
Concurrency

N.B.

• All this requires C++11 (or more recent)

• Much more detail e.g. in “Concurrency in Action” (also source of examples)

Need for concurrency

Dictionary: “the fact of having two or more events or circumstances
happening or existing at the same time”
• in computing context: simultaneous execution of multiple tasks

• not to be confused with seemingly simultaneous processes on a single CPU
core: these are in fact switched between (scheduling done by kernel)

Nowadays, many computers come 
with multi-core CPUs: allows for  
distribution of work over multiple 
cores
• relevant as the most 

obvious way to improve 
computing performance 
is to use more CPU cores
• breakdown of Moore’s law

10

Thread basics

System level representation of a “task” within a program

• NB alternatively a function object could be used (see next slide)

• generally not efficient to use more threads than there are cores (or twice that, if hyper-threading
is used on the machine)

11

#include <thread>
#include <string>
#include <iostream>
using namespace std;

void f1() {
 cout << "Hello ";
}

void f2(const std::string& s) {
 cout << s << endl;
}

int main() {
 thread t1(f1);
 thread t2{f2, "Parallel World!"};
 t1.join();
 t2.join();
 return 0;
}

function w/o arguments

Thread basics

System level representation of a “task” within a program

• NB alternatively a function object could be used (see next slide)

• generally not efficient to use more threads than there are cores (or twice that, if hyper-threading
is used on the machine)

11

#include <thread>
#include <string>
#include <iostream>
using namespace std;

void f1() {
 cout << "Hello ";
}

void f2(const std::string& s) {
 cout << s << endl;
}

int main() {
 thread t1(f1);
 thread t2{f2, "Parallel World!"};
 t1.join();
 t2.join();
 return 0;
}

function with arguments

Thread basics

System level representation of a “task” within a program

• NB alternatively a function object could be used (see next slide)

• generally not efficient to use more threads than there are cores (or twice that, if hyper-threading
is used on the machine)

11

#include <thread>
#include <string>
#include <iostream>
using namespace std;

void f1() {
 cout << "Hello ";
}

void f2(const std::string& s) {
 cout << s << endl;
}

int main() {
 thread t1(f1);
 thread t2{f2, "Parallel World!"};
 t1.join();
 t2.join();
 return 0;
}

aggregate initialisation 
(uses “variadic template 
constructor”: 
free arguments)

Thread basics

System level representation of a “task” within a program

• NB alternatively a function object could be used (see next slide)

• generally not efficient to use more threads than there are cores (or twice that, if hyper-threading
is used on the machine)

11

#include <thread>
#include <string>
#include <iostream>
using namespace std;

void f1() {
 cout << "Hello ";
}

void f2(const std::string& s) {
 cout << s << endl;
}

int main() {
 thread t1(f1);
 thread t2{f2, "Parallel World!"};
 t1.join();
 t2.join();
 return 0;
}

wait for threads to
finish; omitting join() will
lead to run-time error

Thread basics: modifying data

To do something useful with threads, they need data
• following example: two ways of passing a non-const reference
• function object also makes it easy to store any results

12

#include <functional>

void manipulate(vector<double>& v) {
 …
}

struct my_f {
 vector<double>& v;
 my_f(vector<double>& vv): v(vv) {}
 void operator()();
 void my_function();
}

vector<double> v {0., 1., 2., 3.14159};
thread t {manipulate, std::ref(v)};

vector<double> v2(v), v3(v);
thread t2 {my_f(v2)};
my_f f;
thread t3 (&my_f::my_function, f);

use std::ref() to indicate explicitly
the use of a reference (otherwise
the assumption is that
arguments will be passed by
value — and compilation will fail)

struct storing a reference (!)

Thread ownership and “move semantics”

Threads cannot be copied (what would this mean anyway, given that
they start executing a “function” as soon as they are instantiated?)
• but it is possible to transfer ownership of a thread using its move

constructor:
• this uses the concept of rvalue reference (denoted by &&), which we will

not elaborate on more (except to say that one can typically use it as the
object itself, and it is typically used for temporary objects)

• move constructors swap resources; they may be compiler generated

• move semantics: may be used to prevent unnecessary copying
• to be compared  

with ex 2.1

• especially useful 
in case of pointer  
data members

13

thread (thread&& t)

template<class T>  
swap(T& a, T& b) {
 T tmp(std::move(a));
 a = std::move(b);
 b = std::move(tmp);
}

std::move() effectively turns its
argument into an rvalue reference

Thread ownership (continued)

Effect of the preceding discussion: threads can be returned to a
calling function, can be entered in containers etc.
• example:

• N.B. individual threads can still be identified by ID:

14

void do_work(unsigned int i) {
 …
}

vector<thread> threads;
for (unsigned int i = 0; i < N; ++i) {
 threads.push_back(thread(do_work, i));
}
for (unsigned int i = 0; i < N; ++i) {
 threads[i].join();
}

under the hood: move
constructor called

thread t(do_work, 0);
thread::id id = t.get_id();
…
if (this_thread::get_id() == id) {
 …
}

within a thread, and
assuming it is
informed of id

Shared use of resources

Running the program on p11 will lead to ill-defined results: shared
use of std::cout
• order of print statements not well defined, or could even be garbled

Example of a general problem when resources are shared between
threads, if at least one of them has write access
• even a single operation on a basic type involves multiple steps

(loading into cache, from there into register, actual manipulation, then
moving back through cache to memory), allowing for data race

15

Thread 1 Thread 2

retrieve X from memory
modify X
store X in memory

retrieve X from memory
modify X
store X in memory

old value still in memory(!)

modified value ignores
any action in thread 1

Mutual Exclusion object locking: mutex

std::mutex: basic locking mechanism in C++

• imagine that functions below are executed in different threads

• use of lock_guard mainly offers code robustness: no need to worry
about unlocking mutex object

16

#include <mutex>
#include <algorithm>

list<int> some_list;
mutex some_mutex;

void add_to_list(int new_value) {
 lock_guard<mutex> guard(some_mutex);
 some_list.push_back(new_value);
}

bool list_contains(int value_to_find) {
 lock_guard<mutex> guard(some_mutex);
 return (std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end());
}

mutex object intended
to “protect” list object lock_guard also defined in <mutex>: calls

mutex::lock() when instantiated,
mutex::unlock() when going out of scope

lock here prevents list from
being read while being modified

Giving a mutex object a proper place

Extracted from the preceding page:

• association of mutex object with data object is entirely by convention!

In an object oriented world, better coherence can be achieved by embedding
both the data object and the mutex in a wrapper class:

17

list<int> some_list;
mutex some_mutex;

class my_data {
 …
public:
 manipulate();
};

class my_wrapper {
 my_data d; mutex m;
public:
 void process() {
 lock_guard<mutex> g(m); d.manipulate();
 }
 my_data& retrieve() {
 lock_guard<mutex> g(m); return d;
 }
};

danger! reference (or pointer) to
data object is again unprotected
(despite the mutex lock)

Deadlock

Locking does not come without its own pitfalls..
• it may happen that access is required by multiple threads to two (or

more) resources, which both need to be protected by a mutex lock
• this may lead to the opposite problem compared to a data race:

deadlock
• if the threads in this example have 

acquired their mutex lock at the 
same time, they will wait indefinitely  
for the other to release its lock

18

Thread 1 Thread 2

lock mutex 1
(some code)
lock mutex 2

lock mutex 2
(some code)
lock mutex 1

Deadlock: how to avoid it

Recommendation: do not attempt to acquire a lock if you already
have one (i.e., if multiple ones are needed, acquire them
simultaneously)

• in this case the mutex could alternatively be used for both resources;
in general, too coarse granularity can slow code down unduly

If it is not possible to acquire the locks simultaneously, it will help to
always acquire them in the same order
• may be easier said than done

19

mutex m1, m2;
…
std::lock(m1, m2);
lock_guard g1(m1, std::adopt_lock);
lock_guard g2(m2, std::adopt_lock);

simultaneous acquisition of both locks

to deal with unlocking without
attempting to lock once again

Re-entrant functions and deadlock

With a standard (non-recursive) mutex, the following (variadic!) re-entrant
function would block itself

• shown here for completeness; often other alternatives to re-entrant code
are possible
• yet more complete: timed_mutex (with timeout), unique_lock (with additional

functionality, e.g., can be copied)

Finally: locking is non-trivial to get right (and also takes time)
• useful to try to avoid or minimise its use

20

#include <mutex>
recursive_mutex rm;

template<typename Arg,typename… Args>
void write(Arg a, Args tail…) {
 lock_guard<recursive_mutex> g(rm);
 cout << a;
 write(tail…);
}

Task synchronisation between threads

It may be useful for threads to be able to communicate (one thread waiting for something
in another thread to happen); mutex locks can be used for this, but “raw” use generally
isn’t efficient
• continuous checking of mutex keeps CPU busy

• alternative of sleeping / waking up periodically may be better.. but how to determine the
period?

std::condition_variable deals with this in a CPU-friendly way

21

#include <condition_variable>
…
bool some_condition;
mutex m;
condition_variable cv;
…
void some_consumer() {
 unique_lock<mutex> l(m);
 cv.wait(l, []{ return condition; });
 …
}

void some_producer() {
 lock_guard l(m);
 condition = true;
 cv.notify_one();
}

notify thread waiting for release of lock;
NB also a version notifying all threads
waiting for this lock release exists

some_condition: condition of interest

use unique_lock rather than lock_guard
as is copied in call to wait()

“lambda expression” may be
evaluated repeatedly until true

