
CDS: Numerical Methods - Assignment week 2

Solutions to the exercise have to be handed in via Brightspace in form of one or several exe-
cutable Python scripts (*.py) which run without any errors. The deadline for the submission is
Monday Feb. 17, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Discrete and Fast Fourier Transforms (DFT and FFT)

In the following we will implement a DFT algorithm and, based on that, a FFT algorithm. Our
aim is to experience the drastic improvement of computational time in the FFT case.

(a) Implement a Python function DFT(yk) which returns the Fourier transform defined by

βj =

N−1∑
k=0

f(xk)e−i j xk =

N−1∑
k=0

f(xk)e−i j
2πk
N ,

with xk = 2πk
N , k = 0, 1, . . . , N − 1, and j = 0, 1, . . . , N − 1 by evaluating the full sum (Tip:

Try to write the sum as matrix-vector product and use numpy.dot() to evaluate it). Here,
yk represent the array corresponding to yk = f(xk). Please note: This definition is slightly
different to the one we introduced in the lecture. Here we follow the notation of Numpy and
Scipy.

(b) Make sure your function DFT(yk) and Numpy’s FFT function (numpy.fft.fft(yk)) return
the same data by plotting |βj | vs. j for

yk = f(xk) = e20i xk + e40i xk

and
yk = f(xk) = ei 5x

2
k

using N = 128 with routines.

(c) Analyze the evaluation-time scaling of your DFT(yk) function with the help of the timeit

module based on the following example:

1 import timeit

2

3 tOut = timeit.repeat(stmt=lambda: DFT(yk), number =10, repeat =5)

4 tMean = np.mean(tOut)

This example evaluates DFT(yk) 5×10 times and returns 5 evaluation times which are saved
to tOut. Afterwards we calculate the mean value of these 5 repetitions. Use this example
to calculate and plot the evaluation time of your DFT(yk) function for N = 22, 23, . . . , 2M .
Depending on your implementation you might be able to go up to M = 10. Be careful and
increase M just step by step!

(d) A very simple FFT algorithm can be derived by the following separation of the sum from
above:
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where βeven
j is the Fourier transform based on only even k (or xk) and βodd

j the Fourier

transform based on only odd k. In case N = 2M this even/odd separation can be done again
and again in a recursive way. Use the following template to implement a FFT(yk) function
on your own (using your DFT(yk) from above):



1 def FFT(yk):

2

3 N = # ... get the length of yk

4

5 if (N%2 > 0):

6 # ... display an error message

7

8 elif N <= 2:

9 return # ... call DFT with all yk points

10

11 else:

12 betaEven = # ... call FFT but using just even yk points

13 betaOdd = # ... call FFT but using just odd yk points

14

15 expTerms = np.exp(-1j * 2.0 * np.pi * np.arange(N) / N)

16

17 # Remember: beta_j is periodic in j!

18 betaEvenFull = np.concatenate ([betaEven , betaEven ])

19 betaOddFull = np.concatenate ([betaOdd , betaOdd ])

20

21 return betaEvenFull + expTerms * betaOddFull

Make sure that you get the same results as before by comparing the results from DFT(yk)

and FFT(yk) for both functions defined in (b).

(e) Analyze the evaluation-time scaling of your FFT(yk) function with the help of the timeit

module and compare the scaling to the one of DFT(yk).

2 Composite Numerical Integration: Trapezoid and Simp-
son Rules

In the following we will implement the composite trapezoid and Simpson rules to calculate definite
integrals. These rules are defined by∫ b

a

f(x) dx ≈ h

2

f(a) + 2
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f(xj) + f(b)

 trapezoid (1)

≈ h

3

f(a) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
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 Simpson (2)

with a = x0 < x1 < · · · < xn−1 < xn = b and xk = a + kh with k = 0, . . . , n and h = (b − a)/n
being the step size.

(a) Implement both integration schemes as Python functions trapz(yk, dx) and simps(yk,

dx) where yk is an array of length n + 1 representing yk = f(xk) and dx being the step
size h. Compare your results with Scipy’s functions scipy.integrate.trapz(yk, xk) and
scipy.integrate.simps(yk, xk) for a f(xk) of your choice.

(b) Implement at least one unit test (using pytest) for each of your integration functions.

(c) Study the accuracy of these integration routines by calculating the following integrals for a
variety of step sizes h:

•
∫ 1

0
x dx

•
∫ 1

0
x2 dx

•
∫ 1

0
x

1
2 dx

Plot the integration error, defined as the difference (not the absolute difference) between your
numerical results and the exact results, as a function of h for both integration routines and
all listed functions. Comment on the comparison between both integration routines. Does
the sign of the error match your expectations? If so / If not: Why?


