\documentclass[showdate=true,slidenumbers=slide]{beamer} \usepackage{amsmath} \addtobeamertemplate{navigation symbols}{}{% \usebeamerfont{footline}% \usebeamercolor[fg]{footline}% \hspace{1em}% \insertframenumber } \title{Multi-messenger observations of a flaring Blazar} \date{\today} \author{E.T. de Boone} \begin{document} \frame{\titlepage} \begin{frame} \frametitle{Outline} \tableofcontents \end{frame} \begin{frame} \frametitle{Multi-Messenger Astrophysics} \begin{table} \centering \begin{tabular}{r|c|c|c|c|c} & EM & CR & GW & $\nu$ & year \\ \hline Solar Flare & yes & yes & & & 1940 \\ \hline Supernova & yes & & pred & yes & 1987 \\ \hline NS merger & yes & & yes & pred & aug 2017 \\ \hline Blazar & yes & & & yes & sep 2017 \\ \end{tabular} \end{table} \end{frame} \note{ Importance and History of Multi Messenger Astrophysics } \section{Instruments and Observations} \subsection{Neutrinos} \begin{frame} \frametitle{Basics} \begin{itemize} \item Neutrino interacts in atmosphere, ice or water \item<2-> Charged particle gets into the ice or water and emit Cherenkov photons \item<3-> Cherenkov photons detected by DOMs in the matter \end{itemize} \end{frame} \note{ Observatories: IceCube, ANTARES, KM3NET Interactions Charged Current vs Neutral Current Cherenkov Digital-Optical Modules Types of events Tracklike vs Showerlike } \begin{frame} \frametitle{event IC-170922A} \begin{columns}[t] \begin{column}{0.6\textwidth} \begin{itemize} \item Muon detected \item Energy deposited $~23.7$ TeV \end{itemize} \begin{itemize} \item Muon neutrino \item Energy $~290$ TeV \item Spatial Resolution $< 1^\circ$ \item \end{itemize} \end{column} \begin{column}{0.3\textwidth} \begin{figure} \includegraphics[width=\textwidth]{images/IC-170922A-event_display.png} \end{figure} \end{column} \end{columns} \end{frame} \note{ Muon detection E ~ TeV => atmospheric origin not excluded => EM observation needed to tie to source followup ANTARES - 1 day - sensitivity is 1/10 of IceCube prior data of IceCube - $3\sigma$ indication of earlier detection in direction } \subsection{Gamma Rays} \begin{frame} \frametitle{Instruments} \begin{itemize} \item FermiLAT \item AGILE \end{itemize} \end{frame} \note{ FermiLAT on Fermi satellite AGILE - italian spacecraft } \begin{frame} \frametitle{Observations} \begin{columns}[t] \begin{column}{0.7\textwidth} \begin{itemize} \item $\gamma$-ray blazar TXS 0506+056 \end{itemize} \end{column} \begin{column}{0.3\textwidth} \begin{figure} \centering \includegraphics[width=\textwidth]{images/IC-170922A-positioning-FermiLAT.png} \end{figure} \end{column} \end{columns} \end{frame} \note{ position 0.1 grad from best-fitting direction what is blazar study triggered redshift measurement elevated gamma emission automated processing showed previous flare. -> usual, only studied because of neutrino } \subsection{Very High Energy Gamma Rays} \begin{frame} \frametitle{Instruments} \begin{itemize} \item Imaging Atmospheric Cherenkov Telescope \item Water Cherenkov Telescope \end{itemize} \end{frame} \end{document}