
CDS: Numerical Methods - Assignment week 1

Solutions to the exercise have to be handed in via Brightspace in form of one or several exe-
cutable Python scripts (*.py) which run without any errors. The deadline for the submission is
Monday Feb. 10, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Rounding and Truncation Error Analysis

Euler’s number e can be represented as the infinite series e =
∑∞

n=0
1
n! . In order to evaluate it in

Python we need to truncate the series. Furthermore, we learned that every number representation
and floating-point operation introduces a finite error. Thus, let’s analyze the truncated series

ẽ =

N∑
n=0

1

n!

in more detail.

(a) Calculate ẽ with Python and plot the relative error δ =
∣∣ ẽ−e

e

∣∣ as a function of N (use a
log-scale for the y axis).

(b) Compare the relative errors of δ for different floating point precision as a function of N . To
this end, we define each element of the series en = 1

n! and convert it to double-precision (64
bit) and single-precision (32 bit) floating points by using Numpy’s functions numpy.float64(e n)

and numpy.float32(e n), respectively, before adding them up.

(c) Compare the relative errors of δ for different rounding accuracies as a function of N using
Python’s round(e n, d) function to round each en element before adding them up. Plot δ
vs. N for d = 1, 2, 3, 4, 5 (which is the number of digits Python’s round() function returns)
and add a corresponding legend.

Examples:

1 import numpy as np

2 # using float32

3 a = 0.1234

4 b = np.float32(a)

5 # using round

6 c = round(a, 2)

2 Lagrange Polynomial Interpolation

Write your own Lagrange polynomial interpolation routine which calculates

P (x) =

n∑
k=0

f(xk)Ln,k(x)

with k = 0, 1, . . . , n. Start with a first function myLagrange(xk, yk, x) of the form

1 def myLagrange(xk, yk , x):

2 p = np.zeros(np.size(x), dtype=np.float64)

3 ...

4 return p

which internally calls another function myLagrangePolynomials(xk, n, k, x) generating the
Lagrange interpolation polynomials

Ln,k(x) =

n∏
i=0
i6=k

x− xi
xk − xi



1 def myLagrangePolynomials(xk , n, k, x):

2 L = np.zeros(np.size(x), dtype=np.float64)

3 ...

4 return L

where xk and yk are arrays of the same size representing the (xk, yk = f(xk)) pairs which we like
to interpolate and x is a an array of x values.

(a) Use your Lagrange interpolation routine to construct the interpolating polynomial for the
pairs xk = [2, 3, 4, 5, 6] and yk = [2, 5, 5, 5, 6] and plot it from x = 2 to x = 6 using x-step-sizes
of 0.01.

(b) Make sure your result is identical to the one obtained from Scipy’s Lagrange function
scipy.interpolate.lagrange(). Plot both results in the same figure.

(c) Implement a simple unit test to test your routine using the pytest package (see
https://docs.pytest.org/en/latest/, more details will follow in the computer course).

3 Runge’s Phenomenom

Use your own (or Scipy’s) Lagrange interpolation routine to interpolate the function

f(x) =
1

1 + 25x2

between x = −1 and x = +1

(a) using equidistant xi = 2i
n − 1 with i ∈ {0, 1, . . . , n}.

(b) using Chebychev nodes xi = cos
(
2i−1
2n π

)
with i ∈ {1, . . . , n}.

(c) using n randomly chosen points xi.

Plot the results and (shortly) discuss their differences.


