mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2025-01-22 12:13:31 +01:00
Thesis: WuotD after bussum.science.ru.nl crashed on me
This commit is contained in:
parent
acef2fa498
commit
04c8478f93
1 changed files with 157 additions and 78 deletions
|
@ -23,11 +23,12 @@
|
|||
|
||||
% phase variables
|
||||
\newcommand{\pTrue}{\phi}
|
||||
\newcommand{\PTrue}{\Phi}
|
||||
\newcommand{\pMeas}{\varphi}
|
||||
|
||||
\newcommand{\pTrueEmit}{\pTrue_0}
|
||||
\newcommand{\pTrueArriv}{\pTrueArriv'}
|
||||
\newcommand{\pMeasArriv}{\pMeas}
|
||||
\newcommand{\pMeasArriv}{\pMeas_0}
|
||||
\newcommand{\pProp}{\pTrue_d}
|
||||
\newcommand{\pClock}{\pTrue_c}
|
||||
|
||||
|
@ -132,16 +133,16 @@ Combining \eqref{eq:interantenna_t0} and \eqref{eq:transmitter2antenna_t0} then
|
|||
\label{eq:synchro_mismatch_clocks}
|
||||
\phantom{.}
|
||||
\begin{aligned}
|
||||
\Delta (\tClock)_{ij}
|
||||
(\Delta \tClock)_{ij}
|
||||
&\equiv (\tClock)_i - (\tClock)_j \\
|
||||
&= \left[ (\tMeasArriv)_i - (\tTrueArriv)_i \right] - \left[ (\tMeasArriv)_j - (\tTrueArriv)_j \right] \\
|
||||
&= \left[ (\tMeasArriv)_i - (\tMeasArriv)_j \right] - \left[ (\tTrueArriv)_i - (\tTrueArriv)_j \right] \\
|
||||
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tTrueArriv)_{ij} \\
|
||||
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tProp)_{ij} \\
|
||||
&= (\Delta \tMeasArriv)_{ij} - (\Delta \tTrueArriv)_{ij} \\
|
||||
&= (\Delta \tMeasArriv)_{ij} - (\Delta \tProp)_{ij} \\
|
||||
\end{aligned}
|
||||
.
|
||||
\end{equation}
|
||||
Thus, measuring $(\tMeasArriv)_i$ and determining $(\tProp)_i$ provides the synchronisation mismatch between the antennas.
|
||||
Thus, measuring $(\tMeasArriv)_i$ and determining $(\tProp)_i$ for two antennas provides the synchronisation mismatch between them.
|
||||
\\
|
||||
|
||||
% is relative
|
||||
|
@ -232,31 +233,32 @@ The strength of the beacon at each antenna must therefore be tuned such to both
|
|||
% continuous -> period multiplicity
|
||||
The continuity of the beacon poses a different issue.
|
||||
Because the beacon must be periodic, differentiating between consecutive periods is not possible using the beacon alone.
|
||||
The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined,
|
||||
The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined,
|
||||
\begin{equation}
|
||||
\phantom{,}
|
||||
\label{eq:period_multiplicity}
|
||||
\tTrueEmit = \left[ \frac{\pTrueEmit}{2\pi} + k\right] T
|
||||
,
|
||||
\end{equation}
|
||||
with $\pTrueEmit$ the phase of the beacon at time $\tTrueEmit$, $T$ the period of the beacon and $k \in \mathbb{Z}$ unknown.
|
||||
with $-\pi < \pTrueEmit < \pi$ the phase of the beacon at time $\tTrueEmit$, $T$ the period of the beacon and $k \in \mathbb{Z}$.
|
||||
\\
|
||||
|
||||
This affects \eqref{eq:transmitter2antenna_t0}, thus changing the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
|
||||
This changes the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
|
||||
\begin{equation}
|
||||
\label{eq:synchro_mismatch_clocks_periodic}
|
||||
\phantom{.}
|
||||
\begin{aligned}
|
||||
\Delta (\tClock)_{ij}
|
||||
(\Delta \tClock)_{ij}
|
||||
&\equiv (\tClock)_i - (\tClock)_j \\
|
||||
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tTrueArriv)_{ij} \\
|
||||
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tProp)_{ij} + \Delta k_{ij} T\\
|
||||
&= (\Delta \tMeasArriv)_{ij} - (\Delta \tTrueArriv)_{ij} \\
|
||||
&= (\Delta \tMeasArriv)_{ij} - (\Delta \tProp)_{ij} - \Delta k_{ij} T\\
|
||||
&= \left[ \frac{ (\Delta \pMeasArriv)_{ij}}{2\pi} - \frac{(\Delta \pProp)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
|
||||
&\equiv \left[ \frac{ (\Delta \pClock)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
|
||||
\end{aligned}
|
||||
.
|
||||
\end{equation}
|
||||
|
||||
% lifting period multiplicity -> long timescale
|
||||
Synchronisation is possible with the caveat of being off by an integer amount $\Delta k_{ij}$ of periods.
|
||||
Synchronisation is possible with the caveat of being off by an unknown integer amount of periods $\Delta k_{ij}$.
|
||||
In phase-locked systems this is called syntonisation.
|
||||
There are two ways to lift this period degeneracy.
|
||||
\\
|
||||
|
@ -291,16 +293,156 @@ Later, a mechanism to lift the period degeneracy using an airshower as discrete
|
|||
%%
|
||||
%% Phase measurement
|
||||
\subsection{Phase measurement}
|
||||
A continuous beacon can syntonise antennas by correcting for the measured difference in beacon phase $(\Delta \pMeasArriv)_{ij}$.
|
||||
The beacon phase can be derived from an antenna trace by applying a Fourier Transform to the data.
|
||||
\\
|
||||
The trace will contain noise from various sources external and internal to the detector such as
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/sine_beacon.pdf}
|
||||
\caption{
|
||||
A waveform of a strong sine wave with gaussian noise.\Todo{Add noise}
|
||||
}
|
||||
\label{fig:beacon:sine}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{fourier/noisy_sine.pdf}
|
||||
\caption{
|
||||
Fourier Spectrum of the signals.
|
||||
\Todo{Add fourier spectra?}
|
||||
}
|
||||
\label{fig:beacon:spectrum}
|
||||
\end{subfigure}
|
||||
\\
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/ttl_beacon.pdf}
|
||||
\caption{
|
||||
TTL
|
||||
}
|
||||
\label{fig:beacon:ttl}
|
||||
\end{subfigure}
|
||||
|
||||
|
||||
|
||||
\caption{
|
||||
Both show two samplings with a small offset in time.
|
||||
Reconstructing the signal is easier to do for the sine wave with the same samplelength and number of samples.
|
||||
}
|
||||
\label{fig:beacon:ttl_sine_beacon}
|
||||
\end{figure}
|
||||
% DTFT
|
||||
\subsubsection{Discrete Time Fourier Transform}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:fourier}
|
||||
X(\omega) = \frac{1}{2\pi} \int \dif{t}\, x(t)\, e^{i \omega t}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:fourier:dtft}
|
||||
X(\omega) = \frac{1}{2\pi N} \sum_{n=0}^N x(t[n])\, e^{i \omega t[n]}
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\label{eq:fourier:dft}
|
||||
X_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n]\, \cdot e^{ \frac{i 2 \pi}{N} k n }
|
||||
\end{equation}
|
||||
with $\omega = \tfrac{k}{N}$.
|
||||
|
||||
|
||||
% Signal to noise
|
||||
\subsubsection{Signal to Noise}
|
||||
|
||||
Phasor concept
|
||||
\cite{goodman1985:2.9}
|
||||
|
||||
Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\pTrue}$ with $-\pi < \pTrue < \pi$ and $a \geq 0$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:phasor_pdf}
|
||||
p_{A\PTrue}(a, \pTrue; s, \sigma)
|
||||
= \frac{a}{2\pi\sigma^2}
|
||||
\exp[ -
|
||||
\frac{
|
||||
{\left( a \cos \pTrue - s \right)}^2
|
||||
+ {\left( a \sin \pTrue \right)}^2
|
||||
}{
|
||||
2 \sigma^2
|
||||
}
|
||||
]
|
||||
\end{equation}
|
||||
requiring $ -\pi < 0 \leq pi $ and $a > 0$, otherwise $p_{A\PTrue} = 0$.
|
||||
|
||||
\bigskip
|
||||
Rician distribution ( 2D Gaussian at $\nu$ with $\sigma$ spread)
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rice}
|
||||
p^{\mathrm{RICE}}_A(a; s, \sigma)
|
||||
= \frac{a}{\sigma^2}
|
||||
\exp[-\frac{a^2 + s^2}{2\sigma^2}]
|
||||
\;
|
||||
I_0\left( \frac{a s}{\sigma^2} \right)
|
||||
\end{equation}
|
||||
with $I_0(z)$ the modified Bessel function of the first kind with order zero.
|
||||
No signal $\mapsto$ Rayleigh ($s = 0$);
|
||||
Large signal $\mapsto$ Gaussian ($s \gg a$)
|
||||
|
||||
\bigskip
|
||||
Rayleigh distribution
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rayleigh}
|
||||
p_A(a; s=0, \sigma)
|
||||
= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
|
||||
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
with $\sigma = \frac{\mu_1}{\sqrt{\frac{\pi}{2}}}$ and $\mu_2 = \frac{ 4 - \pi }{2}\sigma^2$.
|
||||
|
||||
\bigskip
|
||||
Gaussian distribution
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:gauss}
|
||||
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a + s\right)}^2}{2\sigma^2}]
|
||||
\end{equation}
|
||||
|
||||
|
||||
\bigskip
|
||||
Rician phase distribution: uniform (low $s$) + gaussian (high $s$)
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:full}
|
||||
p_\PTrue(\pTrue; s, \sigma) =
|
||||
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
|
||||
+
|
||||
\sqrt{\frac{1}{2\pi}}
|
||||
\frac{s}{\sigma}
|
||||
e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)}
|
||||
\frac{\left(
|
||||
1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }}
|
||||
\right)}{2}
|
||||
\cos{\pTrue}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:erf}
|
||||
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||||
\end{equation}
|
||||
.
|
||||
|
||||
\bigskip
|
||||
Phase distribution: gaussian
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:gaussian}
|
||||
p_\PTrue(\pTrue; s, \sigma) = \frac{1}{\sqrt{2} \sigma} \exp\left(- \frac{s^2}{2\sigma^2} \right)
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.5\textwidth]{beacon/time_res_vs_snr.pdf}
|
||||
\caption{Measured Time residuals vs Signal to Noise ration}
|
||||
\label{fig:time_res_vs_snr}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Period degeneracy}
|
||||
% period multiplicity/degeneracy
|
||||
|
||||
|
@ -478,69 +620,6 @@ However, while in a static setup the value of $k$ can be estimated from the dist
|
|||
\\
|
||||
|
||||
|
||||
|
||||
\hrule
|
||||
\bigskip
|
||||
\hrule
|
||||
\section{Impulsive Beacon}
|
||||
\subsection{Properties}
|
||||
|
||||
|
||||
\section{Sine Beacon}
|
||||
|
||||
\subsection{Fourier Transform}
|
||||
\begin{equation}
|
||||
\label{eq:fourier}
|
||||
\hat{f}(\omega) = \frac{1}{2\pi} \int \dif{t}\, f(t)\, \exp(i \omega t)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:fourier:discrete_time}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Properties}
|
||||
Phasor concept
|
||||
|
||||
Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\theta}$ with $-\pi < \theta < \pi$ and $a > 0$.
|
||||
|
||||
\subsubsection{Amplitude distribution}
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rayleigh}
|
||||
p_A(a) = \frac{a}{\sigma^2} \exp(-\frac{a^2}{2\sigma^2})
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Phase distribution}
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:full}
|
||||
p_\Theta(\theta) =
|
||||
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
|
||||
+
|
||||
\sqrt{\frac{1}{2\pi}}
|
||||
\frac{s}{\sigma}
|
||||
e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\theta} \right)}
|
||||
\frac{\left(
|
||||
1 + \erf{ \frac{s \cos{\theta}}{\sqrt{2} \sigma }}
|
||||
\right)}{2}
|
||||
\cos{\theta}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:erf}
|
||||
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||||
\end{equation}
|
||||
.
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:gaussian}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.5\textwidth]{beacon/time_res_vs_snr.pdf}
|
||||
\caption{Measured Time residuals vs Signal to Noise ration}
|
||||
\label{fig:time_res_vs_snr}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Lifting period degeneracy}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[t]{0.5\textwidth}
|
||||
|
|
Loading…
Reference in a new issue