Possible Multi-Messenger Astrophysics on a Blazar —History Multi-Messenger Astrophysics

History Multi-Messenger Astrophysics

Event	EM	CR	GW	ν	Date
Solar Flare	yes	yes			1940
Supernova	yes		pred	yes	1987
NS merger	yes		yes	pred	aug 201
Blazar	yes	pred		yes	sep 201

History Multi-Messenger Astrophysics

- Optical very old, new fields in last hundred years
- Importance and History of Multi Messenger Astrophysics
- Solar Flare in 1940
- SN1987A in Large Magellanic Cloud in 1987
 - 25 neutrinos at 3 observatories
 - confirmed model core-collapse (neutrinos carry 99% Energy)
 - Nobel Prize 2002
- NS merger
 - big in the news
- Blazar
 - not so big in the news
 - what we will talk about

2020-02-18

Possible Multi-Messenger Astrophysics on a Blazar

–Neutrino Basics

- Interactions
 - Neutral Current: energy into e^- , ν_e flies off
 - Charged C: u_{μ} on e^{-} goes to u_{e} with μ
- Cherenkov light
- Digital-Optical Modules
- Recap: idea of telescope

Possible Multi-Messenger Astrophysics on a Blazar ${}^{\mbox{\sc l}}$ Neutrino Basics

Astrophysical vs Atmospheric Neutrino

Attrophysical v Atmospheric Neutrino

- Distinction Atmospheric vs Astrophysical
 - steep decline for ¿ TeV
 - lower energies
 - solar flare, sn1987A only because of flux
- Observatories: IceCube, ANTARES
 - IceCube: 100 GeV several PeV
 - ANTARES: 10 GeV 100 TeV
- Types of events
 - Tracklike (through-going)
 - Showerlike

Possible Multi-Messenger Astrophysics on a Blazar IceCube-170922A

-IceCube-170922A

- 22 sept 2017 Icecube
- Muon detection (automated analysis)
- real-time alert system
- 43 secs initial direction and energy
- Muon track
- \rightarrow zenith angle 5.7 \pm 0.5
- \rightarrow interaction outside
- $\bullet \rightarrow {\rm simulations} \\ \bullet {\rm IC} {\rm robust} > {\rm PeV}, {\rm individual atmospheric not excluded} \sim 100 {\rm TeV}$
- followup ANTARES data
 - no candidates ($\pm 1 \text{ day}$)
 - sensitivity 1/10 of IceCube at declination
- \Rightarrow FM observation needed

Possible Multi-Messenger Astrophysics on a Blazar LeCube-170922A

—EM pinpointing of IC170922A

- Fermi-LAT instrument
 - 20 MeV to 300 GeV + pair-conversion (e^- + e^+)
 - all-sky survey (entire sky every 3h)
- Fermi-LAT observation
 - object 0.1° from best-fitting direction known source
 - brightening since April 2017, confirmed by AGILE (italian)
 - automated processing \rightarrow previous flare \rightarrow because neutrino
- MAGIC instrument
 - telescope on La Palma
 - 50 GeV to 30 TeV
- MAGIC observation
 - observation non-optimal 2h \rightarrow nothing
 - observation good 13h \rightarrow 374 \pm 62 excess photons
- VERITAS, HESS no observations \rightarrow upper limits (coming slide)
- HAWC no source above 1TeV in (archival) data
- z < 1 from flux and extragalactic background light interaction

2020-02-18

Possible Multi-Messenger Astrophysics on a Blazar LeCube-170922A

└─What is a Blazar

The co

What is a Blazar

- Active Galactic Nucleus
- early optical and radio detections
- Jet from Central BH
- Blazar = jet pointed at us
- Joke: earth wrongly rotated for current event

2020-02-18

Possible Multi-Messenger Astrophysics on a Blazar LeCube-170922A

-Further Observations

- Not only Gamma Rays: X-ray to Radio
- dates: left: 22 Aug 2008 to 6 Sept 2017 right: 6 Sept 2017 to 22 Sept 2017
- right: 6 Sept 2017 to 22 Sept 2017 • VHE γ : flare, difference because of Energy and Exposure
- γ : flare (AGILE confirmation), earlier flare
- X-Ray: 9 sources within 2.1 sq deg

Possible Multi-Messenger Astrophysics on a Blazar $_$ LecCube-170922A

Broadband Spectrum of TXS 0506+056

- observations within 14 days of IC-170922A
- archival data
- UL is upper limit
- double bump structure (characteristic of non-thermal emission)
- · redshift difficult non-thermal outshines spectral lines
- later redshift measurement from optical data (z = 0.3365 \pm 0.0010)
- Extrapolated Spectra connect smoothly

Chance Coincidence and Archival Data

- IC-170922A not enough for science
 - neutrino production models
 - neutrino to gamma

2020-02-18

- real-time alert system since Apr 2016
- 41 archival events also tested with TXS
- neutrino 2014 points to Blazar lower energy

3σ non-random coincidence → inconclusive ν detection in 2014 in vicinity of TXS 0505 + 056