
Exercises

General instructions

a) only submit code that compiles (in the case of C++) and runs
• otherwise you will not be able to complete the course

b) document your code appropriately
• I have to be able to understand why you write your code in the way that you do
• there are explicit questions, to which I expect responses (either as comments on the

code or in separate text files)

c) in general, follow the directory structure that you will see used in the following
• exceptions: some code will be worked on in the context of multiple exercises

• in these cases, a different naming convention will be used, and the way to separate different
iterations will be different; details will follow

10

Exercise 0.1

The aim of this exercise is to get you started on a few topics you will need
further on: git/gitlab and compilation.

git is an open-source, fast, scaleable distributed revision control system that
is heavily used in large projects. gitlab is a service that can be used to
provide access to git repositories and also “hosts” your code. We will use
these for handing in exercises, using in particular the C&CZ gitlab server (see
wiki page):
a) start by creating an account on this server by logging on to it

• once you have the account, let me know so that I can give you access to the
repository created for this course

• I added those of you that I (think I) already found on the server

b) follow instructions for creating an ssh key

11

Exercise 0.1 (continued)

c) create a new (empty) repository on gitlab for you to store your completed code
in, again using the instructions on the wiki page

• do NOT add files or make any commit at this point (contrary to the wiki page’s
instructions)

• and provide me (username: filthaut) with guest access on gitlab

d) retrieve my initial repository
• git remote add upstream https://gitlab.science.ru.nl/filthaut/cds-advanced-

programming.git
• git fetch upstream
• git checkout -b master -- track upstream/master

• git config branch.master.remote origin

12

useful also later to synchronise repositories

makes it referrable to as “upstream”

for initial checkout; for later modifications (from my side) 
you will want to use “git merge”

make your gitlab repository the target for updates

Exercise 0.1 (continued)

e) At this point you should have a working directory with an ex0.1 subdirectory.
cd to it and follow the instructions in README.md (also visible here)

• create a text file (let’s call it results.txt) detailing your findings
• git add results.txt
• git commit
• git push -u

Notes:
• my repository is not finished at this point, so “git fetch upstream” and “git merge” will

be useful later
• more documentation on git can also be found from the C&CZ wiki page

• also (for git): “man git”; “git help <topic>” (where topic = add, commit, fetch, pull, push, etc.)

13

and synchronise your gitlab repository with it

add changes to your local repository

Exercise 0.2

The aim of this exercise is to show that Python is already doing more than
“just” interpreting the user level Python code. Notably, packages like numpy
and scipy exploit the power of compiled C code behind the scenes, and this
is especially helpful in the case of large arrays. It is relatively easy to test this
last feature, by performing the same task with different configurations.
a) Use numpy to generate a large number of random numbers, in one shot.

• I have done this with up to 109 RN — but note that this requires a substantial
amount of memory (4 GB), and you may want to verify how much memory you can
afford for your task

b) Do the same but in some large number of times.

Add both the Python macro(s) and the timing output comparison to the
repository, in a new subdirectory ex0.2

• “git add ex0.2”; “git commit”; “git push -u”

14

