CDS: Numerical Methods - Assignment week 2

Solutions to the exercise have to be handed in via Brightspace in form of one or several executable Python scripts (*.py) which run without any errors. The deadline for the submission is Monday Feb. 17, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Discrete and Fast Fourier Transforms (DFT and FFT)

In the following we will implement a DFT algorithm and, based on that, a FFT algorithm. Our aim is to experience the drastic improvement of computational time in the FFT case.
(a) Implement a Python function DFT (yk) which returns the Fourier transform defined by

$$
\beta_{j}=\sum_{k=0}^{N-1} f\left(x_{k}\right) e^{-i j x_{k}}=\sum_{k=0}^{N-1} f\left(x_{k}\right) e^{-i j \frac{2 \pi k}{N}}
$$

with $x_{k}=\frac{2 \pi k}{N}, k=0,1, \ldots, N-1$, and $j=0,1, \ldots, N-1$ by evaluating the full sum (Tip: Try to write the sum as matrix-vector product and use numpy.dot() to evaluate it). Here, yk represent the array corresponding to $y_{k}=f\left(x_{k}\right)$. Please note: This definition is slightly different to the one we introduced in the lecture. Here we follow the notation of Numpy and Scipy.
(b) Make sure your function DFT(yk) and Numpy's FFT function (numpy.fft.fft(yk)) return the same data by plotting $\left|\beta_{j}\right|$ vs. j for

$$
y_{k}=f\left(x_{k}\right)=e^{20 i x_{k}}+e^{40 i x_{k}}
$$

and

$$
y_{k}=f\left(x_{k}\right)=e^{i 5 x_{k}^{2}}
$$

using $N=128$ with routines.
(c) Analyze the evaluation-time scaling of your DFT(yk) function with the help of the timeit module based on the following example:

```
import timeit
tOut = timeit.repeat (stmt=lambda: DFT(yk), number=10, repeat=5)
tMean = np.mean(tOut)
```

This example evaluates DFT (yk) 5×10 times and returns 5 evaluation times which are saved to tOut. Afterwards we calculate the mean value of these 5 repetitions. Use this example to calculate and plot the evaluation time of your DFT (yk) function for $N=2^{2}, 2^{3}, \ldots, 2^{M}$. Depending on your implementation you might be able to go up to $M=10$. Be careful and increase M just step by step!
(d) A very simple FFT algorithm can be derived by the following separation of the sum from above:

$$
\begin{aligned}
\beta_{j}=\sum_{k=0}^{N-1} f\left(x_{k}\right) e^{-i j \frac{2 \pi k}{N}} & =\sum_{k=0}^{N / 2-1} f\left(x_{2 k}\right) e^{-i j \frac{2 \pi 2 k}{N}}+\sum_{k=0}^{N / 2-1} f\left(x_{2 k+1}\right) e^{-i j \frac{2 \pi(2 k+1)}{N}} \\
& =\sum_{k=0}^{N / 2-1} f\left(x_{2 k}\right) e^{-i j \frac{2 \pi k}{N / 2}}+\sum_{k=0}^{N / 2-1} f\left(x_{2 k+1}\right) e^{-i j \frac{2 \pi k}{N / 2}} e^{-i j \frac{2 \pi}{N}} \\
& =\beta_{j}^{\text {even }}+\beta_{j}^{\text {odd }} e^{-i j \frac{2 \pi}{N}},
\end{aligned}
$$

where $\beta_{j}^{\text {even }}$ is the Fourier transform based on only even k (or x_{k}) and $\beta_{j}^{\text {odd }}$ the Fourier transform based on only odd k. In case $N=2^{M}$ this even/odd separation can be done again and again in a recursive way. Use the following template to implement a FFT (yk) function on your own (using your DFT(yk) from above):

```
def FFT(yk):
N = # ...get the length of yk
if (N%2 > 0):
    # ... display an error message
elif N <= 2:
    return # ... call DFT with all yk points
else:
    betaEven = # ... call FFT but using just even yk points
    betaOdd = # ... call FFT but using just odd yk points
    expTerms = np.exp(-1j * 2.0 * np.pi * np.arange(N) / N)
    # Remember: beta_j is periodic in j!
    betaEvenFull = np.concatenate([betaEven, betaEven])
    betaOddFull=np.concatenate([betaOdd, betaOdd])
    return betaEvenFull + expTerms * betaOddFull
```

Make sure that you get the same results as before by comparing the results from $\operatorname{DFT}(\mathrm{yk})$ and FFT (yk) for both functions defined in (b).
(e) Analyze the evaluation-time scaling of your FFT(yk) function with the help of the timeit module and compare the scaling to the one of DFT (yk).

2 Composite Numerical Integration: Trapezoid and Simpson Rules

In the following we will implement the composite trapezoid and Simpson rules to calculate definite integrals. These rules are defined by

$$
\begin{align*}
\int_{a}^{b} f(x) d x & \approx \frac{h}{2}\left[f(a)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)+f(b)\right] & \text { trapezoid } \tag{1}\\
& \approx \frac{h}{3}\left[f(a)+2 \sum_{j=1}^{n / 2-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{n / 2} f\left(x_{2 j-1}\right)+f(b)\right] & \text { Simpson } \tag{2}
\end{align*}
$$

with $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$ and $x_{k}=a+k h$ with $k=0, \ldots, n$ and $h=(b-a) / n$ being the step size.
(a) Implement both integration schemes as Python functions trapz (yk, dx) and simps (yk, dx) where yk is an array of length $n+1$ representing $y_{k}=f\left(x_{k}\right)$ and dx being the step size h. Compare your results with Scipy's functions scipy.integrate.trapz(yk, xk) and scipy.integrate.simps (yk, xk) for a $f\left(x_{k}\right)$ of your choice.
(b) Implement at least one unit test (using pytest) for each of your integration functions.
(c) Study the accuracy of these integration routines by calculating the following integrals for a variety of step sizes h :

- $\int_{0}^{1} x d x$
- $\int_{0}^{1} x^{2} d x$
- $\int_{0}^{1} x^{\frac{1}{2}} d x$

Plot the integration error, defined as the difference (not the absolute difference) between your numerical results and the exact results, as a function of h for both integration routines and all listed functions. Comment on the comparison between both integration routines. Does the sign of the error match your expectations? If so / If not: Why?

