
© 2006 Wouter Verkerke, NIKHEF

Exercise 7.1 – Make a catalogue of English words

• The goal of this exercise is to use C++ STL classes to make a 
catalogue of all the English words that occur in a given text 
file, including the number of times that each word occurs.
a) Write a small main() program that reads in file ex5.3/example.txt word 

by word. Open the file using an ifstream class and read each word into a 
STL class string using operator>>. As a first step in the development of 
your program, print each word as your read it.

b) The next step is to use an STL map to keep track of all the words. Create 
an object name myMap of the type map<string,int> in the beginning of 
your program that will hold the catalogue of words. Then replace the line of 
code in your reading loop that prints out the word with a line of code that 
stores it: myMap[word] += 1. Explain what the preceding line of code does.

c) Finally, at the end of your program – once you have processed all words in 
the file – print out the contents of myMap using the iterator mechanism: 
First create an iterator that points to the first element of myMap using the 
begin() method. Then create a while() loop that compares the iterator to 
the value of myMap.end(), which returns an iterator pointing to the last 
element in the map(). Inside the loop, print out each map element. 
Remember that a map stores a pair of values and the iterator points to a 
pair object, which has data member first and second that hold the key 
and value of each map entry. Finally, use the ++ operator to move the 
iterator to the next element inside the while loop.

Online STL reference: https://en.cppreference.com/w/cpp/container



© 2006 Wouter Verkerke, NIKHEF

Exercise 7.2 – A palindrome tester

• The goal of this exercise is to write a program that checks if a 
vector is a palindrome
– A palindrome is a sequence of values that reads the same forward as 

backward (e.g. 1,2,3,2,1)

• Approach – vector<int> palindromes
a) Create a small main() program that allocates a vector<int>

b) Now write a piece of code that checks if that vector is a palindrome. To do 
so use two iterators: one that starts at the front and is incremented and 
one that starts at the end and is decremented. Compare elements pointed 
to by both iterators at each step, if there is a mismatch the vector is not a 
palindrome

• Functions begin() and end() return iterators starting at the begin and end respectively. 

• Note that the iterator returned by end() is positioned beyond the end of the collection – you need 
to decrement it once to put it on the last element.

• Approach – vector<T> palindromes
c) Write a template function bool isPalindrome(vector<T> v) that can 

perform the check for a vector of any type
• You can ignore any g++ compiler warnings about ‘implicit type’ that you may get

• But you will need to use typename here. For a (technical) discussion, see e.g.
http://pages.cs.wisc.edu/~driscoll/typename.html ; for a brief summary, look under �Before a 
qualified dependent type�

Online STL reference: https://en.cppreference.com/w/cpp/container



© 2006 Wouter Verkerke, NIKHEF

Exercise 7.3 – STL performance comparison

• The goal of this exercise is to compare of the performance of 
mid-collection insertion of elements in a STL vector vs 
insertion in a STL list.
– Class vector is not very efficient in mid-collection insertion and removal of 

elements, because the data is organized such that all elements beyond the 
insertion point need to be copied to one slot higher or lower respectively. 
The doubly-linked list structure of list is much more suitable to handle mid-
collection insertions and should result in faster execution times.

• Approach
a) Write a small program that fills a list<int> with 10000 sequential 

numbers. 

b) Iterate over the loop and remove every 3rd element of it by calling the 
erase(list<T>::iterator) function. 

• Note that when you remove an element the iterator still points to the (now gone) element, which 
will cause trouble if you will use it later on to navigate further through the list. To solve this 
problem, the erase() function returns you a new value for the iterator that will allow you to 
continue without trouble. So be sure to assign the return value of erase() to your iterator.

c) Run your program and time its CPU consumption with /bin/time 
<your.exe>

d) Replace list with vector in the above program and run again. Does the 
execution time change? Now change the length of the collection from 
10.000 to 100.000 and try again.



© 2006 Wouter Verkerke, NIKHEF

Exercise 7.4 – Class Stack revisited

• Take Stack.hh from exercise 6.3 and reimplement it 
using the STL template class deque.

• Approach
a) Replace data member Array<T> by std::deque<T> and remove 

data member int count. Replace all uses of count by s.size().

b) Change the constructor to no longer explicitly initialize data 
member s with a size, as class deque takes care of this internally. 
Eliminate member function full() as a deque is never full.

c) Reimplement functions push() and pop() in terms of deque
functions push_back() and pop_back(). You can eliminate the 
growth feature from push() as deque handles this internally. Note 
that deque::pop_back() does not return a value, it merely 
removes the element. You should retrieve it using function T 
deque<T>::back() before you pop it off.

d) Reimplement function inspect() using an iterator over s.
• You will need typename again

Online STL reference: https://en.cppreference.com/w/cpp/container


