mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
				synced 2025-10-26 09:46:34 +01:00 
			
		
		
		
	Thesis: Radio Interferometry: WIP
This commit is contained in:
		
							parent
							
								
									89ddf4cc81
								
							
						
					
					
						commit
						475d34a28c
					
				
					 1 changed files with 122 additions and 66 deletions
				
			
		|  | @ -10,85 +10,141 @@ | |||
| \begin{document} | ||||
| \chapter{Air Shower Radio Interferometry} | ||||
| \label{sec:interferometry} | ||||
| The radio signals emitted by the air shower (see Section~\ref{sec:airshowers}) can be recorded by radio antennas. | ||||
| An array of radio antennas can be used as an interferometer. | ||||
| The radio signals emitted by an \gls{EAS} (see Section~\ref{sec:airshowers}) can be recorded by radio antennas. | ||||
| For suitable frequencies, an array of radio antennas can be used as an interferometer. | ||||
| Therefore, air showers can be analysed using radio interferometry. | ||||
| Note that since the radio waves are mainly caused by processes involving electrons (see Section~\ref{sec:airshowers}), any derived properties are tied to the electromagnetic component of the air shower. | ||||
| \\ | ||||
| In \cite{Schoorlemmer:2020low}, a technique was developed to obtain properties of an air shower using interferometry.% | ||||
| \footnote{ | ||||
| 	Available as a python package at \url{gitlab}. | ||||
| } | ||||
| As shown in Figure~\ref{fig:radio_air_shower}, the shower axis and particle densities along that axis can be observed. | ||||
| From these, the energy, composition and direction of the cosmic particle can be derived. | ||||
| \\ | ||||
| % | ||||
| Unlike, astronomical interferometry, the source of the signal is closeby. | ||||
| 
 | ||||
| 
 | ||||
| The accuracy of the technique is primarily dependent on the timing accuracy of the detectors. | ||||
| In Figure~\ref{fig:xmax_synchronise}, the estimated atmospheric depth resolution as a function of detector synchronisation is shown as simulated for different inclinations of the air shower. | ||||
| According to Figure~\ref{fig:xmax_synchronise}, to be able to distinguish the iron and proton showers from Figure~\ref{fig:airshower_depth} ($\Delta\Xmax \sim 40\;\mathrm{g/cm^2}$), we need a synchronisation better than $2\ns$. | ||||
| \\ | ||||
| 
 | ||||
| \begin{figure} | ||||
| 	\centering | ||||
| 	\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}% | ||||
| %	\includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png} | ||||
| %	\caption{From H. Schoorlemmer} | ||||
| 	\begin{subfigure}[t]{0.47\textwidth} | ||||
| 		\includegraphics[width=\textwidth]{2006.10348/fig01.no_title}% | ||||
| 		\caption{ | ||||
| 			From \protect \cite{Schoorlemmer:2020low}. | ||||
| 			Radio interferometric power analysis of an \gls{EAS}. | ||||
| 			\protect \Todo{describe and expand caption, remove title} | ||||
| 		} | ||||
| 		\label{fig:radio_air_shower} | ||||
| 	\end{subfigure} | ||||
| 	\hfill | ||||
| 	\begin{subfigure}[t]{0.47\textwidth} | ||||
| 		\includegraphics[width=\textwidth]{2006.10348/fig03_b}% | ||||
| 		\caption{ | ||||
| 			From \protect \cite{Schoorlemmer:2020low}. | ||||
| 			$\Xmax$ resolution as a function of detector-to-detector synchronisation. | ||||
| 			A typical noise (gaussian) background is simulated. | ||||
| 			\protect \Todo{describe and expand} | ||||
| 		} | ||||
| 		\label{fig:xmax_synchronise} | ||||
| 	\end{subfigure} | ||||
| \end{figure} | ||||
| 
 | ||||
| \begin{equation}\label{eq:propagation_delay}%<<< | ||||
| 	\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff} | ||||
| \end{equation}%>>> | ||||
| 
 | ||||
| 
 | ||||
| \section{Radio Interferometry} | ||||
| % interference: (de)coherence | ||||
| Radio interferometry exploits the coherence of wave phenomena. | ||||
| \\ | ||||
| In a radio array, each radio antenna records its ambient electric field. | ||||
| A simple interferometer can be achieved by summing the recorded waveforms $S_i$ with appropriate time delays $\Delta_i(\vec{x})$ to compute a coherent\Todo{word} waveform for a location $\vec{x}$, | ||||
| \begin{equation}\label{eq:interferometric_sum}%<<< | ||||
| 	\phantom{.} | ||||
| 	S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x})) | ||||
| 	. | ||||
| \end{equation}%>>> | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure} | ||||
| 	\centering | ||||
| 	\begin{subfigure}[t]{0.3\textwidth} | ||||
| 		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png} | ||||
| 		\label{fig:trace_overlap:bad} | ||||
| 	\end{subfigure} | ||||
| 	\hfill | ||||
| 	\begin{subfigure}[t]{0.3\textwidth} | ||||
| 		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png} | ||||
| 		\label{fig:trace_overlap:medium} | ||||
| 	\end{subfigure} | ||||
| 	\hfill | ||||
| 	\begin{subfigure}[t]{0.3\textwidth} | ||||
| 		\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png} | ||||
| 		\label{fig:trace_overlap:best} | ||||
| 	\end{subfigure} | ||||
| 	\caption{ | ||||
| 		Trace overlap due to wrong positions | ||||
| 	} | ||||
| 	\label{fig:trace_overlap} | ||||
| \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure} | ||||
| 	\centering | ||||
| 	\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}% | ||||
| 	\caption{ | ||||
| 		From \protect \cite{Schoorlemmer:2020low}. | ||||
| 		$\Xmax$ resolution as a function of detector-to-detector synchronisation. | ||||
| 	} | ||||
| 	\label{fig:xmax_synchronise} | ||||
| \end{figure} | ||||
| 
 | ||||
| \section{Time Synchronisation} | ||||
| \label{sec:timesynchro} | ||||
| The main method of synchronising multiple stations is by employing a \gls{GNSS}. | ||||
| This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}). | ||||
| % time delays: general | ||||
| The time delays $\Delta_i(\vec{x})$ are dependent on the finite speed of the radio waves. | ||||
| Being an electromagnetic wave, the instantaneous velocity $v$ depends solely on the refractive~index~$n$ of the medium as $v = \frac{c}{n}$. | ||||
| In general, the refractive index of air is dependent on factors such as the pressure and temperature of the air the signal is passing through, and the frequencies of the signal. | ||||
| \\ | ||||
| In many cases, the refractive index can be taken constant over the trajectory to simplify models. | ||||
| As such, the time delay due to propagation can be written as | ||||
| \begin{equation}\label{eq:propagation_delay}%<<< | ||||
| 	\phantom{,} | ||||
| 	\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_\mathrm{eff} | ||||
| 	, | ||||
| \end{equation}%>>> | ||||
| where $n_\mathrm{eff}$ is the effective refractive index over the trajectory of the signal. | ||||
| \\ | ||||
| % time delays: particular per antenna | ||||
| Note that unlike in astronomical interferometry, the source of the signal is not in the far-field (see Figure~\ref{fig:rit_schematic}). | ||||
| Thus, instead of introducing a geometric phase, this requires us to compute the time delays for each antenna location separately. | ||||
| \\ | ||||
| 
 | ||||
| Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}). | ||||
| % Features in S | ||||
| Features in the combined waveform $S(\vec{x})$ are enhanced according to the coherence of that feature in the recorded waveforms with respect to the time delays. | ||||
| Figures~\ref{fig:trace_overlap:best} and~\ref{fig:trace_overlap:bad} show examples of this effect for the same recorded waveforms. | ||||
| At the true source location, the recorded waveforms are aligned. | ||||
| The combined waveform therefore shows the  | ||||
| Meanwhile, at a far away location, the waveforms add up incoherently resulting in a low amplitude combined waveform. | ||||
| \\ | ||||
| % Noise suppression | ||||
| An additional effect of the summing is the suppression of noise particular to individual antennas as this is adds up incoherently. | ||||
| \Todo{rephrase} | ||||
| \\ | ||||
| 
 | ||||
| %\begin{figure} | ||||
| %	\centering | ||||
| %	\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf} | ||||
| %	\caption{ | ||||
| %		Using a reference clock to compare two other clocks. | ||||
| %		\protect \todo{ | ||||
| %			redo figure with less margins, | ||||
| %			remove spines, | ||||
| %			rotate labels | ||||
| %		} | ||||
| %	} | ||||
| %	\label{fig:reference-clock} | ||||
| %\end{figure} | ||||
| \begin{figure}% fig:trace_overlap %<<< | ||||
| 	\centering | ||||
| 	\begin{subfigure}[b]{0.47\textwidth} | ||||
| 		\includegraphics[height=8cm, width=\textwidth]{radio_interferometry/rit_schematic_far.pdf}% | ||||
| 		\caption{} | ||||
| 		\label{fig:rit_schematic} | ||||
| 	\end{subfigure} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[b][7cm][s]{.47\textwidth} | ||||
| 		\begin{subfigure}{\textwidth} | ||||
| 			\includegraphics[height=2.5cm, width=\textwidth]{radio_interferometry/trace_overlap_best.png} | ||||
| 			\caption{} | ||||
| 			\label{fig:trace_overlap:best} | ||||
| 		\end{subfigure} | ||||
| 		\vfill | ||||
| 		\begin{subfigure}{\textwidth} | ||||
| 			\includegraphics[height=2.5cm, width=\textwidth]{radio_interferometry/trace_overlap_bad.png} | ||||
| 			\caption{} | ||||
| 			\label{fig:trace_overlap:bad} | ||||
| 		\end{subfigure} | ||||
| 	\end{minipage} | ||||
| 	\caption{ | ||||
| 		\textit{Left:} | ||||
| 		Schematic of radio interferometry. | ||||
| 		The antennas the time delays for a location $\vec{x}$ not trained on the source $S_0$. | ||||
| 		\protect \Todo{describe} | ||||
| 		\textit{Right:} | ||||
| 		Overlap between the recorded waveforms for the source location~\subref{fig:trace_overlap:best} and a far away location~\subref{fig:trace_overlap:bad}. | ||||
| 		\protect\Todo{include sum} | ||||
| 	} | ||||
| 	%\hfill | ||||
| 	%\begin{subfigure}[t]{0.3\textwidth} | ||||
| 	%	\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png} | ||||
| 	%	\label{fig:trace_overlap:medium} | ||||
| 	%\end{subfigure} | ||||
| 	%\hfill | ||||
| 	%\begin{subfigure}[t]{0.3\textwidth} | ||||
| 	%	\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png} | ||||
| 	%	\label{fig:trace_overlap:best} | ||||
| 	%\end{subfigure} | ||||
| 	%\label{fig:trace_overlap} | ||||
| \end{figure}% >>> | ||||
| 
 | ||||
| 
 | ||||
| % Spatial mapping of power | ||||
| In the technique from \cite{Schoorlemmer:2020low}, the air shower is identified using the power in the combined waveform. | ||||
| An example of this power distribution of $S\vec{x}$ is shown in Figure~\ref{fig:radio_air_shower}. | ||||
| \\ | ||||
| Here,  | ||||
| 
 | ||||
| Computing the combined waveform $S$ for multiple locations, and analysing the power in it, a source region can be identified as a maximum | ||||
| At locations with high power, the recorded waveforms interfere constructively while for low power locations, the interference is destructive. | ||||
| \end{document} | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue