
© 2006 Wouter Verkerke, NIKHEF

Exercise 3.1 – Make Stack a proper class

•  Goal: Turn struct Stack into a proper class
–  In this exercise you will learn about access control and using

constructors and destructors for automatic initialization and
cleanup.

•  Approach
a)  Copy the file ex3.1/input/Stack.cc to your working area. This

file contains the struct Stack implementation as shown in the
course and will be your starting point for this exercise.

b)  First reorganize the code to improve the modularity: split the
code in Stack.cc into three files: Stack.h, Stack.cc, main.cc:
Move the class declaration to the header file, but keep the
implementation of Stack functions push() and pop() in Stack.cc
(i.e. outside the class definition). Move the test program to file
main.cc. Add proper #include statements in Stack.cc and
main.cc. Compile your code and check that it still works.

c)  Now change struct Stack into class Stack. Think about which
data and function members should be public and which should
be private. Implement access control in the class using the
keywords public and private according to your plan. Organize
the class declaration such that all public members are on the top
and all private members are on the bottom.

push() pop()

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.1 – Make Stack a proper class

d) Add a constructor and destructor and handle initialization
and cleanup in these functions. You can call the existing
init() function from the constructor. Should init() still
be public?

e) Next we add a new member function that allows the user
of class stack to look at its contents. Add an inspect()
member function that prints the current stack contents
vertically in the correct orientation (i.e. top of the stack
on top). Print for each item both the position in the stack
as well as its value.

f)  Finally modify your main() program so that it inspects
the buffer after you’ve written into it, and after you’ve
read from it. Convince yourself that it makes sense.

g) Change the main program to write 100 elements in the
stack instead of 10. Do you understand what happens?

push() pop()

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.2 – Add auto grow feature to Stack

•  Goal for this exercise: automatically grow the Stack
internal buffer when it runs out of memory
–  The fact that our Stack can be full is an artifact of the

implementation and has nothing to do with the abstract concept of
a stack. We will now change our code so that it never runs out of
memory again (barring physical memory limits)

•  Implementation plan in steps
a)  Reimplement Stack buffer with a variable buffer size through the

use of dynamic memory allocation for its internal buffer. To do
this you will need to modify

•  the constructor, destructor,

•  the type of the data member s and change the way the length of the buffer s is
stored (why?).

 Allow the user to specify the size of the buffer as an argument to
the Stack constructor.

b) Run the main() program to verify that the new Stack class works.

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.2 – Add auto grow feature to Stack

c)  Implement a grow(int delta) function that resizes the buffer s by amount
delta. The idea is that we can use this function later to enlarge our buffer
on the fly if we are about to run out of space. The function grow() should

•  Allocate a new buffer that is larger by amount delta.

•  Copy the content of the existing buffer to the new buffer.

•  Delete the old buffer and change pointer data member s to point to the new buffer.

•  Convince yourself that grow() does not introduce a memory leak. Who
deletes the memory allocated by grow?

d)  Now we are ready to modify the push() method so that it will exploit
grow() to expand the buffer size when the buffer is full. Insert code at the
beginning of push that checks if the buffer is full, and if it is calls the
grow() method to expand the buffer. Think about what is a reasonable
value for the growth increment delta. Explain what the advantages and
disadvantages of a small and a large increment size are.

e)  Run the main program again and verify that the buffer is expanded on the
fly to accommodate large input using inspect().

f)  Is it still necessary for the user of a stack to specify an initial size? Modify
the constructor so that the user doesn’t need to specify an initial size but
still can if he wants to. Why is it useful for the user to be able to specify an
initial size?

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.3 – The copy constructor

•  The goal of this exercise is to make Stack a properly behaved
class under all circumstances
–  A user of Stack should be able to make a copy of it without unintended side

effect, but we have never verified if this works properly

•  Approach – Verifying the behavior
a)  Go to the main() function of your test program and modify it such that it

fills the stack with 10 elements.
b)  Next, after the Stack s has been filled, make a copy of it using the copy

constructor which you call sclone.

c)  The intended effect of copying a Stack is that both the Stack structure and
its contents are copied and two completely independent instances of class
Stack exist: s and sclone.

This means that you should be able to manipulate one of them without
affecting the other. As a first step towards verifying this behavior, check
that s and sclone have identical contents (use the inspect() function).
Does it look OK?

d)  Now we will explicitly test the independence of s and sclone: Empty s by
calling pop() repeatedly. Once s is empty, inspect() both s and sclone
again. Does it look OK?

e)  As a final test, refill s again with 5 elements of value 100*i instead of value
i*i. Inspect both s and sclone again. Do you understand what happens?

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.3 – The copy constructor

•  Approach – fixing the behavior
f)  Declare and implement a copy constructor for class Stack. In the

copy constructor, take care to explicitly copy the value of all data
members, except for the buffer pointer s. Why should buffer s be
treated differently in the copy constructor?

g) Allocate a sufficiently large buffer s in the copy constructor and
copy the contents of the other Stack into the new buffer.

h) Then run the main() program again with all the tests that you
inserted for this exercise. Does it behave correctly now?

i)  From a ‘clean programming’ perspective it is desirable to avoid
duplication of code as much as possible. Do you see duplication of
code between your copy constructor and other member functions
of Stack?

j)  Rewrite the copy constructor so that it uses the init() function.

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.4 – Static members

•  Goal: write a class that counts the number of instances that
exist of it
–  Examine the code below

•  Approach – Write a class Counter that makes the above
fragment of code work.
a)  Write a dummy class Counter with an empty constructor and destructor.

int main() {
 Counter a ;
 Counter b ;
 cout << “there are now “
 << Counter::getCounter()
 << “Counter objects” << endl ;
 if (true) {
 Counter c ;
 cout << “ and now “ << Counter::getCounter() ;
 }
 cout << “ and now “ << Counter::getCounter() << endl ;
}

© 2006 Wouter Verkerke, NIKHEF

Exercise 3.4 – Static members

b)  Your class needs to have an integer variable that counts the
number of class instances. This variable should be shared between
all instances. You can use a static int data member to
accomplish this. Be sure to both declare the static variable in the
class declaration and initialize this variable to zero in its definition.

–  Why doesn’t the initialization belong to the class declaration?

c)  Modify the constructor and destructor such that they increment
and decrement the counter by one respectively.

d)  Implement the getCounter() method so that it works as used in
the example fragment. Note that this implies that you can call
getCounter() without an available Counter object instance, so
this function needs to be declared static as well.

