
© 2006 Wouter Verkerke, NIKHEF

Exercise 8.1 – Inheritance

•  The goal of this exercise is to write a class representing a
Manager through inheritance from an existing class Employee

•  Approach – writing class Manager
a)  Copy the file ex8.1/Employee.hh, look at the class and understand all the

features.

b)  Create a small main program, instantiate an Employee and print it information
by calling its businessCard() function. Also print out the salary information
accessed through the salary() member function in the main program.

c)  Write a new class Manager that inherits from class Employee. The class
Manager should have the following additional data members.

•  set<Employee*> subordinates – A set of subordinates that the manager manages

 Why is a set a better choice than e.g. a list or vector to keep track of a
collection of subordinates?

d)  Add the following accessor/modifier functions for the employee set of class
Manager

•  void addSubordinate(Employee& empl) – A method that adds a subordinate
employee to the subordinates list ;

•  const set<Employee*>& listOfSubordinates() const – A method that returns a
const reference to the employee managed by this manager

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.1 – Inheritance

e)  Extend your main program such that it also creates a Manager object. Print the
manager information using the businessCard() function and also print its
salary information retrieved through salary().

f)  Does in your opinion the manager object behave exactly like the employee
object as long as you only refer to the employee-defined properties of both
(such as the business card)?

•  Approach – Write a better business card method for class
Manager
g)  Implement the function void businessCard(ostream& os = cout) const in

class Manager. The idea is that this business card function writes a better
version that supersedes the employee-style business card.

h)  The idea is that the manager-style card will be like the employee-style card
plus some extra information. So we first call the employee business card
function inside the manager business card function. The name of the
employee-style function is the same as that of the manager-style function, i.e.
businessCard(), but use the scope operator we can be specific: call
Employee::businessCard() within the businessCard() implementation of
Manager. After that call, add code to the businessCard() implementation of
Manager that prints the set of managed employees. Use an iterator to go
through the set of employees.

i)  Rerun the main program and see if the managers business card is printed out
in the new style

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.1 – Inheritance

•  Approach – Creating a hierarchy of manager and
employees
j)  Enter the following personnel hierarchy in the main program

k)  Use classes Employee, Manager, and function
Manager::addSubordinate()

l)  Do you have problems entering a Manager as Employee in function
Manager::addSubordinate()? Why is(n’t) that?

m) Print out everybody’s business card to verify that you entered the
personnel hierarchy correctly

manager Frank

manager Stan manager Jo

employee Wouter employee Ivo

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.2 – Polymorphism

•  The goal of this exercise is to introduce polymorphism, i.e.
make managers behave like managers, even when addressing
through an Employee* pointer

•  Approach – Organizing your directory of business cards
a)  Start with the output of Ex8.1. First we will split our main program in two

parts: one part that creates all the employees and managers, and a second
part that receives a list of all employees and managers stored in a
set<Employee*>. The goal of this reorganization is to be in a position where
a part of our code doesn’t really know if a given employee (a member of) is
really an employee or a manager seen as employee.

b)  Modify the main program such that it stores pointers to all employees and
manager into set<Employee*> after all of them have been created.

c)  Remove from main() the code that prints everybody's business card.
Instead write a global function printAllCards(set<Employee*>
directory) that prints everybody’s business card and call the function from
main().

d)  Look carefully at the printout of all business cards. Does the output differ
from that of Ex 8.1? Explain the difference.

e)  Modify printAllCards such that it takes two const iterators: begin and
end instead of the set.

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.2 – Polymorphism

•  Approach – Changing Employee into a polymorphic type
f)  What have we learned from this exercise

•  We have seen that inheritance allows you to build a Manager out of an Employee
and that a Manager can redefine the behavior that was originally implemented by
Employee, such as the implementation of the businessCard() function. The
drawback of this approach is that it only works if we (the caller of businessCard())
know if a given object is an Employee or Manager. If we don’t and, as done before,
address all individuals like Employees, they will all behave like Employees.

•  What is more desirable in many circumstances (and in ours) is that
businessCard() function is an abstract interface, i.e. it defines how we can have a
certain action performed from an employee, but that the exact action that follows
depends on what each object knows about itself. That means that a Manager would
always print a manager-style business card, even through we addressed it through
an Employee* pointer.

g) Add keyword virtual in front of Employee::businessCard().
This change introduces polymorphic behavior. Print out the
directory of business cards again. Does it look different now?

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.3 – Abstract base classes

•  The goal of this exercise is to manipulate a collection of
different types of shapes through a common base class Shape

•  Approach – Creating a class Circle
a)  Look at the abstract base class Shape in ex8.3/Shape.hh and at the

implementation of class Square in ex8.3/Square.hh. Write a small main
program that creates a Square object and prints out its surface and
circumference.

b)  Write a class Circle, similar to class Square, that inherits from class
Shape. Class Circle should have one data member radius that should be
initialized in the constructor Circle::Circle(int radius)

c)  Adapt the main program to also create a Circle object and print out its
surface and circumference too.

•  Approach – Using and creating polymorphic lists
d)  In the main program create a list<Shape*>. Next, create several Circle

and Square objects and add pointers to those objects to that list.

e)  Write a void listShapes(list<Shape*> l) function that prints the
surface and circumference of all objects in the shape list using the virtual
member functions surface() and circumference().

© 2006 Wouter Verkerke, NIKHEF

Exercise 8.3 – Abstract base classes

•  Approach – Extending the Shape interface
f)  Add a pure virtual function const char* shapeName() const =

0 to class Shape and recompile your code. Does it compile OK?

g) Add the implementations of shapeName() to Square and Circle
and compile and run again.

h) Modify the listShapes() routine to also print out the shape name
of each shape.

