
CDS: Numerical Methods - Assignment week 4

Solutions to the exercise have to be handed in via Brightspace in form of one or several exe-
cutable Python scripts (*.py) which run without any errors. The deadline for the submission is
Thursday Mar. 5, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Eigenvalues and Eigenvectors

In the following you will implement your own eigenvalue / eigenvector calculation routines based
on the inverse power method and the iterated QR decomposition.

(a) Inverse Power Method: We start by implementing the inverse power method to calculate the
eigenvector corresponding to an eigenvalue which is closest to a given parameter σ. In detail,
you should implement a Python function vec, n = inversePower(A, sigma, eps) which
takes as input the n× n square matrix A, the parameter σ, as well as some accuracy ε and
which returns the eigenvector v (to the eigenvalue which is closets to σ) and the number of
needed iteration steps. To do so, implement the following algorithm.

Start with setting up the needed input:

B = (A− σ1)
−1

(1)

b(0) = (1, 1, 1, ...) (2)

where b0 is a vector with n entries. Afterwards repeat and increase k = 1, 2, 3, . . . until the
error e is smaller than ε:

b(k) = B · b(k−1) (3)

b(k) =
b(k)

|b(k)|
(4)

e =

√√√√ n∑
i=0

(
|b(k−1)

i | − |b(k)i |
)2

(5)

Return the last b(k) as the eigenvector vec and the number of needed iteration k as n. Test
your routine by calculating all eigenvectors for the matrix

A =

3 2 1
2 3 2
1 2 3

 .

Compare your results to the ones from numpy.linalg.eig().

(b) Next you will need to implement the tri-diagonalization scheme following Householder. To
this end implement a Python function T = tridiagonalize(A) which takes a symmetric
matrix A as input and returns a tridiagonal matrix T of the same dimension. Therefore,
your algorithm should execute the following steps:

Let k run k = 0, 1, 2, . . . , n− 1 and repeat:

q =

√√√√ n∑
j=k+1

(Aj,k)
2

(6)

α = − sgn(Ak+1,k) · q (7)

r =

√
α2 −Ak+1,k · α

2
(8)

v = 0 ... vector of dimension n (9)

vk+1 =
Ak+1,k − α

2r
(10)

vk+j =
Ak+j,k

2r
for j = 2, 3, . . . , n (11)

P = 1− 2vvT (12)

A = P ·A · P (13)

At the end return A as T . Hint: Use np.outer() to calculate the matrix vvT as needed in
the definition of the Housholder transformation matrix P . Apply your routine to the matrix
A defined above as well as to a few random, but symmetric matrices of different dimension
n.

(c) Implement the QR decomposition based diagonalization routine for tri-diagonal matrices
T in Python as a function d = QREig(T, eps), which takes a tri-diagonal matrix T and
some accuracy ε as input and returns all eigenvalues as a vector d. By making use of the
QR decomposition as implemented in nummpy (numpy.linalg.qr()) the algorithm is very
simple and reads:

Repeat until the error e is smaller than ε:

T = Q ·R ... do this decomposition with the help of Numpy! (14)

T = R ·Q (15)

e = |d1| (16)

where d1 is the first sub-diagonal of T at each iteration step. Afterwards return the main-
diagonal of A as d. Test your routine for the case of the matrix A defined above. To this
end you need to tri-diagonalize it first.

(d) With the help of d = QREig(T, eps) you can now calculate all eigenvalues and with the help
of vec, n = inversePower(A, sigma, eps) you can calculate all corresponding eigenvec-
tors by setting σ to approximately the eigenvalues saved in d (you should add some small
random noise to σ in order to avoid singularity issues in the inversion needed for the inverse
power method). Apply this combination to calculate all eigenvalues and eigenvectors of A
defined above.

(e) Optional: Test your eigenvalue / eigenvector algorithm for other, larger random (but sym-
metric) matrices.

