
CDS: Numerical Methods - Assignment week 3

Solutions to the exercise have to be handed in via Brightspace in form of one or several exe-
cutable Python scripts (*.py) which run without any errors. The deadline for the submission is
Monday Feb. 24, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Linear Equation Systems

In the following you will implement the Jacobi, Steepest Decent, and the Conjugate Gradient
algorithm to solve linear equation systems of the form

Ax = b

with A being a n× n matrix.

(a) First, you need to implement a Python function d = diff(a,b) which calculates and returns
the difference d between two n-dimensional vectors a and b according to

d = ||a− b||∞ = max
i=1,2,...,n

|ai − bi|.

(b) Implement the Jacobi iteration scheme

x(k) = D−1(L + U)x(k−1) + D−1b

in a Python function x, k = jacobi(A, b, eps), where A = D−L−U has been separated
into its diagonal (D), lower triangular (L) and its upper triangular (U) form, A represents the
n×n A matrix, b represents the n-dimensional solution vector b, and eps is a scalar ε defining
the accuracy up to which the iteration is performed. k is the iteration index. Initialize your
iteration with x(0) = 0 (or with x(1) = D−1b ;-)) and increase k until ||x(k)−x(k−1)||∞ < ε.
Your function should return both, the solution vector x(k) (from the last iteration step) and
the last iteration index k. Hint: Use numpy.dot() for all needed matrix/vector products.

(c) Verify your implementation by comparing to the exact result for x∗ for the system
10 −1 2 0
−1 11 −1 3
2 −1 10 −1
0 3 −1 8

x∗ =


6
25
−11
15


obtained with numpy.linalg.solve() with your approximate result x̃. Calculate ||x∗− x̃||∞
for different accuracies ε = 0.1, 0.01, 0.001, 0.0001.

(d) Next, implement the Steepest Decent algorithm in a similar Python function x, k = SD(A,

b, eps) which calculates

v(k) = b−Ax(k−1)

tk =
〈v(k),v(k)〉
〈v(k), Av(k)〉

x(k) = x(k−1) + tkv
(k).

Again, initialize your iteration with x(0) = 0 and increase k until ||x(k) − x(k−1)||∞ < ε.
Return the solution vector x(k) (from the last iteration step) and the last iteration index
k. Use numpy.dot() for all needed vector/vector and matrix/vector products. Verify your
implementation again by comparing to the exact solution for the linear equation system given
in (c).



(e) Finally, based on your steepest decent implementation from (d) implement the Conjugate
Gradient algorithm in a Python function x, k = CG(A, b, eps) in the following way:

Initialize your procedure with:

x(0) = 0

r(0) = b−Ax(0)

v(0) = r(0)

Than repeat by increasing k = 0, 1, . . . :

tk =
〈r(k), r(k)〉
〈v(k), Av(k)〉

x(k+1) = x(k) + tkv
(k)

r(k+1) = r(k) − tkAv(k)

sk =
〈r(k+1), r(k+1)〉
〈r(k), r(k)〉

v(k+1) = r(k+1) − skv
(k)

until ||x(k)−x(k−1)||∞ < ε. Return the solution vector x(k) (from the last iteration step) and
the last iteration index k. Use numpy.dot() for all needed vector/vector and matrix/vector
products. Verify your implementation again by comparing to the exact solution for the linear
equation system given in (c). What do expect / see regarding the accuracy of your conjugate
gradient function and the number of needed iteration steps?

(f) Apply all three methods to the following system
0.2 0.1 1.0 1.0 0.0
0.1 4.0 −1.0 1.0 −1.0
1.0 −1.0 60.0 0.0 −2.0
1.0 1.0 0.0 8.0 4.0
0.0 −1.0 −2.0 4.0 700.0

x∗ =


1
2
3
4
5

 .

Plot the number of needed iterations for each method as a function of ε using ε = 0.1, 0.01, 0.001, 0.0001,
0.00001, 0.000001, 0.0000001, 0.00000001. Explain the behavior you observe with the help of
the condition number, which you can calculate with numpy.linalg.cond().

(g) (optional) Try to get a better convergence behavior by pre-conditioning your matrix A using

Ã = CAC

instead, where C =
√
D−1. If you do so, you will need to replace b by

b̃ = Cb

and your result will not be x but
x̃ = Cx.

What is the effect of C to the condition number and why is that so?


