

Division update x /= 5  

Modulus update x %= 5  

Left shift update x <<= 5 

Right shift update x >>= 5 

Bitwise AND update x &= 5 

Bitwise OR update x |= 5 

Bitwise XOR update x ^= 5 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – Assignment operators 

•  Important details on assignment operators 
–  Left-hand arguments must be lvalues (naturally) 

–  Assignment is evaluated right to left 

–  Assignment operator returns left-hand value of expression 
 

•  Return value property of assignment has important 
consequences 
–  Chain assignment is possible! 

 
 
 
 
 

–  Inline assignment is possible 

x = y = z = 5 ;  // OK! x = ( y = ( z = 5 )) 
                 //     x = ( y = 5) 
                 //     x = 5 

int x[5], i ; 
x[i=2] = 3 ; // i is set to 2, x[2] is set to 3 

 



© 2006 Wouter Verkerke, NIKHEF 

Operators and expressions – Miscellaneous 

•  Inline conditional expression: the ternary ?: operator 
–  Executes inline if-then-else conditional expression 

•  The comma operator (expr1, expr2, expr3) 
–  Evaluates expressions sequentially, returns rightmost expression 

 
 
 
 

•  The sizeof operator 
–  Returns size in bytes of operand, argument can be type or symbol 

int x = 4 ; 
cout << ( x==4 ? ”A” : ”B” ) << endl ; // prints “A” ; 

int i=0, j=1, k=2 ; 
cout<< (i=5, j=5, k) <<endl ; // Prints ‘2’, but i,j set to 5 

 

int size1 = sizeof(int) ; // = 4 (on most 32-bit archs) 

double x[10] ;  
int size2 = sizeof(x) ;   // = 10*sizeof(double) 



© 2006 Wouter Verkerke, NIKHEF 

Conversion operators 

•  Automatic conversion 
–  All type conversions that can be done ‘legally’ and without loss of 

information are done automatically 
–  Example: float to double conversion 

 
 
 
 

•  Non-trivial conversions are also possible, but not 
automatic 
–  Example: float to int,  signed int  to  unsigned int 
–  If conversion is non-trivial, conversion is not automatic ! you 

must request it with a conversion operator 
 

•  C++ has a variety of ways to accomplish conversions 
–  C++ term for type conversion is ‘cast’ 
–  Will focus on ‘modern’ methods and ignore ‘heritage’ methods 

float f = 5 ; 
double d = f ; // Automatic conversion occurs here 
 



© 2006 Wouter Verkerke, NIKHEF 

Conversion operators – Explicit casts 

•  For conversions that are ‘legal’ but may result in 
truncation, loss of precision etc…: static_cast 
 

•  For conversions from ‘const X’ to ‘X’, i.e. to override a 
logical const declaration: const_cast 
 
 
 

float f = 3.1 ; 
int i = static_cast<int>(f) ; // OK, i=3 (loss of precision) 
int* i = static_cast<int*>(f) ; // ERROR float != pointer 
 

float f = 3.1 ; 
const float& g = f ; 
g = 5.3 ;                    // ERROR not allowed, g is const 
float& h = const_cast<float&>(g) ; // OK g and h of same type 
h = 5.3 ;                    // OK, h is not const 

 



© 2006 Wouter Verkerke, NIKHEF 

Conversion operators – Explicit casts 

•  Your last resort: reinterpret_cast 

•  You may need more than one cast to do your 
conversion 
 

–  It may look verbose but it helps you to understand your code 
as all aspects of the conversion are explicitly spelled out 

float* f ; 
int* i = reintepret_cast<int*>(f) ; // OK, but you take  
                 // responsibility for the ensuing mess… 

 
 

const float f = 3.1 ; 
int i = static_cast<int>(f) ; // ERROR static_cast cannot  
                              // convert const into non-const 
 
const float f = 3.1 ; 
int i = static_cast<int>( const_cast<float>(f) ) ; // OK 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – if/else 

•  The if construct has three formats 
–  Parentheses around expression required 

–  Brackets optional if there is only one statement (but put them anyway) 

if (expr) { 
   statements ; // evaluated if expr is true 
} 

if (expr) { 
  statements ; // evaluated if expr is true 
} else { 
  statements ; // evaluated if expr is false 
} 

if (expr1) { 
  statements ;     // evaluated if expr1 is true 
} else if (expr2) { 
  statements ;     // evaluated if expr2 is true 
} else { 
  statements ;     // evaluated if neither expr is true 
} 



© 2006 Wouter Verkerke, NIKHEF 

Intermezzo – coding style 

•  C++ is free-form so there are no rules 

•  But style matters for readability, some suggestions 
–  One statement per line 

–  Always put {} brackets even if statement is single line 

–  Common indentation styles for {} blocks 

 
if (foo==bar) { 
    statements ; 
} else { 
    statements ; 
} 

if (foo==bar) 
{ 
    statements ;   
} 
else 
{ 
    statements ; 
} 

Try to teach yourself this style, 
it is more compact and more 
readable (especially when you’re 
more experienced) 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – while 

•  The while construct 
 
 
 
 
–  Statements will be executed if expression is true 

–  At end, expression is re-evaluated. If again true, statements are 
again executed 
 

•  The do/while construct 
 
 
 

–  Similar to while construct except that statements are always 
executed once before expression is evaluated for the first time 

while (expression) { 
  statements ; 
} 

do { 
  statements ; 
} while (expression) ; 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – for 

•  The for construct 

–  is equivalent to 
 
 
 
 
 

•  Most common looping construct 

for (expression1 ; expression2 ; expression3) { 
  statements ;  
} 

expression1 ; 
while (expression2) { 
  statements ; 
  expression3 ; 
} 

int i ; 
for (i=0 ; i<5 ; i++) { 
  // Executes with i=0,1,2,3 and 4 
} 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – for 

•  Expressions may be empty 

•  Comma operator can be useful to combine multiple 
operations in expressions 

for (;;) { 
  cout << “Forever more” << endl ; 
} 

int i,j; 
for (i=0,j=0 ; i<3 ; i++,j+=2) { 
  // execute with i=0,j=0, i=1,j=2, i=2,j=4 
} 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – break and continue 

•  Sometimes you need to stop iterating a do, do/while or 
for loop prematurely 
–  Use break and continue statements to modify control flow 

•  The break statement 
–  Terminate loop construct immediately 

 

–  Example prints ‘2’, ’1’ and ’0’. Print statement for i=-1 never 
executed 

int i = 3 ; 

while(true) { // no scheduled exit from loop 

  i -= 1 ; 

  if (i<0) break ; // exit loop 

  cout << i << endl ; 

} 
 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – break and continue 

•  The continue statement 
–  Continue stops execution of loops statements and returns to 

evaluation of conditional expression 

–  Output of example ‘abcdefghi’ 
–  Do not confuse with FORTRAN ‘continue’ statement -- Very 

different meaning! 
 

•  Both break and continue only affect the innermost loop 
–  When you are using nested loops 

char buf[12] = “abc,def,ghi” ; 
for (int i=0 ; i<12 ; i++) { 
  if (buf[i]==‘,’) continue ; // return to for()  
                              // if ‘,’ is encountered 
  cout << buf[i] ; 
} 
cout << endl ; 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – switch 

•  The switch construct 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
–  Most useful for decision tree algorithms 

•  If break is omitted execution continues with next case 
evaluation 
–  Usually you don’t want this, so watch the breaks 

switch (expr) { 
  case constant1: 
    statements ; // Evaluated if expr==const1 
    break ; 
 
  case constant2: 
  case constant3: 
    statements ; // Evaluated if expr==const2 or const3 
    break ; 
 
  default: 
    statements ; // Evaluated expression matched none 
    break ; 
} 



© 2006 Wouter Verkerke, NIKHEF 

Control flow constructs – switch (example) 

•   switch works very 
elegantly with enum types 
–  enum naturally has finite set 

of states 

•  case expressions must be 
constant but can be any 
valid expression 
–  Example: 

enum color { red=1, green=2, blue=4 }; 
color paint = getcolor() ; 
switch (paint) { 
  case red: 
  case green: 
  case blue: 
    cout << “primary color” << endl ; 
    break ; 
 
  case red+green: 
    cout << “yellow” << endl ;  
    break ; 
 
  case red+blue: 
    cout << “magenta” << endl ;  
    break ; 
 
  case blue+green: 
    cout << “cyan” << endl ;  
    break ; 
 
  default: 
    cout << “white” << endl ; 
    break ; 
} 



© 2006 Wouter Verkerke, NIKHEF 

Some details on the block {} statements 

•  Be sure to understand all consequences of a block {} 
–  The lifetime of automatic variables inside the block is limited to 

the end of the block (i.e up to the point where the } is 
encountered)  
 
 
 
 
 
 
 
 

–  A block introduces a new scope : it is a separate namespace in 
which you can define new symbols, even if those names already 
existed in the enclosing block 

int main() { 
  int i = 1 ; 
 
  if (x>0) { 
    int i = 0 ; 
    // code 
  } else { 
    // code 
  } 
} 

Memory for  
‘int i’ allocated 

Memory for  
‘int i’ released 



© 2006 Wouter Verkerke, NIKHEF 

Scope – more symbol visibility in {} blocks 

•  Basic C++ scope rules for variable definitions 
–  In given location all variables defined in local scope are visible 

–  All variables defined in enclosing scopes are visible 

–  Global variables are always visible 

–  Example 

 
int a ; 
int main() { 
   int b=0 ; 
 
   if (b==0) { 
      int c = 1; 
   } 
 
} 

a, b visible a, b, c visible 



© 2006 Wouter Verkerke, NIKHEF 

Scoping rules – hiding 

•  What happens if two variables declared in different 
scopes have the same name? 
–  Definition in inner scope hides definition in outer scope 

–  It is legal to have two variables with the same name defined in 
different scopes 
 

–  NB: It is not legal to have two definitions  
of the same name in the same scope, e.g. 

int a ; 
int main() { 
   int b=0 ; 
 
   if (b==0) { 
      int b = 1; 
   } 
 
} 

‘b’ declared in main() visible 

‘b’ declared in if() visible 
‘b’ declared in main() hidden! 

LEGAL! 

int main() { 
  int b ; 
  … 
  int b ; 
} 

ERROR! 



© 2006 Wouter Verkerke, NIKHEF 

Scoping rules – The :: operator 

•  Global variables, even if hidden, can always be accessed 
using the scope resolution operator :: 

•  No tools to resolve symbols from intermediate unnamed 
scope 
–  Solution will be to use ‘named’ scopes: namespaces or classes 

–  More on classes later  

int a=1 ; 
 
int main() { 
   int a=0 ; 
 
   ::a = 2 ; 
} 

LEGAL, but hides global ‘a’ 

Changes global ‘a’ 



© 2006 Wouter Verkerke, NIKHEF 

More on memory use 

•  By default all objects defined outside {} blocks (global 
objects) are allocated statically 
–  Memory allocated before execution of main() begins 

–  Memory released after main() terminates 

•  By default all defined objects defined inside {} blocks 
are ‘automatic’ variables 
–  Memory allocated when definition occurs 

–  Memory released when closing bracket of scope is encountered 

–  You can override behavior of variables declared in {} blocks 
to be statically allocated using the static keyword 

if (x>0) { 
  int i = 0 ; 
  // code 
} 

Memory for  
‘int i’ allocated 

Memory for  
‘int i’ released 



© 2006 Wouter Verkerke, NIKHEF 

More on memory allocation 

•  Example of static declaration 

–  Output of example 

void func(int i_new) { 
   static int i = 0 ; 
   cout << “old value = “ << i << endl ; 
   i = i_new ; 
   cout << “new value = “ << i << endl ; 
} 
 
int main() { 
  func(1) ; 
  func(2) ; 
} 
 
 

old value = 0 ;  
new value = 1 ; 
old value = 1 ; 
new value = 2 ; 

Value of static int i preserved between func() calls 



© 2006 Wouter Verkerke, NIKHEF 

Dynamic memory allocation 

•  Allocating memory at run-time 
–  When you design programs you cannot always determine how 

much memory you need 

–  You can allocate objects of unknown size at compile time using 
the ‘free store’ of the C++ run time environment 

•  Basic syntax of runtime memory allocation 
–  Operator new allocates single object, returns pointer 

–  Operator new[] allocates array of objects, returns pointer 

// Single object 
Type* ptr = new Type ; 
Type* ptr = new Type(initValue) ; 
 
// Arrays of objects 
Type* ptr = new Type[size] ; 
Type* ptr = new Type[size1][size2]…[sizeN] ; 
 



Releasing dynamic memory allocation 

•  Operator delete releases dynamic memory previously 
allocated with new 
 

–  Be sure to use delete[] for allocated arrays. A mismatch will 
result in an incomplete memory release 

–  The delete operator only deletes memory that the pointer 
points to, not pointer itself 

–  Every call to new must be matched with a call to a delete 
 

•  How much memory is available in the free store? 
–  As much as the operating system lets you have 
–  If you ask for more than is available your program will terminate 

in the new operator 
–  It is possible to intercept this condition and continue the program 

using ‘exception handling’ (we’ll discuss this later) 

// Single object 
delete ptr ; 
 
// Arrays of objects 
delete[] ptr ; 
 



© 2006 Wouter Verkerke, NIKHEF 

Dynamic memory and leaks 

•  A common problem in programs are memory leaks 
–  Memory is allocated but never released even when it is not used 

anymore 

–  Example of leaking code 

void leakFunc() { 
  int* array = new int[1000] ; 
  // do stuff with array 
} 
 
int main() { 
  int i ; 
  for (i=0 ; i<1000 ; i++) { 
    leakFunc() ; // we leak 4K at every call 
  } 
} 

Leak happens right here  
we loose the pointer array  
here and with that our only  
possibility to release its memory  
in future 



© 2006 Wouter Verkerke, NIKHEF 

Dynamic memory and leaks 

•  Another scenario to leak memory 
–  Misunderstanding between two functions 

int* allocFunc() { 
  int* array = new int[1000] ; 
  // do stuff with array 
  return array ; 
} 
 
int main() { 
   int i ; 
   for (i=0 ; i<1000 ; i++) { 
     allocFunc() ;  
   } 
} 

allocFunc() allocates memory 
but pointer as return value 
memory is not leaked yet 

Author of main() doesn’t know 
that it is supposed to delete 
array returned by allocFunc() 

Leak occurs here, pointer to dynamically 
allocated memory is lost before memory 
is released 



© 2006 Wouter Verkerke, NIKHEF 

Dynamic memory and ownership 

•  Avoiding leaks is a matter of good bookkeeping 
–  All memory allocated should be released after use 

•  Memory handling logistics usually described in terms of 
ownership 
–  The ‘owner’ of dynamically allocated memory is responsible for 

releasing the memory again 

–  Ownership is a ‘moral concept’, not a C++ syntax rule. Code 
that never releases memory it allocated is legal, but may not work 
well as program size will increase in an uncontrolled way over 
time 

–  Document your memory management code in terms of ownership 



© 2006 Wouter Verkerke, NIKHEF 

Dynamic memory allocation 

•  Example of dynamic memory allocation with ownership 
semantics 
–  Less confusion about division of responsabilities 

 int* makearray(int size) { 
   // NOTE: caller takes ownership of memory 
   int* array = new int[size] ; 
 
   int i ; 
   for (i=0 ; i<size ; i++) { 
     array[i] = 0 ; 
   } 
   return array; 
} 
 
int main() { 
  // Note: We own array 
  int* array = makearray(1000) ; 
 
  delete[] array ; 
} 


