CDS: Numerical Methods - Assignment week 4

Solutions to the exercise have to be handed in via Brightspace in form of one or several executable Python scripts (*.py) which run without any errors. The deadline for the submission is Thursday Mar. 5, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Eigenvalues and Eigenvectors

In the following you will implement your own eigenvalue / eigenvector calculation routines based on the inverse power method and the iterated QR decomposition.
(a) Inverse Power Method: We start by implementing the inverse power method to calculate the eigenvector corresponding to an eigenvalue which is closest to a given parameter σ. In detail, you should implement a Python function vec, $\mathrm{n}=$ inversePower (A, sigma, eps) which takes as input the $n \times n$ square matrix A, the parameter σ, as well as some accuracy ε and which returns the eigenvector \mathbf{v} (to the eigenvalue which is closets to σ) and the number of needed iteration steps. To do so, implement the following algorithm.
Start with setting up the needed input:

$$
\begin{align*}
B & =(A-\sigma \mathbf{1})^{-1} \tag{1}\\
\mathbf{b}^{(0)} & =(1,1,1, \ldots) \tag{2}
\end{align*}
$$

where \mathbf{b}_{0} is a vector with n entries. Afterwards repeat and increase $k=1,2,3, \ldots$ until the error e is smaller than ε :

$$
\begin{align*}
\mathbf{b}^{(k)} & =B \cdot \mathbf{b}^{(k-1)} \tag{3}\\
\mathbf{b}^{(k)} & =\frac{\mathbf{b}^{(k)}}{\left|\mathbf{b}^{(k)}\right|} \tag{4}\\
e & =\sqrt{\sum_{i=0}^{n}\left(\left|b_{i}^{(k-1)}\right|-\left|b_{i}^{(k)}\right|\right)^{2}} \tag{5}
\end{align*}
$$

Return the last $\mathbf{b}^{(k)}$ as the eigenvector vec and the number of needed iteration k as n . Test your routine by calculating all eigenvectors for the matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

Compare your results to the ones from numpy.linalg.eig().
(b) Next you will need to implement the tri-diagonalization scheme following Householder. To this end implement a Python function $\mathrm{T}=\operatorname{tridiagonalize(A)~which~takes~a~symmetric~}$ matrix A as input and returns a tridiagonal matrix T of the same dimension. Therefore, your algorithm should execute the following steps:

Let k run $k=0,1,2, \ldots, n-1$ and repeat:

$$
\begin{align*}
q & =\sqrt{\sum_{j=k+1}^{n}\left(A_{j, k}\right)^{2}} \tag{6}\\
\alpha & =-\operatorname{sgn}\left(A_{k+1, k}\right) \cdot q \tag{7}\\
r & =\sqrt{\frac{\alpha^{2}-A_{k+1, k} \cdot \alpha}{2}} \tag{8}\\
\mathbf{v} & =\mathbf{0} \quad \ldots \text { vector of dimension } n \tag{9}\\
v_{k+1} & =\frac{A_{k+1, k}-\alpha}{2 r} \tag{10}\\
v_{k+j} & =\frac{A_{k+j, k}}{2 r} \quad \text { for } j=2,3, \ldots, n \tag{11}\\
P & =\mathbf{1}-2 \mathbf{v} \mathbf{v}^{T} \tag{12}\\
A & =P \cdot A \cdot P \tag{13}
\end{align*}
$$

At the end return A as T. Hint: Use np.outer() to calculate the matrix $\mathbf{v v}^{T}$ as needed in the definition of the Housholder transformation matrix P. Apply your routine to the matrix A defined above as well as to a few random, but symmetric matrices of different dimension n.
(c) Implement the $Q R$ decomposition based diagonalization routine for tri-diagonal matrices T in Python as a function $\mathrm{d}=\operatorname{QREig}(\mathrm{T}$, eps), which takes a tri-diagonal matrix T and some accuracy ε as input and returns all eigenvalues as a vector \mathbf{d}. By making use of the $Q R$ decomposition as implemented in nummpy (numpy.linalg.qr()) the algorithm is very simple and reads:
Repeat until the error e is smaller than ε :

$$
\begin{align*}
T & =Q \cdot R \quad \ldots \text { do this decomposition with the help of Numpy! } \tag{14}\\
T & =R \cdot Q \tag{15}\\
e & =\left|\mathbf{d}_{\mathbf{1}}\right| \tag{16}
\end{align*}
$$

where $\mathbf{d}_{\mathbf{1}}$ is the first sub-diagonal of T at each iteration step. Afterwards return the maindiagonal of A as \mathbf{d}. Test your routine for the case of the matrix A defined above. To this end you need to tri-diagonalize it first.
(d) With the help of $\mathrm{d}=\operatorname{QREig}(\mathrm{T}$, eps) you can now calculate all eigenvalues and with the help of vec, $\mathrm{n}=$ inversePower(A, sigma, eps) you can calculate all corresponding eigenvectors by setting σ to approximately the eigenvalues saved in \mathbf{d} (you should add some small random noise to σ in order to avoid singularity issues in the inversion needed for the inverse power method). Apply this combination to calculate all eigenvalues and eigenvectors of A defined above.
(e) Optional: Test your eigenvalue / eigenvector algorithm for other, larger random (but symmetric) matrices.

