
© 2006 Wouter Verkerke, NIKHEF

Introduction to C++
and Object Oriented Programming

Wouter Verkerke (NIKHEF)

v55 – Edition for 2015 Master course

© 2006 Wouter Verkerke, NIKHEF

Introduction and Overview

Introduction
& Overview 0

© 2006 Wouter Verkerke, NIKHEF

Intended audience and scope of course

•  This course is targeted to students with some
programming experience in procedural (i.e. non-OO)
programming languages like Fortran, C, Pascal
–  No specific knowledge of C, C++ is assumed

•  This course will cover
–  Basic C/C++ syntax, language features

–  Basics of object oriented programming

•  This course has some extra focus on the application of C
++ in (High Energy) Physics
–  Organized processing and analysis of data

–  Focus mostly in exercises

© 2006 Wouter Verkerke, NIKHEF

Programming, design and complexity

•  The goal of software – to solve a particular problem
–  E.g. computation of numeric problems, maintaining an organized

database of information, finding the Higgs etc..

•  Growing computational power in the last decades has
allowed us to tackle more and more complex problems

•  As a consequence software has also grown more
powerful and complex
–  For example Microsoft Windows OS, last generation video games,

often well over 1.000.000 lines of source code
–  Growth also occurs in physics: e.g. collection of software packages

for reconstruction/analysis of the BaBar experiment is ~6.4M lines
of C++

•  How do we deal with such increasing complexity?

© 2006 Wouter Verkerke, NIKHEF

Programming philosophies

•  Key to successfully coding complex systems is break
down code into smaller modules and minimize the
dependencies between these modules

•  Traditional programming languages (C, Fortran, Pascal)
achieve this through procedure orientation
–  Modularity and structure of software revolves around ‘functions’

encapsulate (sub) algorithms
–  Functions are a major tool in software structuring but leave a few

major design headaches

•  Object-oriented languages (C++, Java,…) take this
several steps further
–  Grouping data and associated functions into objects
–  Profound implications for modularity and dependency reduction

© 2006 Wouter Verkerke, NIKHEF

What are objects

•  ‘Software objects’ are often found naturally in real-life
problems

•  Object oriented programming ! Finding these objects
and their role in your problem

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

What are objects

•  An object has
–  Properties : position, shape, text label

–  Behavior : if you click on the ‘Cancel button’ a defined action occurs

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

Relating objects

•  Object-Oriented Analysis and Design seeks the relation
between objects
–  ‘Is-A’ relationship (a PushButton Is-A ClickableObject)

–  ‘Has-A’ relationship (a DialogBox Has-A CheckBox)

Button object Check box object

Drop box object

Dialog box
object

© 2006 Wouter Verkerke, NIKHEF

Benefits of Object-Oriented programming

•  Benefits of Object-oriented programming
–  Reuse of existing code – objects can represent generic problems

–  Improved maintainability – objects are more self contained than
‘subroutines’ so code is less entangled

–  Often a ‘natural’ way to describe a system – see preceding
example of dialog box

•  But…
–  Object oriented modeling does not substitute for sound thinking

–  OO programming does not guarantee high performance, but it
doesn’t stand in its way either

•  Nevertheless

–  OO programming is currently the best way we know
to describe complex systems

© 2006 Wouter Verkerke, NIKHEF

Basic concept of OOAD

•  Object-oriented programming revolves around
abstraction of your problem.
–  Separate what you do from how you do it

•  Example – PushButton object

PushButton is a complicated
piece of software – Handling
of mouse input, drawing
of graphics etc..

Nevertheless you can use a
PushButton object and don’t
need to know anything about
that. Its public interface can
be very simple: My name is
‘cancel’ and I will call function
doTheCancel() when I get
clicked

© 2006 Wouter Verkerke, NIKHEF

Techniques to achieve abstraction

•  Abstraction is achieved through

1.   Modularity

2.   Encapsulation

3.   Inheritance

4.   Polymorphism

© 2006 Wouter Verkerke, NIKHEF

Modularity

•  Decompose your problem logically in independent units
–  Minimize dependencies between units – Loose coupling

–  Group things together that have logical connection – Strong cohesion

•  Example
–  Grouping actions and properties of a bank account together

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

© 2006 Wouter Verkerke, NIKHEF

Encapsulation

•  Separate interface and implementation and shield
implementation from object ‘users’

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

interface

implementation
(not visible from outside)

© 2006 Wouter Verkerke, NIKHEF

Inheritance

•  Describe new objects in terms of existing objects

•  Example of mortgage account

long getBalance()
void print()
void calculateInterest()

char* ownersName
long accountNumber
long accountBalance

Account

interface

implementation
(not visible from outside)

char* collateralObject
long collateralValue

MortgageAccount

© 2006 Wouter Verkerke, NIKHEF

Polymorphism

•  Polymorphism is the ability to treat objects of different
types the same way
–  You don’t know exactly what object you’re dealing with but you

know that you can interact with it through a standardized
interface

–  Requires some function call decisions to be taken at run time

•  Example with trajectories
–  Retrieve position at a flight length of 5 cm

–  Same interface works for different objects with identical interface

Point p = Traj->getPos(5.0)

LineTrajectory HelixTrajectory

© 2006 Wouter Verkerke, NIKHEF

Introduction to C++

•  Wide choice of OO-languages – why program in C++?
–  It depends on what you need…

•  Advantage of C++ – It is a compiled language
–  When used right the fastest of all OO languages
–  Because OO techniques in C++ are resolved and implemented at compile

time rather than runtime so
•  Maximizes run-time performance
•  You don’t pay for what you don’t use

•  Disadvantage of C++ – syntax more complex
–  Also, realizing performance advantage not always trivial

•  C++ best used for large scale projects where performance
matters
–  C++ rapidly becoming standard in High Energy Physics for mainstream data

processing, online data acquisition etc…
–  Nevertheless, if your program code will be O(100) lines and performance is

not critical C, Python, Java may be more efficient

© 2006 Wouter Verkerke, NIKHEF

C++ and other programming languages

•  NB: Java very similar to C++, but simpler
–  Simpler syntax as all OO support is implemented at run-time
–  If you know C++ Java will be easy to learn

ALGOL60

Simula67

SmallTalk
C

C with classes

C++

ANSI/ISO C++ Java

Pascal

Ada83

Eiffel

Objective C

Versions of C++

•  C++ is a ‘living language’ that evolves over time.

•  This course is largely based on the 2003 standard of C++

•  LHC experiments are now largely adopting C++ compilers
that implement the 2011 standard of C++, which brings
useful new features
–  E.g. Auto types, range-based for loops, lambdas, constructor

delegation, tuples, hash tables and pointer memory management

–  I will cover a subset of these C++2011 features in this course,
and explicitly point out the features that are only available in C+
+2011

•  For the GNU compilers (gcc/g++) some of the C++2011
features are implement starting in version 4.4, with
almost all features implemented in 4.7
–  In gcc 4.[3456] must add flag ‘-std=c++0x’ to activate

–  In gcc 4.[78] must add flag ‘-std=c++11’ to activate

© 2006 Wouter Verkerke, NIKHEF

© 2006 Wouter Verkerke, NIKHEF

Outline of the course

1.  Introduction and overview

2.  Basics of C++

3.  Modularity and Encapsulation – Files and Functions

4.  Class Basics

5.  Object Analysis and Design

6.  The Standard Library I – Using IOstreams

7.  Generic Programming – Templates

8.  The Standard Library II – The template library

9.  Object Orientation – Inheritance & Polymorphism

10. Robust programming – Exception handling

11. Where to go from here

