\documentclass[showdate=true,slidenumbers=slide]{beamer} \usepackage{amsmath} \addtobeamertemplate{navigation symbols}{}{% \usebeamerfont{footline}% \usebeamercolor[fg]{footline}% \hspace{1em}% \insertframenumber } \title{{\small Neutrino} \\ Multi-Messenger Astrophysics \\ on a Blazar} \date{\today} \author{E.T. de Boone} \begin{document} \frame{\titlepage} \begin{frame} \frametitle{Outline} \tableofcontents \end{frame} \begin{frame} \frametitle{Multi-Messenger Astrophysics} \begin{table} \centering \begin{tabular}{r|c|c|c|c|c} \textbf{Event} & \textbf{EM} & \textbf{CR} & \textbf{GW} & \textbf{$\nu$} & \textbf{Date} \\ \hline Solar Flare & yes & yes & & & 1940 \\ \hline \onslide<2-> Supernova & yes & & pred & yes & 1987 \\ \hline \onslide<3-> NS merger & yes & & yes & pred & aug 2017 \\ \hline \onslide<4-> Blazar & yes & pred & & yes & sep 2017 \\ \end{tabular} \end{table} \end{frame} \note{ Optical very old, new fields in last hundred years Importance and History of Multi Messenger Astrophysics Solar Flare in 1940 SN1987A in Large Magellanic Cloud in 1987 - 25 neutrinos at 3 observatories - confirmed model core-collapse ( neutrinos carry 99\% Energy ) - Nobel Prize 2002 NS merger - big in the news Blazar - not so big in the news - what we will talk about } \section{Neutrino Basics} \begin{frame} \frametitle{Neutrino Basics} \begin{itemize} \item Neutrino interacts in atmosphere, ice or water \item<3-> Charged particle gets into the ice or water \item<4-> Cherenkov photons detected by DOMs in the matter \end{itemize} \onslide<1-2> \begin{figure} \centering \onslide<1-2> \includegraphics[width=0.4\textwidth]{images/charged_current.pdf} \quad\quad \onslide<2> \includegraphics[width=0.4\textwidth]{images/neutral_current.pdf} \end{figure} \onslide<4-> \begin{figure} \vspace*{-3cm} \centering \includegraphics[width=0.5\textwidth]{images/prinicipal_idea_neutrino_telescope.png} \end{figure} \end{frame} \note{ Interactions Charged Current vs Neutral Current NC: energy deposition into electron, neutrino flies off CC: nu_mu on e goes to nu_e with mu Cherenkov Digital-Optical Modules } \begin{frame} \frametitle{Astrophysical vs Atmospheric Neutrino} \begin{figure} \centering \includegraphics[width=0.9\textwidth]{images/neutrino_sources.png} %{\tiny \href{https://doi.org/10.1140/epjh/e2012-30014-2}{10.1140/epjh/e2012-30014-2}} \end{figure} \end{frame} \note{ Distinction Atmospheric vs Astrophysical Observatories: ranges: IceCube, ANTARES, KM3NET Types of events Tracklike vs Showerlike through-going muons } \section{IceCube-170922A} \begin{frame} \frametitle{IceCube-170922A} \begin{figure} \includegraphics[width=\textwidth]{images/IC-170922A-event_display.png} \end{figure} \pause \begin{itemize} \item Muon detected \item Energy deposited $~23.7$ TeV \item Muon neutrino \item Energy $0.3$ PeV \item Spatial Resolution $< 1^\circ$ \end{itemize} \end{frame} \note{ Muon detection E ~ TeV => atmospheric origin not excluded => EM observation needed to tie to source followup ANTARES - 1 day - sensitivity is 1/10 of IceCube prior data of IceCube - $3\sigma$ indication of earlier detection in direction } \begin{frame} \frametitle{Blazar TXS 0506+056} \begin{figure} \centering \includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-FermiLAT.png} \includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-MAGIC.png} \end{figure} \begin{itemize} \item $\gamma$-ray blazar TXS 0506+056 within $0.1^\circ$ of IC event \end{itemize} \end{frame} \note{ Space based observatories - all-sky survey - position 0.1 grad from best-fitting direction what is blazar - AGN - has jet - jet pointed at us study triggered redshift measurement elevated gamma emission automated processing showed previous flare. -> usual, only studied because of neutrino } \begin{frame} \frametitle{VHE Gamma Ray} \begin{itemize} \item Imaging Atmospheric Cherenkov Telescope \item Water Cherenkov Telescope \end{itemize} \end{frame} \begin{frame} \frametitle{Further Observations} \begin{figure} \centering \includegraphics[width=1\textwidth]{images/TXS0506+056-observations.png} \end{figure} \end{frame} \note{ also x-ray upto radio introduce experiments (VHE, gamma, x-ray, optical, radio) dates: left panel: 22 Aug 2008 to 6 Sept 2017 right panel: 6 Sept 2017 to 22 Sept 2017 } \begin{frame} \frametitle{Broadband Spectrum of TXS 0506+056} \begin{figure} \centering \includegraphics[width=1\textwidth]{images/TXS0506+056-broadband-spectrum-distribution.png} \end{figure} \end{frame} \note{ observations within 14 days of IC-170922A UL is upper limit double bump structure - characteristic of non-thermal emission redshift measurement from optical data } \begin{frame} \frametitle{Chance Coincidence and Archival Data} \begin{itemize} \item $3\sigma$ non-random coincidence \pause \item neutrino in 2014 for TXS 0506+056 \end{itemize} \end{frame} \note{ IC-170922A not enough for science - neutrino production models - neutrino to gamma real-time alert system since Apr 2016 41 archival events also tested neutrino 2014 - identification for Blazar - lower energy } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Recap} \begin{itemize} \item Neutrino Astronomy is quite difficult \pause \item First Neutrino-induced Multi Messenger event \pause \item Blazar TXS 0506+056 identified as source for neutrino's \end{itemize} \end{frame} \end{document}