
© 2006 Wouter Verkerke, NIKHEF

Exercise 5.1 – Basic IO stream formatting

•  The goal of this exercise is to use the iostream manipulators
to format output on the terminal
–  Be sure to include the <iomanip> header for this exercise.

•  Approach – reading and writing integers in decimal, hex and
octal
a)  Write a small program that reads in an integer from cin.
b)  Write it out in decimal, hexadecimal and octal format on three separate

lines using the iostream manipulators to specify the formatting.
c)  Change the reading part of the program so that it expects a hex number

instead of a decimal number.

•  Approach – Reading and writing floating points in various
formats
d)  Extend the main program so that it also reads three floating point numbers

f1, f2 and f3.
e)  Print f1, f2 and f3 separated by spaces in scientific format (i.e. 0.33e05).

Do you need to repeat the scientific mode manipulator in front of each
floating field?

f)  Print f1, f2 and f3 again, but now change the formatting using the setw()
manipulator such that each number is printed in a 20 character field. Do
you need to repeat the setw() manipulator in front of each field?

g)  Print f1, f2 and f3 once more, but now in fixed precision notation with 3
figures behind the dot and aligned left in their fields (e.g. “ 15.253 ”)

© 2006 Wouter Verkerke, NIKHEF

Exercise 5.1 – Basic IO stream formatting

h)  Insert code above the code you designed for question f) that
prints a line with the text headers ‘ValueA’, ‘ValueB’ and ‘ValueC’
spaced in such a way that they align with the numbers below.

i)  Finally, add code to print a line of dashes (‘-’) between the header
and the values. You are not allowed to use more than one (1)
dash character in this statement. Hint: use the setw() and
setfill() manipulators.

© 2006 Wouter Verkerke, NIKHEF

Exercise 5.2 – Reading a file

•  The goal of this exercise is to read a file with integers to
the end.

•  Approach
a) Write a program that opens the file ex5.2/data1.txt using the

class ifstream.

b) Add code that verifies that the file was opened OK. Check that this
code works by temporarily changing the name of the file to be
opened to a different – non-existent – one, e.g. data2.txt. (Hint:
use operator!())

c)  Look at the contents of file ex5.2/data1.txt. You will see that it
contains only integers, separated by spaces and/or newlines.
Write a loop that reads in one integer at a time until you reach the
end of the file. Print each integer as you read it in. Think about
how you will know when you have reached the the end of the file.

d) Change the loop so that it introduces an additional condition to
stop reading: when you have read an integer with value zero.

© 2006 Wouter Verkerke, NIKHEF

Exercise 5.3 – Word counting

•  The goal of this exercise is to count the number of lines,
words and characters in a text file, similar to the UNIX utility
wc

•  Approach - Write a program that counts the lines of a text file
a)  Write a program that takes a filename as argument when it is invoked (e.g.

‘unix> myProgram theFile.txt’), opens that file and checks if the file was
opened successfully.
(Hint: use main(int argc, char* argv[]). You can use the file ex5.3/
example.txt as input.

b)  Write a loop the read the file line by line using ifstream::getline(char*
buf, int buflen) ;. Think about how you will know when you are at the
end of the file.

c)  In the loop, count the number of lines you read and report the line count to
standard output at the end of the program.

d)  Run your program on example.txt and cross check your result with the
unix utility wc –l <file>

•  Approach – Augment the program such that it counts the
number of characters as well.
e)  Add code in the loop that processes each line that counts the number of

characters in that line and use that number to calculate the total number of
characters in the file.
Cross check your result with ‘wc –c example.txt’

© 2006 Wouter Verkerke, NIKHEF

Exercise 5.3 – Word counting

•  Approach – Modify the program such that also counts
the number of words in the file
f)  Add code in the loop that reads and processes each line as

follows:

g) Construct an istringstream object (declared in <sstream>)
passing the char[] line buffer as constructor argument. This
creates an input stream representation of the current line you are
processing and allows you reread the line using the C++ streamer
operators

h) Read a char[] string from the istringstream. The read will stop
as soon as you encounter a white space in the line represented by
the stream. Repeat the reading procedure until you are at the end
of the stream (how do you know that?). The number of successful
reads is the number of words on the line. Explain why.

i)  Use the number of words per line to calculate the total number of
words in the file. Report the total number of words at the end of
your program and cross check your result with ‘wc example.txt’

