mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
				synced 2025-10-31 04:06:37 +01:00 
			
		
		
		
	Thesis: Radio Interferometry: WIP
This commit is contained in:
		
							parent
							
								
									89ddf4cc81
								
							
						
					
					
						commit
						475d34a28c
					
				
					 1 changed files with 122 additions and 66 deletions
				
			
		| 
						 | 
				
			
			@ -10,85 +10,141 @@
 | 
			
		|||
\begin{document}
 | 
			
		||||
\chapter{Air Shower Radio Interferometry}
 | 
			
		||||
\label{sec:interferometry}
 | 
			
		||||
The radio signals emitted by the air shower (see Section~\ref{sec:airshowers}) can be recorded by radio antennas.
 | 
			
		||||
An array of radio antennas can be used as an interferometer.
 | 
			
		||||
The radio signals emitted by an \gls{EAS} (see Section~\ref{sec:airshowers}) can be recorded by radio antennas.
 | 
			
		||||
For suitable frequencies, an array of radio antennas can be used as an interferometer.
 | 
			
		||||
Therefore, air showers can be analysed using radio interferometry.
 | 
			
		||||
Note that since the radio waves are mainly caused by processes involving electrons (see Section~\ref{sec:airshowers}), any derived properties are tied to the electromagnetic component of the air shower.
 | 
			
		||||
\\
 | 
			
		||||
In \cite{Schoorlemmer:2020low}, a technique was developed to obtain properties of an air shower using interferometry.%
 | 
			
		||||
\footnote{
 | 
			
		||||
	Available as a python package at \url{gitlab}.
 | 
			
		||||
}
 | 
			
		||||
As shown in Figure~\ref{fig:radio_air_shower}, the shower axis and particle densities along that axis can be observed.
 | 
			
		||||
From these, the energy, composition and direction of the cosmic particle can be derived.
 | 
			
		||||
\\
 | 
			
		||||
%
 | 
			
		||||
Unlike, astronomical interferometry, the source of the signal is closeby.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The accuracy of the technique is primarily dependent on the timing accuracy of the detectors.
 | 
			
		||||
In Figure~\ref{fig:xmax_synchronise}, the estimated atmospheric depth resolution as a function of detector synchronisation is shown as simulated for different inclinations of the air shower.
 | 
			
		||||
According to Figure~\ref{fig:xmax_synchronise}, to be able to distinguish the iron and proton showers from Figure~\ref{fig:airshower_depth} ($\Delta\Xmax \sim 40\;\mathrm{g/cm^2}$), we need a synchronisation better than $2\ns$.
 | 
			
		||||
\\
 | 
			
		||||
 | 
			
		||||
\begin{figure}
 | 
			
		||||
	\centering
 | 
			
		||||
	\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
 | 
			
		||||
%	\includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
 | 
			
		||||
%	\caption{From H. Schoorlemmer}
 | 
			
		||||
	\begin{subfigure}[t]{0.47\textwidth}
 | 
			
		||||
		\includegraphics[width=\textwidth]{2006.10348/fig01.no_title}%
 | 
			
		||||
		\caption{
 | 
			
		||||
			From \protect \cite{Schoorlemmer:2020low}.
 | 
			
		||||
			Radio interferometric power analysis of an \gls{EAS}.
 | 
			
		||||
			\protect \Todo{describe and expand caption, remove title}
 | 
			
		||||
		}
 | 
			
		||||
		\label{fig:radio_air_shower}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
	\hfill
 | 
			
		||||
	\begin{subfigure}[t]{0.47\textwidth}
 | 
			
		||||
		\includegraphics[width=\textwidth]{2006.10348/fig03_b}%
 | 
			
		||||
		\caption{
 | 
			
		||||
			From \protect \cite{Schoorlemmer:2020low}.
 | 
			
		||||
			$\Xmax$ resolution as a function of detector-to-detector synchronisation.
 | 
			
		||||
			A typical noise (gaussian) background is simulated.
 | 
			
		||||
			\protect \Todo{describe and expand}
 | 
			
		||||
		}
 | 
			
		||||
		\label{fig:xmax_synchronise}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\begin{equation}\label{eq:propagation_delay}%<<<
 | 
			
		||||
	\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff}
 | 
			
		||||
\end{equation}%>>>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section{Radio Interferometry}
 | 
			
		||||
% interference: (de)coherence
 | 
			
		||||
Radio interferometry exploits the coherence of wave phenomena.
 | 
			
		||||
\\
 | 
			
		||||
In a radio array, each radio antenna records its ambient electric field.
 | 
			
		||||
A simple interferometer can be achieved by summing the recorded waveforms $S_i$ with appropriate time delays $\Delta_i(\vec{x})$ to compute a coherent\Todo{word} waveform for a location $\vec{x}$,
 | 
			
		||||
\begin{equation}\label{eq:interferometric_sum}%<<<
 | 
			
		||||
	\phantom{.}
 | 
			
		||||
	S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x}))
 | 
			
		||||
	.
 | 
			
		||||
\end{equation}%>>>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}
 | 
			
		||||
	\centering
 | 
			
		||||
	\begin{subfigure}[t]{0.3\textwidth}
 | 
			
		||||
		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
 | 
			
		||||
		\label{fig:trace_overlap:bad}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
	\hfill
 | 
			
		||||
	\begin{subfigure}[t]{0.3\textwidth}
 | 
			
		||||
		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
 | 
			
		||||
		\label{fig:trace_overlap:medium}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
	\hfill
 | 
			
		||||
	\begin{subfigure}[t]{0.3\textwidth}
 | 
			
		||||
		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
 | 
			
		||||
		\label{fig:trace_overlap:best}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
	\caption{
 | 
			
		||||
		Trace overlap due to wrong positions
 | 
			
		||||
	}
 | 
			
		||||
	\label{fig:trace_overlap}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}
 | 
			
		||||
	\centering
 | 
			
		||||
	\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
 | 
			
		||||
	\caption{
 | 
			
		||||
		From \protect \cite{Schoorlemmer:2020low}.
 | 
			
		||||
		$\Xmax$ resolution as a function of detector-to-detector synchronisation.
 | 
			
		||||
	}
 | 
			
		||||
	\label{fig:xmax_synchronise}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Time Synchronisation}
 | 
			
		||||
\label{sec:timesynchro}
 | 
			
		||||
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
 | 
			
		||||
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
 | 
			
		||||
% time delays: general
 | 
			
		||||
The time delays $\Delta_i(\vec{x})$ are dependent on the finite speed of the radio waves.
 | 
			
		||||
Being an electromagnetic wave, the instantaneous velocity $v$ depends solely on the refractive~index~$n$ of the medium as $v = \frac{c}{n}$.
 | 
			
		||||
In general, the refractive index of air is dependent on factors such as the pressure and temperature of the air the signal is passing through, and the frequencies of the signal.
 | 
			
		||||
\\
 | 
			
		||||
In many cases, the refractive index can be taken constant over the trajectory to simplify models.
 | 
			
		||||
As such, the time delay due to propagation can be written as
 | 
			
		||||
\begin{equation}\label{eq:propagation_delay}%<<<
 | 
			
		||||
	\phantom{,}
 | 
			
		||||
	\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_\mathrm{eff}
 | 
			
		||||
	,
 | 
			
		||||
\end{equation}%>>>
 | 
			
		||||
where $n_\mathrm{eff}$ is the effective refractive index over the trajectory of the signal.
 | 
			
		||||
\\
 | 
			
		||||
% time delays: particular per antenna
 | 
			
		||||
Note that unlike in astronomical interferometry, the source of the signal is not in the far-field (see Figure~\ref{fig:rit_schematic}).
 | 
			
		||||
Thus, instead of introducing a geometric phase, this requires us to compute the time delays for each antenna location separately.
 | 
			
		||||
\\
 | 
			
		||||
 | 
			
		||||
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
 | 
			
		||||
% Features in S
 | 
			
		||||
Features in the combined waveform $S(\vec{x})$ are enhanced according to the coherence of that feature in the recorded waveforms with respect to the time delays.
 | 
			
		||||
Figures~\ref{fig:trace_overlap:best} and~\ref{fig:trace_overlap:bad} show examples of this effect for the same recorded waveforms.
 | 
			
		||||
At the true source location, the recorded waveforms are aligned.
 | 
			
		||||
The combined waveform therefore shows the 
 | 
			
		||||
Meanwhile, at a far away location, the waveforms add up incoherently resulting in a low amplitude combined waveform.
 | 
			
		||||
\\
 | 
			
		||||
% Noise suppression
 | 
			
		||||
An additional effect of the summing is the suppression of noise particular to individual antennas as this is adds up incoherently.
 | 
			
		||||
\Todo{rephrase}
 | 
			
		||||
\\
 | 
			
		||||
 | 
			
		||||
%\begin{figure}
 | 
			
		||||
%	\centering
 | 
			
		||||
%	\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
 | 
			
		||||
%	\caption{
 | 
			
		||||
%		Using a reference clock to compare two other clocks.
 | 
			
		||||
%		\protect \todo{
 | 
			
		||||
%			redo figure with less margins,
 | 
			
		||||
%			remove spines,
 | 
			
		||||
%			rotate labels
 | 
			
		||||
%		}
 | 
			
		||||
%	}
 | 
			
		||||
%	\label{fig:reference-clock}
 | 
			
		||||
%\end{figure}
 | 
			
		||||
\begin{figure}% fig:trace_overlap %<<<
 | 
			
		||||
	\centering
 | 
			
		||||
	\begin{subfigure}[b]{0.47\textwidth}
 | 
			
		||||
		\includegraphics[height=8cm, width=\textwidth]{radio_interferometry/rit_schematic_far.pdf}%
 | 
			
		||||
		\caption{}
 | 
			
		||||
		\label{fig:rit_schematic}
 | 
			
		||||
	\end{subfigure}
 | 
			
		||||
	\hfill
 | 
			
		||||
	\begin{minipage}[b][7cm][s]{.47\textwidth}
 | 
			
		||||
		\begin{subfigure}{\textwidth}
 | 
			
		||||
			\includegraphics[height=2.5cm, width=\textwidth]{radio_interferometry/trace_overlap_best.png}
 | 
			
		||||
			\caption{}
 | 
			
		||||
			\label{fig:trace_overlap:best}
 | 
			
		||||
		\end{subfigure}
 | 
			
		||||
		\vfill
 | 
			
		||||
		\begin{subfigure}{\textwidth}
 | 
			
		||||
			\includegraphics[height=2.5cm, width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
 | 
			
		||||
			\caption{}
 | 
			
		||||
			\label{fig:trace_overlap:bad}
 | 
			
		||||
		\end{subfigure}
 | 
			
		||||
	\end{minipage}
 | 
			
		||||
	\caption{
 | 
			
		||||
		\textit{Left:}
 | 
			
		||||
		Schematic of radio interferometry.
 | 
			
		||||
		The antennas the time delays for a location $\vec{x}$ not trained on the source $S_0$.
 | 
			
		||||
		\protect \Todo{describe}
 | 
			
		||||
		\textit{Right:}
 | 
			
		||||
		Overlap between the recorded waveforms for the source location~\subref{fig:trace_overlap:best} and a far away location~\subref{fig:trace_overlap:bad}.
 | 
			
		||||
		\protect\Todo{include sum}
 | 
			
		||||
	}
 | 
			
		||||
	%\hfill
 | 
			
		||||
	%\begin{subfigure}[t]{0.3\textwidth}
 | 
			
		||||
	%	\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
 | 
			
		||||
	%	\label{fig:trace_overlap:medium}
 | 
			
		||||
	%\end{subfigure}
 | 
			
		||||
	%\hfill
 | 
			
		||||
	%\begin{subfigure}[t]{0.3\textwidth}
 | 
			
		||||
	%	\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
 | 
			
		||||
	%	\label{fig:trace_overlap:best}
 | 
			
		||||
	%\end{subfigure}
 | 
			
		||||
	%\label{fig:trace_overlap}
 | 
			
		||||
\end{figure}% >>>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Spatial mapping of power
 | 
			
		||||
In the technique from \cite{Schoorlemmer:2020low}, the air shower is identified using the power in the combined waveform.
 | 
			
		||||
An example of this power distribution of $S\vec{x}$ is shown in Figure~\ref{fig:radio_air_shower}.
 | 
			
		||||
\\
 | 
			
		||||
Here, 
 | 
			
		||||
 | 
			
		||||
Computing the combined waveform $S$ for multiple locations, and analysing the power in it, a source region can be identified as a maximum
 | 
			
		||||
At locations with high power, the recorded waveforms interfere constructively while for low power locations, the interference is destructive.
 | 
			
		||||
\end{document}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue