
© 2006 Wouter Verkerke, NIKHEF

Class Analysis and Design

Class Analysis
& Design 4

© 2006 Wouter Verkerke, NIKHEF

Overview of this section

•  Contents of this chapter

–  Object Oriented Analysis and Design – A first shot at

decomposing your problem into classes

–  Designing the class interface – Style guide and common issues

–  Operator overloading – Making your class behave more like
built-in types

–  Friends – Breaking access patterns to enhance encapsulation

© 2006 Wouter Verkerke, NIKHEF

Class Analysis and Design

•  We now understand the basics of writing classes
–  Now it’s time to think about how to decompose your problem into

classes

•  Writing good OO software involves 3 separate steps
1.   Analysis
2.   Design

3.   Programming
–  You can do them formally or informally, well or poorly, but you

can’t avoid them

•  Analysis
–  How to divide up your problem in classes
–  What should be the functionality of each class

•  Design
–  What should the interface of your class look like?

© 2006 Wouter Verkerke, NIKHEF

Analysis – Find the class

•  OO Analysis subject of many text books, many different
approaches
–  Here some basic guidelines

1.  Try to describe briefly in plain English (or Dutch) what you intend
your software to do

•  Rationale – This naturally makes you think about your software in a high abstraction
level

2.  Associate software objects with natural objects (‘objects in the
application domain’)

•  Actions translate to member functions

•  Attributes translate to data members

3.  Make hierarchical ranking of objects using ‘has-a’ relationships
•  Example: a ‘BankAccount’ has-a ‘Client’

•  Has-a relationships translate into data members that are objects

4.  Iterate! Nobody gets it right the first time

© 2006 Wouter Verkerke, NIKHEF

Analysis – A textbook example

•  Example of telephone hardware represented as class
hierarchy using ‘has-a’ relationships
–  Programs describing or simulating hardware usually have an

intuitive decomposition and hierarchy

Telephone

Cable Housing Dialer Handset

Earpiece Mouthpiece Cable

Each line represents
a ‘has-a’ relationship

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Real life often not so clean cut

•  Example problem from High Energy physics
–  We have a file with experimental data from a calorimeter.

–  A calorimeter is a HEP detector that detects energy through
absorption. A calorimeter consists of a grid of detector modules
(cells) that each individually measure deposited energy

Incoming particle

Calorimeter

Cell

Cells with energy deposit

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  First attempt to identify objects in data processing
model and their containment hierarchy
–  Calorimeter global position and cell coordinates are not physical

objects but separate logical entities so we make separate classes
for those too

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a
Calorimeter

CaloCell

Position

Coordinate

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Key Analysis sanity check – Can we describe what each
object is, in addition to what it does?
–  Answer: yes

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Iterating the design – are there other/better solutions?
–  Remember ‘strong cohesion’ and ‘loose coupling’

–  Try different class decomposition, moving functionality from one
class to another

•  Example of alternative solution
–  We can store the CaloCells in an intelligent container class

CellGrid that mimics a 2D array and keeps track of coordinates

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

Calorimeter

CaloCell

Position

CellGrid

© 2006 Wouter Verkerke, NIKHEF

Analysis – Example from High Energy Physics

•  Which solution is better?
–  Source of ambiguity: cell coordinate not really intrinsic property of

calorimeter cell

–  Path to solution: what are cell coordinates used for? Import for insight in
best solution. Real-life answer: to find adjacent (surrounding cells)

–  Solution: Adjacency algorithms really couple strongly to layout of cells, not
to property of individual cells à design with layout in separate class
probably better

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

Calorimeter

CaloCell

Coordinate

has-a

has-a

Position

has-a

© 2006 Wouter Verkerke, NIKHEF

Extending the example – Has-A vs Uses-A

•  Next step in analysis of calorimeter data is to reconstruct
properties of incoming particles
–  Reconstruct blobs of energy deposited into multiple cells

–  Output stored in new class CaloCluster, which stores properties of cluster
and refers back to cells that form the cluster

–  Now we run into some problems with ‘has-a’ semantics: All CaloCells in
Calorimeter are owned by Calorimeter, so CaloCluster doesn’t really
‘have’ them. Solution: ‘Uses-A’ semantic.

–  A ‘Uses-A’ relation translates into a pointer or reference to an object

Calorimeter

CaloCell

CellGrid

has-a

has-a

Position

has-a

CaloCluster

has-a?, uses-a!

© 2006 Wouter Verkerke, NIKHEF

Summary on OO analysis

•  Choosing classes: You should be able to say what a class is
–  A ‘Has-A’ relation translates into data members, a ‘Uses-A’ relation into a

pointer

–  Functionality of your natural objects translates in member functions

•  Be wary of complexity
–  Signs of complexity: repeated identical code, too many function arguments,

too many member functions, functions with functionality that cannot be
succinctly described

–  A complex class is difficult to maintain à Redesign into smaller units

•  There may not be a unique or ‘single best’ decomposition of
your class analysis
–  Such is life. Iterate your design, adapt to new developments

•  We’ll revisit OOAD again in a while when we will discuss
polymorphism and inheritance which open up many new
possibility (and pitfalls)

© 2006 Wouter Verkerke, NIKHEF

The art of proper class design

•  Class Analysis tells you what functionality your class should have

•  Class Design now focuses on how to package that best

•  Focus: Make classes easy to use
–  Robust design: copying objects, assigning them (even to themselves) should

not lead to corruption, memory leaks etc

–  Aim for intuitive behavior: mimic interface of built-in types where possible

–  Proper functionality for ‘const objects’

•  Reward: better reusability of code, easier maintenance, shorter
documentation

•  And remember: Write the interface first, then the implementation
–  While writing the interface you might still find flaws or room for improvements

in the design. It is less effort to iterate if there is no implementation to data

© 2006 Wouter Verkerke, NIKHEF

The art of proper class design

•  Focus on following issues next

–  Boilerplate class design

–  Accessors & Modifiers – Proper interface for const objects

–  Operator overloading

–  Assignment – Why you need it

–  Overloading arithmetic, and subscript operators

–  Overloading conversion operators, use of explicit

–  Spilling your guts – friends

© 2006 Wouter Verkerke, NIKHEF

Check list for class interface

•  A boilerplate class design

•  When writing a class it helps to group member functions
into the following categories

–  Initialization – Constructors and helper functions

–  Assignment

–  Cleanup – Destructors and helper functions

–  Accessors – Function providing read-only access to data members

–  Modifiers – Functions that allow to modify data members

–  Algorithmic functions

–  I/O functions

–  Error processing functions

© 2006 Wouter Verkerke, NIKHEF

Accessor / modifier pattern

•  For each data member that is made publicly available
implement an accessor and a modifier

•  Pattern 1 – Encapsulate read & write access in separate functions
–  Complete control over input and output. Modifier can be protected for better

access control and modifier can validate input before accepting it

–  Note that returning large data types by value is inefficient. Consider to return a
const reference instead

class Demo {
private:
 float _val ;
public:
 // accessor
 float getVal() const {
 return _val ;
 }
 // modifier
 void setVal(float newVal) {
 // Optional validity checking goes here
 _val = newVal ;
 }
} ;

const here is important
otherwise this will fail

const Demo demo ;
demo.getVal() ;

© 2006 Wouter Verkerke, NIKHEF

Accessor / modifier pattern

•  Pattern 2 – Return reference to internal data member
–  Must implement both const reference and regular reference!

–  Note that no validation is possible on assignment. Best for built-in
types with no range restrictions or data members that are classes
themselves with built-in error checking and validation in their
modifier function

class Demo {
private:
 float _val ;

public:
 float& val() { return _val ; }
 const float& val() const { return _val ; }

} ;

const version here is essential,
otherwise code below will fail

const Demo demo ;
float demoVal = demo.val() ;

© 2006 Wouter Verkerke, NIKHEF

Making classes behave like built-in objects

•  Suppose we have written a ‘class complex’ that
represents complex numbers
–  Execution of familiar math through add(),multiply() etc member

functions easily obfuscates user code

–  Want to redefine meaning of C++ operators +,* etc to perform
familiar function on newly defined classes, i.e. we want compiler
to automatically translate:

•  Solution: C++ operator overloading

complex a(3,4), b(5,1) ;

b.multiply(complex(0,1)) ;
a.add(b) ;
a.multiply(b) ;
b.subtract(a) ;

c = a * b ; c.assign(a.multiply(b)) ;

© 2006 Wouter Verkerke, NIKHEF

Operator overloading

•  In C++ operations are functions too, i.e.

•  Operators can be both regular functions as well as class
member functions
–  In example above operator=() is implemented as member

function of class complex, operator+() is implemented as global
function

–  You have free choice here, operator+() can also be implemented
as member function in which case the code would be come

–  Design consideration: member functions (including operators) can
access ‘private’ parts, so operators that need this are easier to
implement as member functions

•  More on this in a while…

complex c = a + b; c.operator=(operator+(a,b));

What you write What the compiler does

c.operator=(a.operator+(b));

© 2006 Wouter Verkerke, NIKHEF

An assignment operator – declaration

•  Lets first have a look at implementing the assignment
operator for our fictitious class complex

•  Declared as member operator of class complex:
–  Allows to modify left-hand side of assignment

–  Gives access to private section of right-hand side of assignment

class complex {
public:
 complex(double r, double i) : _r(r), _i(i) {} ;
 complex& operator=(const complex& other) ;

private:
 double _r, _i ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Handle self-assignment explicitly
It happens, really!

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Copy content of other object
It is the same class, so you have
access to its private members

Return reference to self
Takes care of chain assignments

© 2006 Wouter Verkerke, NIKHEF

Copy content of other object
It is the same class, so you have
access to its private members

Handle self-assignment explicitly
It happens, really!

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Why ignoring self-assignment can be bad
Image you store information in a dynamically allocated array
that needs to be reallocated on assignment…

A& A::operator=(const A& other) {
 delete _array ;
 _len = other._len;
 _array = new int[other._len] ;
 // Refill array here
 return *this ;
}

Oops if (other==*this)
you just deleted your own
array!

© 2006 Wouter Verkerke, NIKHEF

An assignment operator – implementation

complex& complex::operator=(const complex& other) {

 // handle self-assignment
 if (&other == this) return *this ;

 // copy content of other
 _r = other._r ;
 _i = other._i ;

 // return reference to self
 return *this ;
}

Return reference to self
Takes care of chain assignments

Why you should return a reference to yourself
Returning a reference to yourself allows chain assignment

Not mandatory, but essential if you want to mimic behavior of built-in types

complex a,b,c ;
a = b = c ;

complex a,b,c ;
a.operator=(b.operator=(c)) ;

Returns reference to b

© 2006 Wouter Verkerke, NIKHEF

The default assignment operator

•  The assignment operator is like the copy constructor:
it has a default implementation
–  Default implementation calls assignment operator for each data member

•  If you have data member that are pointers to ‘owned’ objects
this will create problems
–  Just like in the copy constructor

•  Rule: If your class owns dynamically allocated memory or
similar resources you should implement your own assignment
operator

•  You can disallow objects being assigned by declaring their
assignment operator as ‘private’
–  Use for classes that should not copied because they own non-assignable

resources or have a unique role (e.g. an object representing a file)

© 2006 Wouter Verkerke, NIKHEF

Example of assignment operator for owned data members

class A {
private:
 float* _arr ;
 int _len ;
public:
 operator=(const A& other) ;
} ;

 C++ default operator=() Custom operator=()

A& operator=(const A& other) {
 if (&other==this) return *this;
 _arr = other._arr ;
 _len = other._len ;
 return *this ;
}

A& operator=(const A& other) {
 if (&other==this) return *this;
 _len = other._len ;
 delete[] _arr ;
 _arr = new int[_len] ;
 int i ;
 for (i=0; i<len ; i++) {
 _arr[i] = other._arr[i] ;
 }
 return *this ;
}

YOU DIE.
If other is deleted before us, _arr will point
to garbage. Any subsequent use of self has
undefined results

If we are deleted before other, we will delete
_arr=other._arr, which is not owned by us:
other._arr will point to garbage and will
attempt to delete array again

© 2006 Wouter Verkerke, NIKHEF

Overloading other operators

•  Overloading of operator=() mandatory if object owns
other objects

•  Overloading of other operators voluntary
–  Can simplify use of your classes (example: class complex)
–  But don’t go overboard – Implementation should be congruent

with meaning of operator symbol
•  E.g. don’t redefine operator^() to implement exponentiation

–  Comparison operators (<,>,==,!=) useful to be able to put class
in sortable container

–  Addition/subtraction operator useful in many contexts: math
objects, container class (add new content/ remove content)

–  Subscript operator[] potentially useful in container classes
–  Streaming operators <<() and operator>>() useful for printing in

many objects

•  Next: Case study of operator overloading with a custom
string class

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Data members, array & length

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Delete old buffer,
allocate new buffer,
copy argument into new buffer

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Ctor
Dtor

© 2006 Wouter Verkerke, NIKHEF

The custom string class

•  Example string class for illustration of operator overloading
class String {
private:
 char* _s ;
 int _len ;

 void insert(const char* str) { // private helper function
 _len = strlen(str) ;
 if (_s) delete[] _s ;
 _s = new char[_len+1] ;
 strcpy(_s,str) ;
 }

public:
 String(const char* str= “”) : _s(0) { insert(str) ; }
 String(const String& a) : _s(0) { insert(a._s) ; }
 ~String() { if (_s) delete[] _s ; }

 int length() const { return _len ; }
 const char* data() const { return _s ; }
 String& operator=(const String& a) {
 if (this != &a) insert(a._s) ;
 return *this ;
 }
} ;

Overloaded
assignment
operator

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Strings have a natural equivalent of addition
–  “A” + “B” = “AB”

–  Makes sense to implement operator+

•  Coding guideline: if you implement +, also implement +=
–  In C++ they are separate operators.

–  Implementing + will not automatically make += work.

–  Implementing both fulfills aim to mimic behavior of built-in types

•  Practical tip: Do operator+=() first.
–  It is easier

–  Operator+ can trivially be implemented in terms of operator+=
(code reuse)

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Example implementation for String
–  Argument is const (it is not modified after all)

–  Return is reference to self, which allows chain assignment

class String {
public:
 String& operator+=(const String& other) {
 int newlen = _len + other._len ; // calc new length
 char* newstr = new char[newlen+1] ; // alloc new buffer

 strcpy(newstr,_s) ; // copy own contents
 strcpy(newstr+_len,other._s) ; // append new contents

 if (_s) delete[] _s ; // release orig memory

 _s = newstr ; // install new buffer
 _len = newlen ; // set new length
 return *this ;
 }
} ;

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+(), operator+=()

•  Now implement operator+() using operator+=()
–  Operator is a global function rather than a member function – no

privileged access is needed to String class content

–  Both arguments are const as neither contents is changed

–  Result string is passed by value

String operator+(const String& s1, const String& s2) {
 String result(s1) ; // clone s1 using copy ctor
 result += s2 ; // append s2
 return result ; // return new result
}

© 2006 Wouter Verkerke, NIKHEF

Overloading operator+() with different types

•  You can also add heterogeneous types with operator+()
–  Example: String(“A”) + “b”

•  Implementation of heterogeneous operator+ similar
–  Illustration only, we’ll see later why we don’t need it in this particular

case

•  NB: Arguments of operator+() do not commute

operator+(const& A, const& B)!=operator+(const& B, const& A)

–  If you need both, implement both

String operator+(const String& s1, const char* s2) {
 String result(s1) ; // clone s1 using copy ctor
 result += String(s2) ; // append String converted s2
 return result ; // return new result
}

Working with class String

•  Demonstration of operator+ use on class String

•  Compare ease of use (including correct memory
management) to join() functions of exercise 2.1...

© 2006 Wouter Verkerke, NIKHEF

// Create two strings
String s1(“alpha”) ;
String s2(“bet”) ;

// Concatenate strings into 3rd string
String s3 = s1+s2 ;

// Print concatenated result
cout << s1+s2 << endl ;

cout << String(s1+s2) << endl ;

Implicit conversion by compiler

© 2006 Wouter Verkerke, NIKHEF

Overloading comparison operators ==,!=,<,>

•  Comparison operators make sense for strings
–  “A” != “B”, “Foo” == “Foo”, “ABC” < “XYZ”

–  Comparison operators are essential interface to OO sorting

•  Example implementation
–  Standard Library function strcmp returns 0 if strings are identical,

less than 0 if s1<s2, and greater than 0 if s1>s2

–  Input arguments are const again

–  Output type is bool

–  Operators <,>,<=,>= similar

bool operator==(const String& s1, const String& s2) {
 return (strcmp(s1.data(),s2.data())==0) ;
}

bool operator!=(const String& s1, const String& s2) {
 return (strcmp(s1.data(),s2.data())!=0) ;
}

© 2006 Wouter Verkerke, NIKHEF

Overloading subscript operators

•  Subscript operators make sense for indexed collections
such as strings
–  String(“ABCD”)[2] = ‘C’

•  Example implementation for String
–  Non-const version allows string[n] to be use as lvalue

–  Const version allows access for const objects

char& String::operator[](int i) {
 // Don’t forget range check here
 return _s[i] ;
}

const char& String::operator[](int i) const {
 // Don’t forget range check here
 return _s[i] ;
}

© 2006 Wouter Verkerke, NIKHEF

Overloading subscript operators

•  Note 1: Any argument type is allowed in []
–  Example

–  Powerful tool for indexed container objects

–  More on this later in the Standard Template Library section

•  Note 2: C++ does not have multi-dimensional array operator
like array[5,3]
–  Instead it has array[5][3] ;

–  If you design a container with multi-dimensional indexing consider
overloading the () operator, which works exactly like the [] operator,
except that it allows multiple arguments

class PhoneBook {
public:
 int PhoneBook::operator[](const char* name) ;
} ;

void example() {
 PhoneBook pbook ;
 pbook[“Bjarne Stroustrup”] = 0264524 ;
 int number = pBook[“Brian Kernigan”] ;
}

© 2006 Wouter Verkerke, NIKHEF

Overloading conversion operators

•  Conversions (such as int to float) are operators too!

•  Sometimes it makes sense to define custom conversions
for your class
–  Example: String à const char*, const char* à String

•  General syntax for conversions from ClassA to ClassB

•  Example implementation for class String

class ClassA {
 operator ClassB() const ; // conversion creates copy
 // so operation is const
};

String::operator const char*() const {
 return _s ;
}

© 2006 Wouter Verkerke, NIKHEF

Using conversion operators

•  Conversion operators allow the compiler to convert
types automatically for you.
–  Example

•  Constructors aid the automatic conversion process for
reverse conversion from (from another type to yourself)
–  Example: allows automatic conversion from ‘const char*’ to String

int strlen(const char* str) ; // Standard Library function
String foo(“Hello World”) ;
int len = strlen(foo) ;

int strlen(const char* str) ; // Standard Library function
String foo(“Hello World”) ;
int len = strlen(foo.operator const char*()) ;

class String {
 String(const char* str) ;
};

© 2006 Wouter Verkerke, NIKHEF

How conversion operators save you work

•  Remember that we defined operator+(const& String,
const char*)

–  It turns out we don’t need it if String to ‘const char*’ conversion is
defined

–  Compiler automatically fills in the necessary conversions for you

–  No need for our operator+(const String&, const char*).

–  Of course if we can define a dedicated operator that is
computationally more efficient we should still implement it.
The compiler will use the dedicated operator instead

String s(“Hello”) ;
String s2 = s + “ World” ;

String s(“Hello”) ;
String s2 = s + String(“ World”) ;

© 2006 Wouter Verkerke, NIKHEF

Curbing an overly enthusiastic compiler

•  Suppose you want define the constructor

but you do not want to compiler to use it for automatic
conversions

•  Solution: make the constructor explicit

–  Useful in certain cases

class String {
 String(const char*) ;
};

class String {
 explicit String(const char*) ;
};

© 2006 Wouter Verkerke, NIKHEF

Recap on operator definition

•  Operators can be implemented as
–  Global functions
–  Member functions

•  For binary operators a member function implementation
always binds to the left argument
–  I.e. ‘a + b’ à a.operator+(b)

•  Rule of thumb:
–  Operators that modify an object should be member functions of

that object
–  Operators that don’t modify an object can be either a member

function or a global function

•  But what about operators that modify the rightmost
argument?
–  Example cin >> phoneBook à operator>>(cin,phoneBook)

© 2006 Wouter Verkerke, NIKHEF

What friends are for

•  But what about operators that modify the rightmost
argument?
–  Example cin >> phoneBook à operator>>(cin,phoneBook)

–  Sometimes you can use public interface to modify object (e.g. see
string example)

–  Sometimes this is not desirable (e.g. interface to reconstitute
object from stream is considered private) – what do you do?

•  Solution: make friends
–  A friend declaration allows a specified class or function to access

the private parts of a class

–  A global function declared as friend does NOT become a member
function; it is only given the same access privileges

class String {
 public:
 String(const char*=“”) ;
 private:
 friend istream& operator>>(istream&, String&) ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Friend and encapsulation

•  Worked out string example

class String {
 public:
 String(const char*=“”) ;
 private:
 char* _buf ;
 int _len ;
 friend istream& operator>>(istream&, String&) ;
} ;

istream& operator>>(istream& is, String& s) {
 const int bufmax = 256 ;
 static char buf[256] ;
 is >> buf ;
 delete[] s._buf ; // Directly
 s._len = strlen(buf) ; // manipulate
 s._buf = new char[s._len+1] ; // private members
 strcpy(s._buf,buf) ; // of String s
 return is ;
}

© 2006 Wouter Verkerke, NIKHEF

Friends and encapsulation

•  Friends technically break encapsulation, but when
properly used they enhance encapsulation
–  Example: class String and global

operator>>(istream&,String&) are really a single module
(strong cohesion)

–  Friend allow parts of single logical module to communicate with
each other without exposing private interface to the outer world

•  Friend declarations are allowed for functions, operators
and classes
–  Following declaration makes all member functions of class

StringManipulator friend of class String

class String {
 public:
 String(const char*=“”) ;
 private:
 friend class StringManipulator ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Class string

•  The C++ Standard Library provides a class string
very similar to the example class String that we have
used in this chapter
–  Nearly complete set of operators defined, internal buffer memory

expanded as necessary on the fly

–  Declaration in <string>

–  Example

string dirname(“/usr/include”) ;
string filename ;

cout << “Give first name:” ;

// filename buffer will expand as necessary
cin >> filename ;

// Append char arrays and string intuitively
string pathname = dirname + ”/” + filename ;

// But conversion string à char* must be done explicitly
ifstream infile(pathname.c_str()) ;

