
© 2006 Wouter Verkerke, NIKHEF

Object-based programming – Classes

Class
Basics 3

© 2006 Wouter Verkerke, NIKHEF

Overview of this section

•  Contents of this chapter

–  structs and classes - Grouping data and functions together

–  public vs private – Improving encapsulation through hiding of
internal details

–  constructors and destructors – Improving encapsulation
through self-initialization and self-cleanup

–  more on const – Improving modularity and encapsulation
through const declarations

© 2006 Wouter Verkerke, NIKHEF

Encapsulation

•  OO languages like C++ enable you to create your own
data types. This is important because
–  New data types make program easier to visualize and implement

new designs

–  User-defined data types are reusable

–  You may modify and enhance new data types as programs evolve
and specifications change

–  New data types let you create objects with simple declarations

•  Example

Window w ; // Window object
Database ood ; // Database object
Device d ; // Device object

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

•  Illustration of utility of C++ classes – Designing and
building a FIFO queue
–  FIFO = ‘First In First Out’

•  Graphical illustration of a FIFO queue

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

•  First step in design is to write down the interface
–  How will ‘external’ code interact with our FIFO code?

•  List the essential interface tasks
1.   Create and initialize a FIFO

2.   Write a character in a FIFO

3.   Read a character from a FIFO

–  Support tasks
1.  How many characters are currently in the FIFO

2.  Is a FIFO empty

3.  Is a FIFO full

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ class FIFO – interface

 // Interface
 void init() ;
 void write(char c) ;
 char read() ;

 int nitems() ;
 bool full() ;
 bool empty() ;

•  List of interface tasks
1.   Create and initialize a FIFO

2.   Write a character in a FIFO

3.   Read a character from a FIFO

•  List desired support tasks
1.  How many characters are

currently in the FIFO

2.  Is a FIFO empty

3.  Is a FIFO full

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Implement FIFO with array of elements
–  Use index integers to keep track of front and rear, size of queue

 // Implementation
 char s[LEN] ;
 int rear ;
 int front ;
 int count ;

‘A’

‘Z’

‘Q’

‘W’

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Implement FIFO with array of elements
–  Use index integers to keep track of front and rear, size of queue

–  Indices revolve: if they reach end of array, they go back to 0

‘A’

‘Z’

‘Q’

‘W’

 // Implementation
void init() { front = rear = count = 0 ; }

void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }

char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }

int nitems() { return count ; }
bool full() { return (count==LEN) ; }
bool empty() { return (count==0) ; }

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Animation of FIFO write operation

‘A’

‘Z’

‘Q’

‘W’

void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }

front=1

rear=4

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=4

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

•  Animation of FIFO read operation

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’

front=2

rear=5

count=4

char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }

‘X’

© 2006 Wouter Verkerke, NIKHEF

Putting the FIFO together – the struct concept

•  The finishing touch: putting it all together in a struct
const int LEN = 80 ; // default fifo length

struct Fifo {
 // Implementation
 char s[LEN] ;
 int front ;
 int rear ;
 int count ;

 // Interface
 void init() { front = rear = count = 0 ; }
 int nitems() { return count ; }
 bool full() { return (count==LEN) ; }
 bool empty() { return (count==0) ; }
 void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }
 char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

•  Grouping of data members facilitates storage allocation
–  Single statement allocates all data members

•  A struct organizes access to data members and
functions through a common symbolic name

 // Allocate struct data type ‘Fifo’
 Fifo f ;

 // Access function through name ‘f’
 f.init() ;

 // Access data member through name ‘f’
 cout << f.count << endl ;

Type names vs. instance names

•  Note important distinction between
type name and instance name

•  Compare to basic types

© 2006 Wouter Verkerke, NIKHEF

 // Allocate struct data type ‘Fifo’
 Fifo f ;

 // Allocate struct data type ‘Fifo’
 Fifo f2 ;

Type name (Fifo)

Instance name (f,f2)

 int i ;
 int i2 ;

Type names vs. instance names

•  Instance name (f1,f2) maps to address in memory

•  Type name (Fifo) controls size of memory allocation,
interpretation of memory in allocated block

© 2006 Wouter Verkerke, NIKHEF

Memory layout C++ symbol name space

Fifo f1

Fifo f2

char name[256]

char s[80]

int front
int rear
int count

Member access operator

•  The dot (.) and arrow (->) operators implements
access to members of composite object like struct’s
–  Syntax: TypeName.MemberName

© 2006 Wouter Verkerke, NIKHEF

 // Allocate struct
 // data type ‘Fifo’
 Fifo f ;

 // Access data member
 // through name ‘f’
 cout << f.count << endl ;

 // Access data member
 // through pointer to f
 Fifo* pf = &f ;
 cout << (*pf).count << endl ;
 cout << pf->count << endl ;

Memory layout C++ symbol
name space

Fifo f1

f1.count

char s[80]

int front
int rear
int count

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

•  Concept of ‘member functions’ automatically ties
manipulator functions to their data
–  No need to pass data member operated on to interface function

// Solution without
// member functions

struct fifo {
 int front, rear, count ;
} ;

char read_fifo(fifo& f) {
 f.count-- ;
 …
}

fifo f1,f2 ;
read_fifo(f1) ;
read_fifo(f2) ;

// Solution with
// member functions

struct fifo {
 int front, rear, count ;
 char read() {
 count-- ;
 …
 }
} ;

fifo f1,f2 ;
f1.read() ; // does f1.count--
f2.read() ; // does f2.count--

© 2006 Wouter Verkerke, NIKHEF

Using the FIFO example code

•  Example code using the FIFO struct

const char* data = “data bytes” ;
int i, nc = strlen(data) ;

Fifo f ;
f.init() ; // initialize FIFO

// Write chars into fifo
const char* p = data ;
for (i=0 ; i<nc && !f.full() ; i++) {
 f.write(*p++) ;
}

// Count chars in fifo
cout << f.nitems() << “ characters in fifo” << endl ;

// Read chars back from fifo
for (i=0 ; i<nc && !f.empty() ; i++) {
 cout << f.read() << endl ;
}

10 chars
in fifo
d
a
t
a

b
y
t
e
s

Program Output

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the FIFO code

•  Grouping data, function members into a struct promotes
encapsulation
–  All data members needed for fifo operation allocated in a single

statement
–  All data objects, functions needed for fifo operation have

implementation contained within the namespace of the FIFO
object

–  Interface functions associated with struct allow implementation
of a controlled interface functionality of FIFO

•  For example can check in read(), write() if FIFO is full or empty and
take appropriate action depending on status

•  Problems with current implementation
–  User needs to explicitly initialize fifo prior to use
–  User needs to check explicitly if fifo is not full/empty when

writing/reading
–  Data objects used in implementation are visible to user and

subject to external modification/corruption

© 2006 Wouter Verkerke, NIKHEF

Controlled interface

•  Improving encapsulation
–  We improve encapsulation of the FIFO implementation by

restricting access to the member functions and data members that
are needed for the implementation

•  Objective – a controlled interface
–  With a controlled interface, i.e. designated member functions that

perform operations on the FIFO, we can catch error conditions on
the fly and validate offered input before processing it

–  With a controlled interface there is no ‘back door’ to the data
members that implement the fifo thus guaranteeing that no
corruption through external sources can take place

•  NB: This also improves performance since you can afford to be less paranoid.

© 2006 Wouter Verkerke, NIKHEF

Private and public

•  C++ access control keyword: ‘public’ and ‘private’

•  Public data
–  Access is unrestricted. Situation identical to no access control declaration

•  Private data
–  Data objects and member functions in the private section can only be

accessed by member functions of the struct (which themselves can be
either private or public)

struct Name {
private:

… members … // Implementation

public:

… members … // Interface

} ;

© 2006 Wouter Verkerke, NIKHEF

Redesign of Fifo class with access restrictions

const int LEN = 80 ; // default fifo length

struct Fifo {
 private: // Implementation
 char s[LEN] ;
 int front ;
 int rear ;
 int count ;

 public: // Interface
 void init() { front = rear = count = 0 ; }
 int nitems() { return count ; }
 bool full() { return (count==LEN) ; }
 bool empty() { return (count==0) ; }
 void write(char c) { count++ ;
 if(rear==LEN) rear=0 ;
 s[rear++] = c ; }
 char read() { count-- ;
 if (front==LEN) front=0 ;
 return s[front++] ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Using the redesigned FIFO struct

•  Effects of access control in improved fifo struct

Fifo f ;
f.init() ; // initialize FIFO

f.front = 5 ; // COMPILER ERROR – not allowed
cout << f.count << endl ; // COMPILER ERROR – not allowed

cout << f.nitems() << endl ; // OK – through
 // designated interface

front is an implementation detail that’s not part of the
abstract FIFO concept. Hiding this detail promotes encapsulation
as we are now able to change the implementation later
with the certainty that we will not break existing code

‘A’ ‘Q’ ‘W’ ‘Z’
write read

‘S’ ‘L’

© 2006 Wouter Verkerke, NIKHEF

Class – a better struct

•  In addition to ‘struct’ C++ also defines ‘class’ as a
method to group data and functions
–  In structs members are by default public,

In classes member functions are by default private

–  Classes have several additional features that we’ll cover shortly

struct Name {
private:

… members …

public:

… members …

} ;

class Name {

… members …

public:

… members …

} ;

Equivalent

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

•  Classes (and structs) also define their own namespace
–  Allows to separate interface and implementation even further by

separating declaration and definition of member functions

class Fifo {
public: // Interface
char read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
 }
} ;

class Fifo {
public: // Interface
char read() ;
} ;

#include “fifo.hh”
char Fifo::read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
}

Declaration and definition Declaration only

Definition

Use of scope operator ::
to specify read() function
of Fifo class when outside
class declaration

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

•  Scope resolution operator can also be used in class
member function to resolve ambiguities

class Fifo {
public: // Interface
char read() {
 …
 std::read() ;
 …
 }
} ; Use scope operator to specify that you want

to call the read() function in the std namespace
rather than yourself

© 2006 Wouter Verkerke, NIKHEF

Classes and files

•  Class declarations and definitions have a natural
separation into separate files
–  A header file with the class declaration

To be included by everybody that uses the class

–  A definition file with definition
that is only offered once
to the compiler

–  Advantage: You do not need to
recompile code using
class fifo if only implementation
(file fifo.cc) changes

#ifndef FIFO_HH
#define FIFO_HH
class Fifo {
public: // Interface
char read() ;
} ;
#endif

#include “fifo.hh”
char Fifo::read() {
 count-- ;
 if (front==len) front=0 ;
 return s[front++] ;
}

fifo.hh

fifo.cc

© 2006 Wouter Verkerke, NIKHEF

Constructors

•  Abstraction of FIFO data type can be further enhanced
by letting it take care of its own initialization
–  User should not need to know if and how initialization should

occur

–  Self-initialization makes objects easier to use and gives less
chances for user mistakes

•  C++ approach to self-initialization – the Constructor
member function
–  Syntax: member function with function name identical to class

name

class ClassName {
…
ClassName() ;
…
} ;

© 2006 Wouter Verkerke, NIKHEF

Adding a Constructor to the FIFO example

•  Improved FIFO example

•  Simplified use of FIFO

class Fifo {
public:
 void init() ;
 …

class Fifo {
public:
 Fifo() { init() ; }

private:
 void init() ;
 …

Fifo f ; // creates raw FIFO
f.init() ; // initialize FIFO

Fifo f ; // creates initialized FIFO

© 2006 Wouter Verkerke, NIKHEF

Default constructors vs general constructors

•  The FIFO code is an example of a default constructor
–  A default constructor by definition takes no arguments

•  Sometimes an object requires user input to properly
initialize itself
–  Example: A class that represents an open file – Needs file name

–  Use ‘regular constructor’ syntax

–  Supply constructor arguments at construction

class ClassName {
…
ClassName(argument1,argument2,…argumentN) ;
…
} ;

ClassName obj(arg1,…,argN) ;
ClassName* ptr = new ClassName(Arg1,…,ArgN) ;

© 2006 Wouter Verkerke, NIKHEF

Constructor example – a File class

class File {

private:
 int fh ;

public:
 File(const char* name) {
 fh = open(name) ;
 }

 void read(char* p, int n) { ::read(fh,p,n) ; }
 void write(char* p, int n) { ::write(fh,p,n) ; }
 void close() { ::close(fh) ; }
} ;

File* f1 = new File(“dbase”) ;
File f2(“records”) ; Supply constructor arguments here

© 2006 Wouter Verkerke, NIKHEF

Multiple constructors

•  You can define multiple constructors with different
signatures
–  C++ function overloading concept applies to class member

functions as well, including the constructor function

class File {

private:
 int fh ;

public:
 File() {
 fh = open(“Default.txt”) ;
 }
 File(const char* name) {
 fh = open(name) ;
 }

 read(char* p, int n) { ::read(p,n) ; }
 write(char* p, int n) { ::write(p,n) ; }
 close() { ::close(fh) ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Default constructor and default arguments

•  Default values for function arguments can be applied to
all class member functions, including the constructor
–  If any constructor can be invoked with no arguments (i.e. it has

default values for all arguments) it is also the default constructor

class File {

private:
 int fh ;

public:
 File(const char* name=“Default.txt”) {
 fh = open(name) ;
 }

 read(char* p, int n) { ::read(p,n) ; }
 write(char* p, int n) { ::write(p,n) ; }
 close() { ::close(fh) ; }
} ;

© 2006 Wouter Verkerke, NIKHEF

Default constructors and arrays

•  Array allocation of objects does not allow for
specification of constructor arguments

•  You can only define arrays of classes that have a
default constructor
–  Be sure to define one if it is logically allowed
–  Workaround for arrays of objects that need constructor

arguments: allocate array of pointers ;

–  Don’t forget to delete elements in addition to array afterwards!

Fifo* fifoArray = new Fifo[100] ;

Fifo** fifoPtrArray = new (Fifo*)[100] ;
int i ;
for (i=0 ; i<100 ; i++) {
 fifoPtrArray[i] = new Fifo(arguments…) ;
}

© 2006 Wouter Verkerke, NIKHEF

Classes contained in classes – member initialization

•  If classes have other classes w/o default constructor as
data member you need to initialize ‘inner class’ in
constructor of ‘outer class’

class File {
 public:
 File(const char* name) ;
 …
} ;

class Database {
 public:
 Database(const char* fileName) ;

 private:
 File f ;
} ;

Database::Database(const char* fileName) : f(fileName) {
 // Database constructor
}

© 2006 Wouter Verkerke, NIKHEF

Class member initialization

•  General constructor syntax with member initialization

–  Note that insofar order matters, data members are initialized in
the order they are declared in the class, not in the order they
are listed in the initialization list in the constructor

–  Also for basic types (and any class with default ctor) the member
initialization form can be used

–  Performance tip: for classes constructor initialization tends to be
faster than assignment initialization (more on this later)

ClassName::ClassName(args) :
 member1(args),
 member2(args), …
 memberN(args) {
 // constructor body
}

File(const char* name) {
 fh = open(name) ;
}

File(const char* name) :
fh(open(name)) {
}

Initialization through assignment Initialization through constructor

Class member initialization in C++2011

•  In C++2011 a new intuitive form of data member
initialization is supported: assignment in the class
declaration

–  Conceptually C++ compiler will translates assignments to
corresponding member initializations ‘front(0) etc’

•  If both assignment and ctor member initializer are
specified, latter takes precedence
–  I.e. Assignment can be used as the ‘default’ initializer than can be

overridden my member init in ctor

© 2006 Wouter Verkerke, NIKHEF

class Fifo {
 private: // Implementation
 char s[LEN] ;
 int front = 0;
 int rear = 0 ;
 int count = 0;

 public: // Interface
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Common initialization in multiple constructors

•  Overlapping functionality is a common design issue with
multiple constructors
–  How to avoid unnecessary code duplication (i.e member initialization)

•  Common mistake – attempts to make one constructor
function call another one
class Array {
public:
 Array(int size) {
 _size = size ;
 _x = new double[size] ;
 }

 Array(const double* input, int size) : Array(size) {
 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

private:
 int _size ;
 double* _x ;
};

Not Allowed in C++2003!!!
(Compiler Error)

© 2006 Wouter Verkerke, NIKHEF

Common initialization in multiple constructors

•  Another clever but wrong solution (for C++2003)
–  Idea: Call Array(size) as if it were a regular member function, which

will then perform the necessary initialization steps

–  Problem: It is legal C++ (it compiles fine) but it doesn’t do what you
think it does!

–  Calling a constructor like this creates a temporary object that is
initialized with size and immediately destroyed again. It does not
initialize the instance of array you are constructing with the
Array(double*,int) constructor

 Array(const double* input, int size) {

 Array(size) ; // This doesn’t work either!

 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

© 2006 Wouter Verkerke, NIKHEF

Common initialization in multiple constructors

•  The correct solution in C++2003 is to make a private
initializer that is called from all relevant constructors

class Array {
public:
 Array(int size) {
 initialize(size) ;
 }

 Array(const double* input, int size) {
 initialize(size) ;
 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

© 2006 Wouter Verkerke, NIKHEF

Constructor delegation in C++2011

•  New feature of C++2011 is that constructor delegation is
explicitly supported – preferred solution

class Array {
public:
 Array(int size) {
 _size = size ;
 _x = new double[size] ;
 }

 Array(const double* input, int size) : Array(size) {
 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

private:
 int _size ;
 double* _x ;
};

Allowed in C++2011!!!
(New feature)

© 2006 Wouter Verkerke, NIKHEF

Destructors

•  Classes that define constructors often allocate dynamic
memory or acquire resources
–  Example: File class acquires open file handles, any other class

that allocates dynamic memory as working space

•  C++ defines Destructor function for each class to be
called at end of lifetime of object
–  Can be used to release memory, resources before death

•  Class destructor syntax:

class ClassName {
…
~ClassName() ;
…
} ;

© 2006 Wouter Verkerke, NIKHEF

Example of destructor in File class

class File {

private:
 int fh ;
 void close() { ::close(fh) ; }

public:
 File(const char* name) { fh = open(name) ; }
 ~File() { close() ; }
 …
} ;

File is automatically closed
when object is deleted

void readFromFile() {
 File *f = new File(“theFile.txt”) ;
 // read something from file
 delete f ;
}

Opens file automatically

Closes file automatically

© 2006 Wouter Verkerke, NIKHEF

Automatic resource control

•  Destructor calls can take care of automatic resource
control
–  Example with dynamically allocated File object

–  Example with automatic File object

–  Great example of abstraction of
file concept and of encapsulation
of resource control

void readFromFile() {
 File *f = new File(“theFile.txt”) ;
 // read something from file
 delete f ;
}

Opens file automatically

Closes file automatically

void readFromFile() {
 File f(“theFile.txt”) ;
 // read something from file
}

Opens file automatically

Deletion of automatic
variable f calls destructor
& closes file automatically

© 2006 Wouter Verkerke, NIKHEF

Classes vs Instances – an important concept

•  There is an important distinction between classes and
instances of classes (objects)
–  A class is a unit of code

–  An instance is an object in memory that is managed by the class
code

•  A class can have more than one instance

Array a ; // creates an array object

Class Instance

Array a1 ; // first instance
Array a2 ; // second instance

© 2006 Wouter Verkerke, NIKHEF

Classes vs Instances – an important concept

•  The concept that a single unit of code can work with multiple
objects in memory has profound consequences
–  Start with program that makes two arrays like this

–  Now what happens inside the array’s initialize() code

–  Q: To which memory object does data member _size belong, a1 or a2?

–  A: It depends on who calls initialize()!

If you call a1.initialize() data member _size automatically refers to
a1._size, if you call a2.initialize() it refers to a2._size etc…

–  Concept is called ‘automatic binding’

Array a1 ; // first instance
Array a2 ; // second instance

 void Array::initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }

© 2006 Wouter Verkerke, NIKHEF

Intermezzo – Referring to yourself – this

•  Q: Can you figure which instance you are representing in a
member function? A: Yes, using the special object this
–  The ‘this’ keyword return a pointer to yourself inside a member

function

•  How does it work?
–  In case you called a1.initialize() from the main program,

this=&a1

–  In case you called a2.initialize() then this=&a2 etc…

void Array::initialize() {
 cout << “I am an array object, my pointer is “ << this << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

Intermezzo – Referring to yourself – this

•  You don’t need this very often.
–  If you think you do, think hard if you can avoid it, you usually can

•  Most common cases where you really need this are
–  Identifying yourself to an outside function (see below)
–  In assignment operations, to check that you’re not copying onto yourself

(e.g. a1=a1). We’ll come back to this later

•  How to identify yourself to the outside world?
–  Example: Member function of classA needs to call external function

externalFunc() that takes reference to classA

void externalFunction(ClassA& obj) {
 …
}

void classA::memberFunc() {
 if (certain_condition) {
 externFunction(*this) ;
 }
}

© 2006 Wouter Verkerke, NIKHEF

Copy constructor – a special constructor

•  The copy constructor is the constructor with the
signature

•  It is used to make a clone of your object

•  It exists for all objects because the C++ compiler
provides a default implementation if you don’t supply
one
–  The default copy constructor calls the copy constructor for all data

members. Basic type data members are simply copied
–  The default implementation is not always right for your class, we’ll

return to this shortly

ClassA::ClassA(const ClassA&) ;

ClassA a ;
ClassA aclone(a) ; // aclone is an identical copy of a

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Use ‘ownership’ semantics in classes as well
–  Keep track of who is responsible for resources allocated by your

object

–  The constructor and destructor of a class allow you to
automatically manage your initialization/cleanup

–  All private resources are always owned by the class so make sure
that the destructor always releases those

•  Be careful what happens to ‘owned’ objects when you
make a copy of an object
–  Remember: default copy constructor calls copy ctor on all class

data member and copies values of all basic types

–  Pointers are basic types

–  If an ‘owned’ pointer is copied by the copy constructor it is no
longer clear which instance owns the object ! danger ahead!

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

class Array {
public:
 Array(int size) {
 initialize(size) ;
 }
 ~Array() {
 delete[] _x ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

Watch out! Pointer data member

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition)
 Array b(a) ;
 // ‘b’ Copy Constructor does
 // b._x = a._x ;

 // b appears to be copy of a
}
// ‘b’ Destructor does:
// delete[] _b.x ;

// BUT _b.x == _a.x ! Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Array a

_x

Array b

_x

double[]

Array a

_x
 " Problem is here:

b._x points to
same array

as a._x!

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

•  Example of default copy constructor wreaking havoc

class Array {
public:
 Array(int size) {
 initialize(size) ;
 }
 ~Array() {
 delete[] _x ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition)
 Array b(a) ;
 // ‘b’ Copy Constructor does
 // b._x = a._x ;

 // b appears to be copy of a
}
// ‘b’ Destructor does
// delete[] _b.x

// BUT _b.x == _a.x ! Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Whenever your class owns dynamically allocated
memory or similar resources you need to implement

your own copy constructor!

© 2006 Wouter Verkerke, NIKHEF

Example of a custom copy constructor
class Array {
public:
 Array(int size) {
 initialize(size) ;
 }

 Array(const double* input, int size) {
 initialize(size) ;
 int i ;
 for (i=0 ; i<size ; i++) _x[i] = input[i] ;
 }

 Array(const Array& other) {
 initialize(other._size) ;
 int i ;
 for (i=0 ; i<_size ; i++) _x[i] = other._x[i] ;
 }

private:
 void initialize(int size) {
 _size = size ;
 _x = new double[size] ;
 }
 int _size ;
 double* _x ;
};

Symbol _x refers
to data member
of this instance

Symbol other._x
refers to data
member of other
instance

Classes vs Instances
Here we are dealing
explicitly with one
class and two instances

© 2006 Wouter Verkerke, NIKHEF

Another solution to copy constructor problems

•  You can disallow objects being copied by declaring their
copy constructor as ‘private’
–  Use for classes that should not copied because they own non-

clonable resources or have a unique role

–  Example: class File – logistically and resource-wise tied to a
single file so a clone of a File instance tied to the same file
makes no sense

class File {

private:
 int fh ;
 close() { ::close(fh) ; }
 File(const File&) ; // disallow copying

public:
 File(const char* name) { fh = open(name) ; }
 ~File() { close() ; }
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Deleting default constructors in C++2011

•  In C++2011 new language feature allows to delete
default implementations of constructors explicitly as
follows

class File {

private:
 int fh ;
 close() { ::close(fh) ; }

public:
 File(const char* name) { fh = open(name) ; }

 File(const File&) = delete ; // disallow copying

 ~File() { close() ; }
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Ownership and defensive programming

•  Coding mistakes happen, but by programming
defensively you will spot them easier
–  Always initialize owned pointers to zero if you do not allocate your

resources immediately
–  Always set pointers to zero after you delete the object they point

to

•  By following these rules you ensure that you never have
‘dangling pointers’
–  Dangling pointers = Pointers pointing to a piece memory that is

no longer allocated which may return random values
–  Result – more predictable behavior
–  Dereferencing a dangling pointer may

•  Work just fine in case the already released memory has not been overwritten yet
•  Return random results
•  Cause your program to crash

–  Dereferencing a zero pointer will always terminate your program
immediately in a clean and understandable way

© 2006 Wouter Verkerke, NIKHEF

Const and Objects

•  ‘const’ is an important part of C++ interfaces.
–  It promotes better modularity by enhancing ‘loose coupling’

•  Reminder: const and function arguments

•  Const rules simple to enforce for basic types: ‘=‘ changes
contents
–  Compile can look for assignments to const reference and issue error
–  What about classes? Member functions may change contents, difficult

to tell?

–  How do we know? We tell the compiler which member functions
change the object!

void print(int value) ; // pass-by-value, value is copied

void print(int& value) ; // pass-by-reference,
 print may change value
void print(const int& value); // pass-by-const-reference,
 print may not change value

© 2006 Wouter Verkerke, NIKHEF

Const member functions

•  By default all member functions of an object are
presumed to change an object
–  Example

class Fifo {
 …
 void print() ;
 …
};

int main() {
 Fifo fifo ;
 showTheFifo(fifo) ;
}

void showTheFifo(const Fifo& theFifo)
{
 theFifo.print() ; // ERROR – print() is allowed
 // to change the object
}

© 2006 Wouter Verkerke, NIKHEF

Const member functions

•  Solution: declare print() to be a member function that
does not change the object

class Fifo {
 …
 void print() const ;
 …
};

int main() {
 Fifo fifo ;
 showTheFifo(fifo) ;
}

void showTheFifo(const Fifo& theFifo)
{
 theFifo.print() ; // OK print() does not change object
}

A member function is declared
const by putting ‘const’ behind
the function declaration

© 2006 Wouter Verkerke, NIKHEF

Const member function – the flip side

•  The compiler will enforce that no statement inside a
const member function modifies the object

class Fifo {
 …
 void print() const ;
 …
 int size ;
};

void Fifo::print() const {
 cout << size << endl ; // OK
 size = 0 ; // ERROR const function is not
 allows to modify data member
}

© 2006 Wouter Verkerke, NIKHEF

Const member functions – indecent exposure

•  Const member functions are also enforced not to ‘leak’
non-const references or pointers that allows users to
change its content

class Fifo {
 …
 char buf[80] ;
 …
 char* buffer() const {
 return buf ; // ERROR – Const function exposing
 non-const pointer to data member
 }
};

© 2006 Wouter Verkerke, NIKHEF

Const return values

•  Lesson: Const member functions can only return const
references to data members
–  Fix for example of preceding page

class Fifo {
 …
 char buf[80] ;
 …
 const char* buffer() const {
 return buf ; // OK
 }
};

This const says that this
member function will not
change the Fifo object

This const says the returned
pointer cannot be used to
modify what it points to

© 2006 Wouter Verkerke, NIKHEF

Why const is good

•  Getting all your const declarations in your class correct
involves work! – Is it work the trouble?

•  Yes! – Const is an important tool to promote encapsulation
–  Classes that are ‘const-correct’ can be passed through const references to

functions and other objects and retain their full ‘read-only’ functionality

–  Example

–  Const correctness of class Fifo loosens coupling between main() and
showTheFifo() since main()’s author does not need to closely follow if
future version of showTheFifo() may have undesirable side effects on the
object

int main() {
 Fifo fifo ;
 showTheFifo(fifo) ;
}

void showTheFifo(const Fifo& theFifo)
{
 theFifo.print() ;
}

© 2006 Wouter Verkerke, NIKHEF

Mutable data members

•  Occasionally it can be useful to be able to modify
selected data members in a const object
–  Most frequent application: a cached value for a time-consuming

operation

–  Your way out: declare that data member ‘mutable’. In that case it
can be modified even if the object itself is const

–  Use sparingly!

class FunctionCalculation {
 …
 mutable float cachedResult ;
 …
 float calculate() const {
 // do calculation
 cachedResult = <newValue> ; // OK because cachedResult
 // is declared mutable
 return cachedResult ;
 }
};

© 2006 Wouter Verkerke, NIKHEF

Static data members

•  OO programming minimizes use of global variables
because they are problematic
–  Global variable cannot be encapsulated by nature

–  Changes in global variables can have hard to understand side
effects

–  Maintenance of programs with many global variables is hard

•  C++ preferred alternative: static variables
–  A static data member encapsulates a variable inside a class

•  Optional ‘private’ declaration prevents non-class members to access variable

–  A static data member is shared by all instances of a class

–  Syntax

class ClassName {
 …
 static Type Name ;
 …
};

Type ClassName::Name = value ;

Declaration

Definition and initialization

© 2006 Wouter Verkerke, NIKHEF

Static data members

•  Don’t forget definition in addition to declaration!
–  Declaration in class (in .hh) file. Definition in .cc file

•  Example use case:
–  class that keeps track of number of instances that exist of it

class Counter {
public:
 Counter() { count++ ; }
 ~Counter() { count-- ; }

 void print() {
 cout << “there are “
 << count
 << “ instances of count”
 << endl ;
 }
private:
 static int count ;
} ;

int Counter::count = 0 ;

int main() {
 Counter c1 ;
 c1.Print() ;

 if (true) {
 Counter c2,c3,c4 ;
 c1.Print() ;
 }
 c1.Print() ;
 return 0 ;
}

there are 1 instances of count
there are 4 instances of count
there are 1 instances of count

© 2006 Wouter Verkerke, NIKHEF

Static function members

•  Similar to static data member, static member functions
can be defined
–  Syntax like regular function, with static keyword prefixed in

declaration only

–  Static function can access static data members only since
function is not associated with particular instance of class

–  Can call function without class instance

class ClassName {
 …
 static Type Name(Type arg,…) ;
 …
};

type ClassName::Name(Type arg,…) {
 // body goes here
}

ClassName::Name(arg,…) ;

© 2006 Wouter Verkerke, NIKHEF

Static member functions

•  Example use case – modification of preceding example

class Counter {
public:
 Counter() { count++ ; }
 ~Counter() { count-- ; }
 static void print() {
 cout << “there are “
 << count
 << “ instances of count”
 << endl ;
 }
private:
 static int count ;
} ;

int Counter::count = 0 ;

int main() {
 Counter::print() ;

 Counter c1 ;
 Counter::print() ;

 if (true) {
 Counter c2,c3,c4 ;
 Counter::print() ;
 }
 Counter::print() ;
 return 0 ;
}

there are 0 instances of count
there are 1 instances of count
there are 4 instances of count
there are 1 instances of count

