
© 2006 Wouter Verkerke, NIKHEF

OO programming – Inheritance & Polymorphism

Inheritance &
Polymorphism 8

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Introduction

•  Inheritance is
–  a technique to build a new class based on an old class

•  Example
–  Class employee holds employee personnel record

–  Company also employs managers, which in addition to being
employees themselves supervise other personnel

•  Manager class needs to contain additional information: list of subordinates

–  Solution: make Manager class that inherits from Employee

class Employee {
public:
 Employee(const char* name, double salary) ;
 const char* name() const ;
 double salary() const ;
private:
 string _name ;
 double _salary ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Syntax

•  Example of Manager class constructed through
inheritance

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 vector<Employee*> subordinates) ;
 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;
} ;

Declaration of public
inheritance

Additional data members in
Manager class

© 2006 Wouter Verkerke, NIKHEF

Inheritance and OOAD

•  Inheritance means: Manager Is-An Employee
–  Object of class Manager can be used in exactly the same way as

you would use an object of class Employee because:

–  class Manager also has all data members and member functions of
class Employee

–  Detail: examples shows ‘public inheritance’ – Derived class
inherits public interface of Base class

•  Inheritance offers new possibilities in OO Analysis and
Design
–  But added complexity is major source for conceptual problems

–  We’ll look at that in a second, let’s first have a better look at
examples

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Example in pictures

•  Schematic view of Manager class

class Manager
public:
 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;

‘Base class’

‘Derived class’

Terminology

class Employee
public:
 const char* name() const ;
 double salary() const ;
private:
 string _name ;
 double _salary ;

© 2006 Wouter Verkerke, NIKHEF

class Director
public:
 int numShares() const ;
private:
 int _numShares ;

Inheritance – Example in pictures

•  Inheritance can be used recursively

class Manager
public:
 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;

‘Base class’

‘Derived class’
& ‘Base class’

‘Derived class’

Terminology

class Employee
public:
 const char* name() const ;
 double salary() const ;
private:
 string _name ;
 double _salary ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Using it

•  Demonstration of Manager-IS-Employee concept

// Create employee, manager record
Employee* emp = new Employee(“Wouter”,10000) ;

list<Employee*> subs ;
subs.push_back(emp) ;

Manager* mgr = new Manager(“Stan”,20000,subs) ;

// Print names and salaries using
// Employee::salary() and Employee::name()
cout << emp->name() << endl ; // prints Wouter
cout << emp->salary() << endl ; // prints 10000

cout << mgr->name() << endl ; // prints Stan
cout << mgr->salary() << endl ; // prints 20000

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Using it

•  Demonstration of Manager-IS-Employee concept
–  A pointer to a derived class is also a pointer to the base class

–  But the reverse is not true!

// Pointer-to-derived IS Pointer-to-base
void processEmployee(Employee& emp) {
 cout << emp.name() << “ : “ << emp.salary() << endl ;
}

processEmployee(*emp) ;
processEmployee(*mgr) ; // OK Manager IS Employee

// Manager details are not visible through Employee* ptr
Employee* emp2 = mgr ; // OK Manager IS Employee
emp2->subs() ; // ERROR – Employee is not manager

© 2006 Wouter Verkerke, NIKHEF

OO Analysis and Design – ‘Is-A’ versus ‘Has-A’

•  How is an ‘Is-A’ relationship different from a ‘Has-A’
relationship
–  An Is-A relationship expresses inheritance (A is B)

–  A Has-A relationship expresses composition (A is a component of B)

a Calorimeter HAS-A Position An Manager IS-An Employee

class Calorimeter {
public:
 Position& p() { return _p ; }
private:
 Position _p ;
} ;

class Manager :
 public Employee {
public:

private:
} ;

Calorimeter calo ;
// access position part

calo.p() ;

Manager mgr ;
// Use employee aspect of mgr

mgr.salary() ;

© 2006 Wouter Verkerke, NIKHEF

Inheritance – constructors, initialization order

•  Construction of derived class involves construction of base
object and derived object
–  Derived class constructor must call base class constructor

–  The base class constructor is executed before the derived class ctor

–  Applies to all constructors, including the copy constructor

Manager::Manager(const char* _name, double _salary,
 list<Employee*>& l) :
 Employee(_name,_salary),
 _subs(l) {
 cout << name() << endl ; // OK - Employee part of object
} // is fully constructed at this
 // point so call to base class
 // function is well defined

Manager::Manager(const Manager& other) :
 Employee(other), // OK Manager IS Employee
 _subs(other._subs) {
 // body of Manager copy constructor
}

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Assignment

•  If you define your own assignment operator for an
inherited class (e.g. because you allocate memory) you
need to handle the base class assignment as well
–  Virtual function call mechanism invokes call to derived class

assignment operator only.

–  You should call the base class assignment operator in the derived
class assignment operator

Manager* Manager::operator=(const Manager& other) {

 // Handle self assignment
 if (&other != this) return *this ;

 // Handle base class assignment
 Employee::operator=(other) ;

 // Derived class assignment happens here

 return *this ;
}

© 2006 Wouter Verkerke, NIKHEF

Inheritance – Destructors, call sequence

•  For destructors the reverse sequences is followed
–  First the destructor of the derived class is executed

–  Then the destructor of the base class is executed

•  Constructor/Destructor sequence example

class A {
 A() { cout << “A constructor” << endl ; }
 ~A() { cout << “A destructor” << endl ; }
} ;

class B : public A {
 B() { cout << “B constructor” << endl ; }
 ~B() { cout << “B destructor” << endl ; }
} ;

int main() {
 B b ;
 cout << endl ;
}

A constructor
B constructor

B destructor
A destructor

Output

© 2006 Wouter Verkerke, NIKHEF

Sharing information – protected access

•  Inheritance preserves existing encapsulation
–  Private part of base class Employee is not accessible by derived

class Manager

•  Sometimes useful if derived class can access part of
private data of base class
–  Solution: ‘protected’ -- accessible by derived class, but not by

public

Manager::giveMyselfRaise() {
 _salary += 1000 ; // NOT ALLOWED: private in base class
}

class Base {
 public:
 int a ;
 protected:
 int b ;
 private:
 int c ;
} ;

class Derived : public Base {
 void foo() {
 a = 3 ; // OK public
 b = 3 ; // OK protected
 }
} ;

Base base ;
base.a = 3 ; // OK public
base.b = 3 ; // ERROR protected

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

The setSalary() function is
protected:

Public cannot change salary

except in controlled way
through public

annualRaise() method

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 list<Employee*> subs) ;

 giveBonus(double amount) {
 setSalary(salary()+amount) ;
 }
private:
 list<Employee*> _subs ;
} ;

Managers can also get additional
raise through giveBonus()

Access to protected

setSalary() method allows
giveBonus() to modify salary

© 2006 Wouter Verkerke, NIKHEF

Better example of protected interface
class Employee {
public:
 Employee(const char* name, double salary) ;
 annualRaise() { setSalary(_salary*1.03) ; }
 double salary() const { return _salary ; }

protected:
 void setSalary(double newSalary) {
 if (newSalary<_salary) {
 cout << “ERROR: salary must always increase” << endl ;
 } else {
 _salary = newSalary ;
 }
 }

private:
 string _name ;
 double _salary ;
} ;

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 list<Employee*> subs) ;

 giveBonus(double amount) {
 setSalary(salary()+amount) ;
 }
private:
 list<Employee*> _subs ;
} ;

Note how accessor/modifier
pattern salary()/setSalary()

is also useful for protected
access

Manager is only allowed to

change salary through
controlled method: negative
bonuses are not allowed…

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Principal OOAD rule for inheritance: an Is-A relation is an
extension of an object, not a restriction
–  manager Is-An employee is good example of a valid Is-A relation:

A manager conceptually is an employee in all respects, but with
some extra capabilities

–  Many cases are not that simple however

•  Some other cases to consider
–  A cat is a carnivore that knows how to meow (maybe)

–  A square is a rectangle with equal sides (no!)

•  ‘Is-A except‘ is a restriction, not an extension

–  A rectangle is a square with method to change side lengths (no!)

•  Code in square can make legitimate assumptions that both sides
are of equal length

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Remarkably easy to get confused
–  Particularly if somebody else inherits from your class later (and you might

not even know about that)

•  The Iron-Clad rule: The Liskov Subtitution Principle
–  Original version:

–  In plain English:

–  Keep this in mind when you design class hierarchies using Is-A relationships

‘If for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T, the behavior

of P is unchanged when o1 is substituted for o2, then S a subtype of T’

‘An object of a subclass must behave indistinguishably from an
object of the superclass when referenced as an object of the superclass’

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis & Design with Inheritance

•  Extension through inheritance can be quite difficult
–  ‘Family trees’ seen in text books very hard to do in real designs

•  Inheritance for “extension” is non-intuitive, but for
“restriction” is wrong

•  Inheritance is hard to get right in advance
–  Few things are straightforward extensions

–  Often behavior needs to be overridden rather than extended

–  Design should consider entire hierarchy

•  But do not despair:
–  Polymorphism offers several new features that will make OO

design with inheritance easier

© 2006 Wouter Verkerke, NIKHEF

Advanced features of inheritance

•  Multiple inheritance is also allowed
–  A class with multiple base classes

–  Useful in certain circumstances, but things become complicated very quickly

•  Private, protected inheritance
–  Derived class does not inherit public interface of base class

–  Example declaration

–  Private inheritance does not describe a ‘Is-A’ relationship but rather a
‘Implemented-by-means-of’ relationship

–  Rarely useful

–  Rule of thumb: Code reuse through inheritance is a bad idea

class Manager : public Employee, public ShareHolder {
 …
} ;

class Stack : private List {
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability of an object to retain its true
identity even when accessed through a base pointer
–  This is perhaps easiest understood by looking at an example

without polymorphism

•  Example without polymorphism
–  Goal: have name() append “(Manager)” to name tag for manager
–  Solution: implement Manager::name() to do exactly that

class Manager : public Employee {
public:
 Manager(const char* name, double salary,
 vector<Employee*> subordinates) ;

 const char* name() const {
 cout << _name << “ (Manager)” << endl ;
 }

 list<Employee*> subs() const ;
private:
 list<Employee*> _subs ;
} ;

© 2006 Wouter Verkerke, NIKHEF

Example without polymorphism

•  Using the improved manager class

•  But it doesn’t work in all circumstances…

–  Why does this happen?

–  Function print() sees mgr as employee, thus the compiler calls
Employee::name() rather than Manager::name() ;

–  Problem profound: name() function call selected at compile time. No way
for compiler to know that emp really is a Manager!

Employee emp(“Wouter”,10000) ;
Manager mgr(“Stan”,20000,&emp) ;

cout << emp.name() << endl ; // Prints “Wouter”
cout << mgr.name() << endl ; // Prints “Stan (manager)”

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan” – NOT WHAT WE WANTED!

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability of an object to retain its true
identity even when accessed through a base pointer
–  I.e. we want this:

•  In other words: Polymorphism is the ability to treat
objects of different types the same way
–  To accomplish that we will need to tell C++ compiler to look at

run-time what emp really points to.
–  In compiler terminology this is called ‘dynamic binding’ and

involves the compiler doing some extra work prior to executing
the emp->name() call

Employee emp(“Wouter”,10000) ;
Manager mgr(“Stan”,20000,&emp) ;

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan (Manager)”

© 2006 Wouter Verkerke, NIKHEF

Dynamic binding in C++ – keyword virtual

•  The keyword virtual in a function declaration activates
dynamic binding for that function
–  The example class Employee revisited

–  No further changes to class Manager needed

… And the broken printing example now works

class Employee {
public:
 Employee(const char* name, double salary) ;
 virtual const char* name() const ;
 double salary() const ;
private:
 …
} ;

void print(Employee& emp) {
 cout << emp.name() << endl ;
}
print(emp) ; // Prints “Wouter”
print(mgr) ; // Prints “Stan (Manager)” EUREKA

© 2006 Wouter Verkerke, NIKHEF

Keyword virtual – some more details

•  Declaration ‘virtual’ needs only to be done in the base
class
–  Repetition in derived classes is OK but not necessary

•  Any member function can be virtual
–  Specified on a member-by-member basis

class Employee {
public:
 Employee(const char* name, double salary) ;
 ~Employee() ;

 virtual const char* name() const ; // VIRTUAL
 double salary() const ; // NON-VIRTUAL

private:
 …
} ;

© 2006 Wouter Verkerke, NIKHEF

Virtual functions and overloading

•  For overloaded virtual functions either all or none of the
functions variants should be redefined

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
 void func(int) ;
 void func(float) ;
} ;

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
} ;

class A {
 virtual void func(int) ;
 virtual void func(float) ;
} ;

class B : public A {
 void func(float) ;
} ;

OK – all redefined

OK – none redefined

NOT OK – partially redefined

© 2006 Wouter Verkerke, NIKHEF

Virtual functions – Watch the destructor

•  Watch the destructor declaration if you define virtual functions
–  Example

–  Any resources allocated in Manager constructor will not be released as
Manager destructor is not called (just Employee destructor)

–  Solution: make the destructor virtual as well

•  Lesson: if you ever delete a derived class through a base
pointer your class should have a virtual destructor
–  In practice: Whenever you have any virtual function, make the destructor

virtual

Employee* emp = new Employee(“Wouter”,10000) ;
Manager* mgr = new Manager(“Stan”,20000,&emp) ;

void killTheEmployee(Employee* emp) {
 delete emp ;
}

killTheEmployee(emp) ; // OK
killTheEmployee(mgr) ; // LEGAL but WRONG!
 // calls ~Employee() only, not ~Manager()

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes – concept

•  Virtual functions offer an important tool to OOAD – the
Abstract Base Class
–  An Abstract Base Class is an interface only. It describes how an

object can be used but does not offer a (full) implementation

class Trajectory
public:

virtual Point x(float& t)=0;

class LineTrajectory
public:

Point x(float &t) ;

private:
Vector _orig ;
Vector _dir ;

class HelixTrajectory
public:

Point x(float &t) ;

private:
Vector _orig ;

double _rho, _phi, _d,
_kappa, _lambda ;

Interface
only

Imple-
mentation

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes – pure virtual functions

•  A class becomes an abstract base class when it has one
or more pure virtual functions
–  A pure virtual function is a declaration without an implementation

–  Example

–  It is not possible to create an instance of an abstract base
class, only of implementations of it

class Trajectory {
public:
 Trajectory() ;
 virtual ~Trajectory() ;
 virtual Point x(float& t) const = 0 ;
} ;

Trajectory* t1 = new Trajectory(…) ; // ERROR abstract class
Trajectory* t2 = new LineTrajectory(…); // OK
Trajectory* t3 = new HelixTrajectory(…);// OK

© 2006 Wouter Verkerke, NIKHEF

Abstract base classes and design

•  Abstract base classes are a way to express common
properties and behavior without implementation
–  Especially useful if there are multiple implementations of a

common interface possible

–  Example: a straight line ‘is a’ trajectory,
 but a helix also ‘is a’ trajectory

•  Enables you to write code at a higher level abstraction
–  For example, you don’t need to know how trajectory is

parameterized, just how to get its position at a give flight time.

–  Powered by polymorphism

•  Simplifies extended/augmenting existing code
–  Example: can write new class SegmentedTrajectory. Existing

code dealing with trajectories can use new class without
modifications (or even recompilation!)

© 2006 Wouter Verkerke, NIKHEF

Abstract Base classes – Example

•  Example on how to use abstract base classes

void processTrack(Trajectory& track) ;

int main() {
 // Allocate array of trajectory pointers
 Trajectory* tracks[3] ;

 // Fill array of trajectory pointers
 tracks[0] = new LineTrajectory(…) ;
 tracks[1] = new HelixTrajectory(…) ;
 tracks[2] = new HelixTrajectory(…) ;

 for (int i=0 ; i<3 ; i++) {
 processTrack(*tracks[i]) ;
 }
}

void processTrack(Trajectory& track) {
 cout << “position at flight length 0 is “
 << track.pos(0) << endl ;
}

Use Trajectory
interface to
manipulate track
without knowing
the exact class
you’re dealing with
(HelixTrajectory
or LineTrajectory)

© 2006 Wouter Verkerke, NIKHEF

The power of abstract base classes

•  You can even reuse existing compiled code with new
implementations of abstract base classes

•  Example of reusing compiled code with a new class
–  First iteration – no magnetic field

1. Write abstract class Trajectory

2. Write implementation LineTrajectory
3. Write algorithm class TrackPointPOCA to find closest point of approach

between given cluster position and trajectory using Trajectory
interface

–  Second iteration – extend functionality to curved tracks in
magnetic field

1. Write implementation HelixTrajectory, compile HelixTrajectory
code

2. Link HelixTrajectory code with existing compiled code into new
executable

3. Your executable can use the newly defined HelixTrajectory objects
without further modification

•  Higher level code TrackPointPOCA transparent to
future code changes!

© 2006 Wouter Verkerke, NIKHEF

Object Oriented Analysis and Design and Polymorphism

•  Design of class hierarchies can be much simplified if
only abstract base classes are used
–  In plain inheritance derived class forcibly inherits full specifications

of base type

–  Two classes that inherit from a common abstract base class can
share any subset of their common functionality

Base

Derived

Abstract
Common
Interface

Concrete
Implementation

I

Concrete
Implementation

II

© 2006 Wouter Verkerke, NIKHEF

Polymorphic objects and storage

•  Polymorphic inheritance simplifies many aspects of object use
and design – but there are still some areas where you still
need to pay attention:

•  Storage of polymorphic object collections
–  Reason: when you start allocating memory the true identity of the object

matters. You need to know exactly how large it is after all…

–  Storage constructions that assume uniform size of objects also no longer
work – Use of arrays, STL container classes not possible

•  Cloning of polymorphic object collections
–  Reason: you want to clone the implementation class not the interface class

so you must know the true type

–  Ordinarily virtual functions solves such problems, however there is no such
thing as a virtual copy constructor…

•  Will look into this in a bit more detail in the next slides…

© 2006 Wouter Verkerke, NIKHEF

Collections of Polymorphic objects – storage

•  Dealing with storage
–  Naïve attempt to make STL list of trajectories

–  Why Error: list<X> calls default constructor for X, but can not
instantiate X if X is an abstract classes such as Trajectory

–  Solution: make a collection of pointers

LineTrajectory track1(…) ;
HelixTrajectory track2(…) ;

list<Trajectory> trackList ; // ERROR

Trajectory* track1 = new LineTrajectory(…) ;
Trajectory* track2 = new HelixTrajectory(…) ;

list<Trajectory*> trackList ; // OK
trackList.push_back(&track1) ;
trackList.push_back(&track2) ;

© 2006 Wouter Verkerke, NIKHEF

Collections of Polymorphic objects – storage

•  But remember ownership semantics
–  STL container will delete pointers to objects, but not objects

themselves

–  In other words: deleting trackList does NOT delete the
tracks!

•  Technical Solution
–  Write a new container class, or inherit it from a STL container

class that takes ownership of objects pointed to.

–  NB: This is not so easy – think about what happens if replace
element in container: does removed element automatically get
deleted on the spot?

•  Bookkeeping Solution
–  Document clearly in function that creates trackList that contents

of trackList is owned by caller in addition to list itself

–  More prone to mistakes

© 2006 Wouter Verkerke, NIKHEF

Collections of polymorphic objects – copying

•  Copying a polymorphic collection also has its issues

•  Solution: make your own ‘virtual copy constructor’
–  Add a pure virtual clone() function to your abstract base class

list<Trajectory*> trackList ;
list<Trajectory*> clonedTrackList ;

list<Trajectory*>::iterator iter ;
for(iter=trackList.begin() ; iter!=trackList.end() ; ++iter) {
 Trajectory* track = *iter ;

 Trajectory* newTrack = new Trajectory(*track);
 // NOPE – attempt to
 // instantiate abstract class
 cloneTrackList.push_back(newTrack) ;
}

class Trajectory {
public:
 Trajectory() ;
 virtual ~Trajectory() ;
 virtual Trajectory* clone() const = 0 ;
 virtual Point x(float& t) const = 0 ;
} ;

© 2006 Wouter Verkerke, NIKHEF

The virtual copy constructor

•  Implementing the clone() function

•  Revisiting the collection copy example

–  clone() returns a Trajectory* pointer to a LineTrajectory for track1

–  clone() returns a Trajectory* pointer to a HelixTrajectory for track2

class LineTrajectory : public Trajectory {
 LineTrajectory(…) ;
 LineTrajectory(const LineTrajectory& other) ;
 virtual ~LineTrajectory() ;

 // ‘virtual copy constructor’
 virtual Trajectory* clone() const {
 return new LineTrajectory(*this) ; calls copy ctor
 }
} ;

list<Trajectory*>::iterator iter ;
for(iter=tl.begin() ; iter!=tl.end() ; ++iter) {
 Trajectory* track = *iter ;
 Trajectory* newTrack = track->clone() ;
 clonedTrackList.push_back(newTrack) ;
}

© 2006 Wouter Verkerke, NIKHEF

Run-time type identification

•  Sometimes you need to cheat…
–  Example: The preceding example of cloning a list of tracks

–  Proper solution: add virtual clone() function

–  But what if (for whatever reason) we cannot touch the base class?
•  For example: it is designed by somebody else that doesn’t want you to change it,

or it is part of a commercial library for which you don’t have the source code

–  Can you still tell what the true type is given a base class pointer?

•  Solution: the dynamic_cast<> operator
–  Returns valid pointer if you guessed right, null otherwise

Trajectory* track ;
LineTrajectory* lineTrack =
dynamic_cast<LineTrajectory*>(track) ;

if (lineTrack != 0) {
 cout << “track was a LineTrajectory” << endl ;
} else {
 cout << “track was something else” << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

Run time type identification

•  Solution to trackList clone problem

–  Obviously ugly, maintenance prone, incomplete

–  Use dynamic_cast<> as last resort only!

list<Trajectory*>::iterator iter ;
for(iter=tl.begin() ; iter!=tl.end() ; ++iter) {
 Trajectory* track = *iter ;

 LineTrajectory* line = dynamic_cast<LineTrajectory*> track ;
 if (line) {
 newTrack = new LineTrajectory(*line) ;
 continue ;
 }

 HelixTrajectory* helix = dynamic_cast<HelixTrajectory*> track;
 if (helix) {
 newTrack = new HelixTrajectory(*helix) ;
 continue ;
 }

 cout << “ERROR: track is neither helix nor line” << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

C++ competes with your government

•  Flip side of polymorphic inheritance – performance

•  Inheritance can be taxed!
–  In C++ you incur a performance overhead if you use virtual

functions instead of regular (statically bound) functions
–  Reason: every time you call a virtual function the C++ compiler

inserts code that identifies the true identity of the object and
decided based on that information what function to call

–  Overhead only applies to virtual functions. Regular function in a
class with other virtual functions do not incur this overhead

•  Use virtual functions judiciously
–  Don’t make every function in your class virtual
–  Overhead is not always waste of time. If alternative is figuring out

the true identity of the object yourself, the lookup step is intrinsic
to your algorithms.

