CDS: Numerical Methods - Assignment week 5

Solutions to the exercise have to be handed in via Brightspace in form of one or several executable Python scripts (*.py) which run without any errors. The deadline for the submission is Thursday Mar. 12, 13:30. Feel free to use the Science Gitlab repository to submit your solutions.

1 Ordinary Differential Equations - Initial Value Problems

In the following you will successively implement your own easy-to-extend ODE solver which is capable of using single-step as well as multi-step approaches and to handle first order ODE systems, i.e. we aim to solve:

$$
\vec{y}(x)^{\prime}=\vec{f}(x, \vec{y})
$$

for $x=x_{0}, x_{1}, \ldots, x_{n}$ with $x_{i}=i h$, step size h, and an initial condition of the form $\vec{y}(x=0)$.
(a) Implement the Euler method by defining a general Python function $y=$ integrator ($x, y 0$, f, phi) which takes as input a one-dimensional x array of size $n+1$, the initial condition y_{0}, the callable function $f(x, y)$, and the integration scheme $\Phi(x, y, h, f)$ and which returns the approximated function $\tilde{y}(x)$. The integration scheme phi is also supposed to be a callable function as returned from another Python function phi = phi_euler(xi, yi, h, f).
(b) Debug your implementation by applying it to:

$$
\vec{y}(x)^{\prime}=y-x^{2}+1.0
$$

with $y(x=0)=0.5$, which has the solution $y(x)=(x+1)^{2}-0.5 e^{x}$. To this end define the right-hand side of the ODE as a Python function $f=\operatorname{ODEF}(\mathrm{x}, \mathrm{y})$ which returns here $f(x, y)=y-x^{2}+1.0$. Afterwards, you can hand over f to your integrator function.
(c) Extend the set of possible single-step integration schemes to the modified Euler (Collatz), Heun, and 4th-order Runge-Kutta approaches by implementing the functions phi = phi_euler_modified(xi, yi, h, f), phi = phi_heun(xi, yi, h, f), and phi = phi_rk4(xi, yi, h, f).
(d) Add the possibility to also handle the following multi-step integration schemes:

$$
\Phi_{A B 3}(x, y, h, f, i)=\frac{1}{12}\left[23 f\left(x_{i}, y_{i}\right)-16 f\left(x_{i-1}, y_{i-1}\right)+5 f\left(x_{i-2}, y_{i-2}\right)\right]
$$

and

$$
\Phi_{A B 4}(x, y, h, f, i)=\frac{1}{24}\left[55 f\left(x_{i}, y_{i}\right)-59 f\left(x_{i-1}, y_{i-1}\right)+37 f\left(x_{i-2}, y_{i-2}\right)-9 f\left(x_{i-3}, y_{i-3}\right)\right]
$$

In these cases the initial condition y0 must consist of several initial values corresponding to y_{0}, y_{1}, y_{2} (and y_{3}) and the integration scheme $\Phi(x, y, h, f, i)$ must be called using the step number i. Use the Runga-Kutta method to calculate all of the initial values before you start the AB 3 and AB 4 integrations.
(e) Plot the absolute errors $\delta(x)=|\tilde{y}(x)-y(x)|$ with a y-log scale for all approaches with $0 \leq x \leq 2$ and a step size of $h=0.02$ for the ODE from (b).
(f) Study the accuracies of all approaches as a function of the step size h. To this end use your implementations to solve

$$
\vec{y}(x)^{\prime}=y
$$

with $y(x=0)=1.0$ for $0 \leq x \leq 2$ and $\operatorname{plot} \delta(2)=|\tilde{y}(2)-y(2)|$ as a function of h for each integration scheme.
(g) Apply the Euler and the Runga-Kutta method to solve the pendulum problem given by:

$$
\vec{y}(x)^{\prime}=\vec{f}(x, \vec{y}) \quad \leftrightarrow \quad\binom{y_{0}(x)^{\prime}}{y_{1}(x)^{\prime}}=\binom{y_{1}(x)}{-\sin \left[y_{0}(x)\right]}
$$

To this end all the quantities $\mathbf{y}, \mathrm{y} 0$, \mathbf{f}, phi must become vectors. Plot $y_{0}(x)$ for several oscillation periods. Does the Euler method behave physical?

