
Language binding

N.B.
• All this requires C++11 (or more recent)
• extensive Pybind11 documentation is available

Doing computations efficiently: user-friendliness

Computational efficiency of C++ exceeds that of Python by a large margin, but
• this comes with the burden of first needing to write the (more complex) C++ code

to begin with (unavoidable)
• the development cycle (write/modify code, compile, test, …) can be tedious and

(in case of large projects) overly long
• if providing code for others: reality is that many users prefer a high-level language

like Python

It makes very good sense to try and combine the desirable features from both
languages
• notably, provide high-level steering & configuration of C++ tools from Python
• we will restrict ourselves to this functionality

23

Generic task

Even though the Python interpreter itself has been written in C, many
differences between C++ and Python exist at the user level
• actually, there is an alternative to the standard CPython interpreter: Pypy is

written in yet a different language (RPython)

Consequence: a “glue” layer is needed to provide inter-operability

In the following, we will use the Pybind11 code suite to provide this layer
• not the only alternative: there are other alternatives like SWIG, cppyy that offer

substantially more automation compared to pybind11. However, they require a
software setup that is not readily available on our Linux systems, so it seems
less prudent to focus on them now
• corollary: we will keep this topic brief, as the details are too implementation specific

24

Basics

Installation (tested on university Linux systems):

• functionality is then provided through a header

General usage:
• for each function / class, provide a C++ code snippet indicating the

functionality that should be made available to the Python “user” world (and
how)

• this snippet should be compiled into a shared object library, which can
subsequently be used from the Python side

• in the subsequent slides, we will discuss some very basic usage
• assume all code (including C++ code) will be compiled in one go, into the same

shared library: not very elegant, but improving on this would likely require
delving into the CMake build system as well

25

pip install pybind11

c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup `python3 -m pybind11 \
 --includes` *.cc -o example`python3-config --extension-suffix`

Basics

Installation (tested on university Linux systems):

• functionality is then provided through a header

General usage:
• for each function / class, provide a C++ code snippet indicating the

functionality that should be made available to the Python “user” world (and
how)

• this snippet should be compiled into a shared object library, which can
subsequently be used from the Python side

• in the subsequent slides, we will discuss some very basic usage
• assume all code (including C++ code) will be compiled in one go, into the same

shared library: not very elegant, but improving on this would likely require
delving into the CMake build system as well

25

pip install pybind11

c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup `python3 -m pybind11 \
 --includes` *.cc -o example`python3-config --extension-suffix`

this retrieves the include paths for both 
the pybind11 and Python headers

Basics

Installation (tested on university Linux systems):

• functionality is then provided through a header

General usage:
• for each function / class, provide a C++ code snippet indicating the

functionality that should be made available to the Python “user” world (and
how)

• this snippet should be compiled into a shared object library, which can
subsequently be used from the Python side

• in the subsequent slides, we will discuss some very basic usage
• assume all code (including C++ code) will be compiled in one go, into the same

shared library: not very elegant, but improving on this would likely require
delving into the CMake build system as well

25

pip install pybind11

c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup `python3 -m pybind11 \
 --includes` *.cc -o example`python3-config --extension-suffix`

this assumes you are using Python3; 
omit if this is not the case

Access to a C++ function

Example lifted from manual:

• N.B. not a regular function but a preprocessor statement
• in Python:

26

#include <pybind11/pybind11.h>

int add(int i, int j) {
 return i+j;
}

PYBIND11_MODULE(example, m) {
 m.doc() = "pybind11 example plugin"; // optional docstring
 m.def("add", &add, "A function that adds two numbers");
}

pass address of add()

module name (must match shared
library filename, apart from extension)

variable of type pybind11::module

>>> import example
>>> dir(example)
['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'add']
>>> example.add(3,5)
8

Access to a C++ class

Example lifted from manual:

• alternatively:

• useful for “simple” properties (getter & setter methods)

27

#include <pybind11/pybind11.h>
#include <string>

class Pet {
 public:
 Pet (const std::string& name) : name(name) { }
 void setName(const std::string& name_);
 const std::string& getName() const;
 private:
 std::string name;
};

namespace py = pybind11;

PYBIND11_MODULE(Pet, m) {
 py::class_<Pet>(m, “Pet”, py::dynamic_attr())
 .def(py::init<const std::string&>())
 .def("setName", &Pet::setName)
 .def("getName", &Pet::getName)

.def("__repr__", [](const Pet& a) { return "<Pet.Pet named '" + a.getName() + "'>";});
}

indicate that this is a class or struct

.def_property("name", &Pet::getName, &Pet::setName)

optional; indicate that this class 
may be extended in Python

add code allowing for a meaningful print()
statement, using a lambda function

expose the C++ constructor also as a
constructor (of the specified type) in Python

Dealing with inheritance

Example lifted from manual:

• in Python:

28

…

namespace py = pybind11;

class Parrot: public Pet {
public:
 Parrot(const std::string& name): Pet(name) {}
 const string talk () {return getName() + "wants a cookie!"};
};

PYBIND11_MODULE(Pet, m) {
 # py::class_ declaration for class Pet (see preceding page)
 …
 py::class_<Parrot, Pet>(m, "Parrot")
 .def(py::init<const std::string&>())
 .def("talk", &Parrot::talk);
}

>>> import Pet
>>> dir(Pet.Parrot)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', 'getName', 'setName', 'talk']

declare Parrot as deriving from Pet

Pointers and other uncovered items

Pointers do not exist within Python, so they must be dealt with
separately: tedious!
• recommendation: work with smart pointers (shared_ptr, unique_ptr)

only
• this may require writing a wrapper class converting those to the raw

pointers used in the original class

The preceding slides merely list the (in my opinion) most important
features of Pybind11 — sufficient for basic usage
• as stated previously: no attempt to be complete here

Other features (consult the manual):
• function overloading, enums, keyword arguments

29

