
© 2006 Wouter Verkerke, NIKHEF

Exercise 2.1 – Sorting numbers and strings

•  The goal of this exercise is to learn how to use pointers and references
with functions

–  We will write a program that sorts an array of 10 random integers using the bubble sort
algorithm.

•  Approach – integer sorting
a)  Write a small main program that allocates an array of 10 integers and fill them with random

values.
a)  You can manually provide a series of 10 ‘random’ numbers in the initializer of the array in your code. You do not need

to develop code that calls a random number generator and fills the array.

b)  Add the above bubble sort algorithm in a separate sort() function that takes the array of
integers as input.

c)  Provide the missing piece of the sort algorithm: an order() subroutine that takes references
to two ints and that swaps their values if the 2nd argument is greater than the 1st argument.

a)  NB: Note that the order() routine you’re asked to develop here has a different functionality than the swap() routine
in the course material of section 2

d)  Add code to your main program that prints out the array after sorting to verify that all works
correctly.

e)  Now reimplement the order() function using pointers and adjust sort() accordingly. Do you
like the pointer or the reference version better?

for (i=0; i<n-1; i++) {
 for (j=0; j<n-1-i; j++) {
 // if A[j+1]>A[j] swap A[j] and A[j+1]
 }
}

© 2006 Wouter Verkerke, NIKHEF

Exercise 2.1 – Sorting numbers and strings

•  Approach – string sorting
f)  Make a copy of the main program and change it so that it allocates

an array of 10 const char* pointers and initialize them with 10
string literals (e.g. “blah”). Why do you need the const here?

g) Adjust the arguments of the sort() and order() functions to accept
the array. What type of argument should order() take? The easiest
way to figure it out is to think of ‘const char*’ as a fundamental type
and proceed as usual

h) Adjust the contents of sort(). You can use the strcmp(a,b) function
declared in <cstring> from the standard library to compare the
strings. This function returns an integer value greater or smaller than
zero depending on the lexical order of the two input strings. Why
can’t you just compare the pointer values to compare the strings?

i)  Reimplement the order() function using references to pointers

© 2006 Wouter Verkerke, NIKHEF

Exercise 2.2 – Function overloading

•  The goal of this exercise is to understand the basics of
function overloading.

•  Approach
a)  Implement the following overloaded min() functions

min(int,int), min(double,double), min(int[],int)

where the last function returns the minimum of an array of
integers with a length specified by the 2nd argument

b) Write a small program that tests your three implementations

c)  Now try call min() passing a double and an int as argument.
Why doesn’t this work?

d)  Fix this problem without using explicit casts

© 2006 Wouter Verkerke, NIKHEF

Exercise 2.3 – Namespaces and scope

•  The goal of this exercise is to understand the scoping
rules of name spaces

•  Approach: examine the following namespace definition
a)  Identify which print() functions are called in sub1() and

print() and explain why?
b)  Is the statement

‘using Black::print’
legal? Explain why?

namespace Black {
 void print(int k) {} ;
}

namespace White {
 void print(int k) {} ;
}

// b) Global using declaration -- OK?
using Black::print ;

void sub1() {
 using White::print ; // Local using declaration
 print(5) ; // a) Which print() is called?
}

void print(int k) {
 if (k>0) {
 print(k-1) ; // a) Which print() is called?
 }
}

© 2006 Wouter Verkerke, NIKHEF

Exercise 2.4 – Library exercise

•  The goal of this exercise is to learn the techniques involved in
packaging your code as a library in a modular and usable way

•  Approach - Create a library with overloaded min() and max()
routines for general use
a)  Move the overloaded min() functions from exercise 2.2 into min.cc

b)  Make a file max.cc with corresponding max() functions
c)  Move the declarations of the min and max functions into separate files:

min.hh and max.hh respectively
d)  Compile min.cc and max.cc into object files and collect them into a library

libMinMax.a. Protect your header files against multiple inclusion and test
this.

e)  Write a small test program that uses min() and max() from the library and
compile and link the test program with libMinMax.a

f)  Define a new function int min(int,int) in your test program and compile
and link your program again with libMinMax.a. Explain the errors you get

g)  Now modify min.cc, min.hh, max.cc and max.hh to move the
declarations and definitions of all functions into a namespace mylib.
Recompile your library

h)  Adapt the your test program to use both the min(int,int) function defined
in the library and the version defined inside the test program.

© 2006 Wouter Verkerke, NIKHEF

Exercise 2.5 – Passing multidimensional arrays

•  The goal of the exercise is to learn how to use multi-dimensional
arrays in C++.

•  Approach – Write a function that multiples a vector of length N with a
matrix of size N * 3

a)  First allocate the return value array using the new[] operator
b)  Implement the multiplication loop.
c)  Write a program to test your function. In this program initialize your matrix using the

double[n][m] = { … } initializer. Try to understand how the one-dimensional list of
initializer elements maps on the two-dimensional array

* =

double* multiply(double ivec[], int N, double mtx[][3])

