
© 2006 Wouter Verkerke, NIKHEF

Exercise 6.1 – Template functions

• The goal of this exercise is to rewrite the sorting function of 
Exercise 2.1 as a generic algorithm by writing it as a template
function.
a) Start from the solution for Exercise 2.1 that is based on passing references 

to integers as a starting point for this exercise.
b) First, turn the order() function in to a template function by prefixing the 

function declaration with a template<class T> line. Note that both the 
declaration and the definition of the function need to be prefixed in this 
way. Now change all occurrences of the type int in order() with the new 
generic type T. Hint: There are 3 occurrences in total

c) Next, turn the sort() function into a template function in the same way: 
prefix the function declaration and definition with a template declaration 
and replace all occurrences of type int with the generic type T.

d) Compile the program and verify that it works.

e) Move the code fragment in main() that prints the contents of the array into 
a display(T t[], int n) function and make display() a template 
function as well.

f) Verify once more that everything works for arrays of integers. Now add an 
array of randomly ordered float values to your main() function and sort()
and display() them as well. If your code is properly written a version of 
sort() and display() that works with floats should be generated 
automatically by the compiler.



© 2006 Wouter Verkerke, NIKHEF

Exercise 6.1 – Template functions

g) Finally, add an array char* pointers to main() (You can reuse the 
list you created in exercise 2.1 for the sorting of strings) and try 
to sort() and display() them as well.

h) You will see that the above code does not work, try to understand 
why. 

i) Fix the string sorting problem by introducing a template 
specialization for type char* that replaces the regular comparison 
operator(<) with a strcmp() function call, similar to your string 
sorting solution of exercise 2.1. Think about which function do you 
need to specialize: order(), sort() or both?



© 2006 Wouter Verkerke, NIKHEF

Exercise 6.2 – A generic container class

• The goal of this exercise is to write a class Array that mimics 
the behavior of a C++ array, but provides more intelligent 
memory management 
a) Start with the input class ex6.2/Array.hh that implements a simple 

implementation of an array of double values. Convince yourself that the 
class correctly implements the constructor, destructor, copy constructor and 
assignment operator.

b) Change the class Array into a template class Array.
c) Use class Array in a small test program to store an array of integers and to 

store an array of ‘const char*’ strings.

d) Does the code in operator[] look safe to you? What happens if you try to 
access element 1000 of an array of length 10?

e) Change the operator[] such that when an element beyond the range of 
array is accessed, the array is automatically extended to include that 
element using the resize() function.

f) A drawback of the resize() operation is that the newly created elements 
do not have a defined value. Change the constructor of class Array such 
that it has takes two arguments: the initial capacity and the default value 
that is assigned to ‘blank’ elements. Change the resize() function such 
that it uses the specified default value to initialize all newly allocated 
elements, and make sure that the default values are transferred in the copy 
constructor and the assignment operator.



© 2006 Wouter Verkerke, NIKHEF

Exercise 6.3 – Revisiting the class Stack

• The goal of this exercise is to revisit the Stack class from 
exercise 3.3 and revisit its storage strategy from a ‘raw’ C++ 
array into the use of the ‘smart’ class Array.
a) Copy the provided solution for the Stack class from exercise 3.3, its main 

program as well as the Array class from exercise 6.2. Compile the code and 
verify that works OK.

b) We will now rewrite class Stack to use class Array for internal storage. We 
start with the data members of class Stack: In the solution of Ex. 3.3, the 
data is stored using an array of doubles (double *s) and an associated 
length (int len). Replace these with an Array<double> s. Don’t forget to 
include the Array.hh header file in Stack.hh.

c) There are several places in the code of Stack that use the length of the 
internal memory buffer that used to be stored in len. This information is now 
available from Array<double> s, so replace each occurrence of len in the 
code with s.size(), which reports the size of the buffer in s.

d) Do you still need an explicit copy constructor and destructor for class Stack? 
Hint: do you still have pointers to ‘owned’ memory as data members?. If not, 
remove them.

e) Adapt the constructor to initialize all data members: s with given size and 
counter with value zero. Eliminate function init() since it is now 
superfluous.



© 2006 Wouter Verkerke, NIKHEF

Exercise 6.3 – Revisiting the class Stack

f) Remove grow() entirely since its functionality is now mostly 
absorbed in Array. In push() replace grow() with 
s.resize(s.size()+10).

g) Test the modified Stack class with the main program to verify that 
it still works.

h) As a final step, turn class Stack into a template class Stack. 
To do so you need to change any reference to type double to a 
generic type T in the code and add a template<class T> line to 
the class declaration.


