Thesis: WuotD after bussum.science.ru.nl crashed on me

This commit is contained in:
Eric Teunis de Boone 2023-03-30 23:56:17 +02:00
parent acef2fa498
commit 04c8478f93

View file

@ -23,11 +23,12 @@
% phase variables % phase variables
\newcommand{\pTrue}{\phi} \newcommand{\pTrue}{\phi}
\newcommand{\PTrue}{\Phi}
\newcommand{\pMeas}{\varphi} \newcommand{\pMeas}{\varphi}
\newcommand{\pTrueEmit}{\pTrue_0} \newcommand{\pTrueEmit}{\pTrue_0}
\newcommand{\pTrueArriv}{\pTrueArriv'} \newcommand{\pTrueArriv}{\pTrueArriv'}
\newcommand{\pMeasArriv}{\pMeas} \newcommand{\pMeasArriv}{\pMeas_0}
\newcommand{\pProp}{\pTrue_d} \newcommand{\pProp}{\pTrue_d}
\newcommand{\pClock}{\pTrue_c} \newcommand{\pClock}{\pTrue_c}
@ -132,16 +133,16 @@ Combining \eqref{eq:interantenna_t0} and \eqref{eq:transmitter2antenna_t0} then
\label{eq:synchro_mismatch_clocks} \label{eq:synchro_mismatch_clocks}
\phantom{.} \phantom{.}
\begin{aligned} \begin{aligned}
\Delta (\tClock)_{ij} (\Delta \tClock)_{ij}
&\equiv (\tClock)_i - (\tClock)_j \\ &\equiv (\tClock)_i - (\tClock)_j \\
&= \left[ (\tMeasArriv)_i - (\tTrueArriv)_i \right] - \left[ (\tMeasArriv)_j - (\tTrueArriv)_j \right] \\ &= \left[ (\tMeasArriv)_i - (\tTrueArriv)_i \right] - \left[ (\tMeasArriv)_j - (\tTrueArriv)_j \right] \\
&= \left[ (\tMeasArriv)_i - (\tMeasArriv)_j \right] - \left[ (\tTrueArriv)_i - (\tTrueArriv)_j \right] \\ &= \left[ (\tMeasArriv)_i - (\tMeasArriv)_j \right] - \left[ (\tTrueArriv)_i - (\tTrueArriv)_j \right] \\
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tTrueArriv)_{ij} \\ &= (\Delta \tMeasArriv)_{ij} - (\Delta \tTrueArriv)_{ij} \\
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tProp)_{ij} \\ &= (\Delta \tMeasArriv)_{ij} - (\Delta \tProp)_{ij} \\
\end{aligned} \end{aligned}
. .
\end{equation} \end{equation}
Thus, measuring $(\tMeasArriv)_i$ and determining $(\tProp)_i$ provides the synchronisation mismatch between the antennas. Thus, measuring $(\tMeasArriv)_i$ and determining $(\tProp)_i$ for two antennas provides the synchronisation mismatch between them.
\\ \\
% is relative % is relative
@ -232,31 +233,32 @@ The strength of the beacon at each antenna must therefore be tuned such to both
% continuous -> period multiplicity % continuous -> period multiplicity
The continuity of the beacon poses a different issue. The continuity of the beacon poses a different issue.
Because the beacon must be periodic, differentiating between consecutive periods is not possible using the beacon alone. Because the beacon must be periodic, differentiating between consecutive periods is not possible using the beacon alone.
The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined, The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined,
\begin{equation} \begin{equation}
\phantom{,} \phantom{,}
\label{eq:period_multiplicity} \label{eq:period_multiplicity}
\tTrueEmit = \left[ \frac{\pTrueEmit}{2\pi} + k\right] T \tTrueEmit = \left[ \frac{\pTrueEmit}{2\pi} + k\right] T
, ,
\end{equation} \end{equation}
with $\pTrueEmit$ the phase of the beacon at time $\tTrueEmit$, $T$ the period of the beacon and $k \in \mathbb{Z}$ unknown. with $-\pi < \pTrueEmit < \pi$ the phase of the beacon at time $\tTrueEmit$, $T$ the period of the beacon and $k \in \mathbb{Z}$.
\\ \\
This changes the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
This affects \eqref{eq:transmitter2antenna_t0}, thus changing the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
\begin{equation} \begin{equation}
\label{eq:synchro_mismatch_clocks_periodic} \label{eq:synchro_mismatch_clocks_periodic}
\phantom{.} \phantom{.}
\begin{aligned} \begin{aligned}
\Delta (\tClock)_{ij} (\Delta \tClock)_{ij}
&\equiv (\tClock)_i - (\tClock)_j \\ &\equiv (\tClock)_i - (\tClock)_j \\
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tTrueArriv)_{ij} \\ &= (\Delta \tMeasArriv)_{ij} - (\Delta \tTrueArriv)_{ij} \\
&= \Delta (\tMeasArriv)_{ij} - \Delta (\tProp)_{ij} + \Delta k_{ij} T\\ &= (\Delta \tMeasArriv)_{ij} - (\Delta \tProp)_{ij} - \Delta k_{ij} T\\
&= \left[ \frac{ (\Delta \pMeasArriv)_{ij}}{2\pi} - \frac{(\Delta \pProp)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
&\equiv \left[ \frac{ (\Delta \pClock)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
\end{aligned} \end{aligned}
. .
\end{equation} \end{equation}
% lifting period multiplicity -> long timescale % lifting period multiplicity -> long timescale
Synchronisation is possible with the caveat of being off by an integer amount $\Delta k_{ij}$ of periods. Synchronisation is possible with the caveat of being off by an unknown integer amount of periods $\Delta k_{ij}$.
In phase-locked systems this is called syntonisation. In phase-locked systems this is called syntonisation.
There are two ways to lift this period degeneracy. There are two ways to lift this period degeneracy.
\\ \\
@ -291,16 +293,156 @@ Later, a mechanism to lift the period degeneracy using an airshower as discrete
%% %%
%% Phase measurement %% Phase measurement
\subsection{Phase measurement} \subsection{Phase measurement}
A continuous beacon can syntonise antennas by correcting for the measured difference in beacon phase $(\Delta \pMeasArriv)_{ij}$.
The beacon phase can be derived from an antenna trace by applying a Fourier Transform to the data.
\\
The trace will contain noise from various sources external and internal to the detector such as
\begin{figure}[h]
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/sine_beacon.pdf}
\caption{
A waveform of a strong sine wave with gaussian noise.\Todo{Add noise}
}
\label{fig:beacon:sine}
\end{subfigure}
\hfill
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{fourier/noisy_sine.pdf}
\caption{
Fourier Spectrum of the signals.
\Todo{Add fourier spectra?}
}
\label{fig:beacon:spectrum}
\end{subfigure}
\\
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/ttl_beacon.pdf}
\caption{
TTL
}
\label{fig:beacon:ttl}
\end{subfigure}
\caption{
Both show two samplings with a small offset in time.
Reconstructing the signal is easier to do for the sine wave with the same samplelength and number of samples.
}
\label{fig:beacon:ttl_sine_beacon}
\end{figure}
% DTFT % DTFT
\subsubsection{Discrete Time Fourier Transform} \subsubsection{Discrete Time Fourier Transform}
\begin{equation}
\label{eq:fourier}
X(\omega) = \frac{1}{2\pi} \int \dif{t}\, x(t)\, e^{i \omega t}
\end{equation}
\begin{equation}
\label{eq:fourier:dtft}
X(\omega) = \frac{1}{2\pi N} \sum_{n=0}^N x(t[n])\, e^{i \omega t[n]}
\end{equation}
\begin{equation}
\label{eq:fourier:dft}
X_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n]\, \cdot e^{ \frac{i 2 \pi}{N} k n }
\end{equation}
with $\omega = \tfrac{k}{N}$.
% Signal to noise % Signal to noise
\subsubsection{Signal to Noise} \subsubsection{Signal to Noise}
Phasor concept
\cite{goodman1985:2.9}
Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\pTrue}$ with $-\pi < \pTrue < \pi$ and $a \geq 0$.
\begin{equation}
\label{eq:phasor_pdf}
p_{A\PTrue}(a, \pTrue; s, \sigma)
= \frac{a}{2\pi\sigma^2}
\exp[ -
\frac{
{\left( a \cos \pTrue - s \right)}^2
+ {\left( a \sin \pTrue \right)}^2
}{
2 \sigma^2
}
]
\end{equation}
requiring $ -\pi < 0 \leq pi $ and $a > 0$, otherwise $p_{A\PTrue} = 0$.
\bigskip
Rician distribution ( 2D Gaussian at $\nu$ with $\sigma$ spread)
\begin{equation}
\label{eq:amplitude_pdf:rice}
p^{\mathrm{RICE}}_A(a; s, \sigma)
= \frac{a}{\sigma^2}
\exp[-\frac{a^2 + s^2}{2\sigma^2}]
\;
I_0\left( \frac{a s}{\sigma^2} \right)
\end{equation}
with $I_0(z)$ the modified Bessel function of the first kind with order zero.
No signal $\mapsto$ Rayleigh ($s = 0$);
Large signal $\mapsto$ Gaussian ($s \gg a$)
\bigskip
Rayleigh distribution
\begin{equation}
\label{eq:amplitude_pdf:rayleigh}
p_A(a; s=0, \sigma)
= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
\end{equation}
with $\sigma = \frac{\mu_1}{\sqrt{\frac{\pi}{2}}}$ and $\mu_2 = \frac{ 4 - \pi }{2}\sigma^2$.
\bigskip
Gaussian distribution
\begin{equation}
\label{eq:amplitude_pdf:gauss}
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a + s\right)}^2}{2\sigma^2}]
\end{equation}
\bigskip
Rician phase distribution: uniform (low $s$) + gaussian (high $s$)
\begin{equation}
\label{eq:phase_pdf:full}
p_\PTrue(\pTrue; s, \sigma) =
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
+
\sqrt{\frac{1}{2\pi}}
\frac{s}{\sigma}
e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)}
\frac{\left(
1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }}
\right)}{2}
\cos{\pTrue}
\end{equation}
with
\begin{equation}
\label{eq:erf}
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
\end{equation}
.
\bigskip
Phase distribution: gaussian
\begin{equation}
\label{eq:phase_pdf:gaussian}
p_\PTrue(\pTrue; s, \sigma) = \frac{1}{\sqrt{2} \sigma} \exp\left(- \frac{s^2}{2\sigma^2} \right)
\end{equation}
\begin{figure}
\includegraphics[width=0.5\textwidth]{beacon/time_res_vs_snr.pdf}
\caption{Measured Time residuals vs Signal to Noise ration}
\label{fig:time_res_vs_snr}
\end{figure}
\subsection{Period degeneracy} \subsection{Period degeneracy}
% period multiplicity/degeneracy % period multiplicity/degeneracy
@ -478,69 +620,6 @@ However, while in a static setup the value of $k$ can be estimated from the dist
\\ \\
\hrule
\bigskip
\hrule
\section{Impulsive Beacon}
\subsection{Properties}
\section{Sine Beacon}
\subsection{Fourier Transform}
\begin{equation}
\label{eq:fourier}
\hat{f}(\omega) = \frac{1}{2\pi} \int \dif{t}\, f(t)\, \exp(i \omega t)
\end{equation}
\begin{equation}
\label{eq:fourier:discrete_time}
\end{equation}
\subsection{Properties}
Phasor concept
Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\theta}$ with $-\pi < \theta < \pi$ and $a > 0$.
\subsubsection{Amplitude distribution}
\begin{equation}
\label{eq:amplitude_pdf:rayleigh}
p_A(a) = \frac{a}{\sigma^2} \exp(-\frac{a^2}{2\sigma^2})
\end{equation}
\subsubsection{Phase distribution}
\begin{equation}
\label{eq:phase_pdf:full}
p_\Theta(\theta) =
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
+
\sqrt{\frac{1}{2\pi}}
\frac{s}{\sigma}
e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\theta} \right)}
\frac{\left(
1 + \erf{ \frac{s \cos{\theta}}{\sqrt{2} \sigma }}
\right)}{2}
\cos{\theta}
\end{equation}
with
\begin{equation}
\label{eq:erf}
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
\end{equation}
.
\begin{equation}
\label{eq:phase_pdf:gaussian}
\end{equation}
\begin{figure}
\includegraphics[width=0.5\textwidth]{beacon/time_res_vs_snr.pdf}
\caption{Measured Time residuals vs Signal to Noise ration}
\label{fig:time_res_vs_snr}
\end{figure}
\subsection{Lifting period degeneracy} \subsection{Lifting period degeneracy}
\begin{figure} \begin{figure}
\begin{subfigure}[t]{0.5\textwidth} \begin{subfigure}[t]{0.5\textwidth}