CDS: Numerical Methods - Assignment week 1

Solutions to the exercise have to be handed in via Brightspace in form of one or several executable Python scripts (*.py) which run without any errors. The deadline for the submission is Monday Feb. 10, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Rounding and Truncation Error Analysis

Euler's number e can be represented as the infinite series $e=\sum_{n=0}^{\infty} \frac{1}{n!}$. In order to evaluate it in Python we need to truncate the series. Furthermore, we learned that every number representation and floating-point operation introduces a finite error. Thus, let's analyze the truncated series

$$
\tilde{e}=\sum_{n=0}^{N} \frac{1}{n!}
$$

in more detail.
(a) Calculate \tilde{e} with Python and plot the relative error $\delta=\left|\frac{\tilde{e}-e}{e}\right|$ as a function of N (use a log-scale for the y axis).
(b) Compare the relative errors of δ for different floating point precision as a function of N. To this end, we define each element of the series $e_{n}=\frac{1}{n!}$ and convert it to double-precision (64 bit) and single-precision (32 bit) floating points by using Numpy's functions numpy.float64 (e_n) and numpy.float32(e_n), respectively, before adding them up.
(c) Compare the relative errors of δ for different rounding accuracies as a function of N using Python's round (e_n, d) function to round each e_{n} element before adding them up. Plot δ vs. N for $d=1,2,3,4,5$ (which is the number of digits Python's round() function returns) and add a corresponding legend.

Examples:

```
import numpy as np
# using float32
a=0.1234
b = np.float32(a)
# using round
c = round (a, 2)
```


2 Lagrange Polynomial Interpolation

Write your own Lagrange polynomial interpolation routine which calculates

$$
P(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)
$$

with $k=0,1, \ldots, n$. Start with a first function myLagrange ($\mathrm{xk}, \mathrm{yk}, \mathrm{x}$) of the form

```
def myLagrange(xk, yk, x):
    p = np.zeros(np.size(x), dtype=np.float64)
    return p
```

which internally calls another function myLagrangePolynomials(xk, n, k, x) generating the Lagrange interpolation polynomials

$$
L_{n, k}(x)=\prod_{\substack{i=0 \\ i \neq k}}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

```
def myLagrangePolynomials(xk, n, k, x):
    L = np.zeros(np.size(x), dtype=np.float64)
    ...
    return L
```

where xk and yk are arrays of the same size representing the $\left(x_{k}, y_{k}=f\left(x_{k}\right)\right)$ pairs which we like to interpolate and x is a an array of x values.
(a) Use your Lagrange interpolation routine to construct the interpolating polynomial for the pairs $x_{k}=[2,3,4,5,6]$ and $y_{k}=[2,5,5,5,6]$ and plot it from $x=2$ to $x=6$ using x-step-sizes of 0.01 .
(b) Make sure your result is identical to the one obtained from Scipy's Lagrange function scipy.interpolate.lagrange(). Plot both results in the same figure.
(c) Implement a simple unit test to test your routine using the pytest package (see https://docs.pytest.org/en/latest/, more details will follow in the computer course).

3 Runge's Phenomenom

Use your own (or Scipy's) Lagrange interpolation routine to interpolate the function

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

between $x=-1$ and $x=+1$
(a) using equidistant $x_{i}=\frac{2 i}{n}-1$ with $i \in\{0,1, \ldots, n\}$.
(b) using Chebychev nodes $x_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right)$ with $i \in\{1, \ldots, n\}$.
(c) using n randomly chosen points x_{i}.

Plot the results and (shortly) discuss their differences.

