Thesis: Structure change: feedback Harm

Had a short discussion on the structure with Harm.

Introduce new chapter on waveforms and ways to analyse them.

Also, move the single sine period degeneracy to a separate chapter.
This commit is contained in:
Eric Teunis de Boone 2023-05-24 16:53:56 +02:00
parent 9c095a8106
commit 580521d72c
5 changed files with 84 additions and 29 deletions

View file

@ -32,7 +32,7 @@ This influences the tradeoff between methods.
In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon. In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon.
\Todo{further outline} \Todo{further outline}
\section{Physical Setup} %<<< \section{Timing Problem} %<<<
\begin{figure} \begin{figure}
\centering \centering
@ -154,7 +154,7 @@ In the following, two approaches for measuring $(\tMeasArriv)_i$ are examined.
%%%% >>> %%%% >>>
%%%% Pulse %%%% Pulse
%%%% %%%%
\section{Intermittent Pulse Beacon}% <<< \section{Pulse Beacon}% <<<
\label{sec:beacon:pulse} \label{sec:beacon:pulse}
If the stability of the clock allows for it, the synchronisation can be performed during a discrete period. If the stability of the clock allows for it, the synchronisation can be performed during a discrete period.
The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation. The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation.
@ -277,7 +277,7 @@ Since the filtered signal is sampled discretely, this means the start of the
%%%% >>> %%%% >>>
%%%% Sine %%%% Sine
%%%% %%%%
\section{Continuous Sine Beacon}% <<< \section{Sine Beacon}% <<<
\label{sec:beacon:sine} \label{sec:beacon:sine}
% continuous -> can be discrete % continuous -> can be discrete
In the case that the stations need continuous synchronisation, a different route must be taken. In the case that the stations need continuous synchronisation, a different route must be taken.

View file

@ -11,39 +11,26 @@
\label{sec:introduction} \label{sec:introduction}
\section{Cosmic Rays} \section{Cosmic Particles}
\label{sec:crs} \label{sec:crs}
Particles from outer space,
Particle type,
Energy,
magnetic fields -- origin,
\subsection{Airshowers} \subsection{Air Showers}
\label{sec:airshowers} \label{sec:airshowers}
Particle cascades,
Xmax?,
Radio emission,
\subsection{Detectors} \subsection{Experiments}
\label{sec:detectors} \label{sec:detectors}
Standalone devices, Standalone devices,
\gls*{PA}, \gls*{PA},
\gls*{GRAND} AugerPrime RD,
\gls*{GRAND},
\section{Time Synchronisation} \gls*{LOFAR}?,
\label{sec:timesynchro}
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
\\
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
\caption{
Using a reference clock to compare two other clocks.
}
\label{fig:reference-clock}
\todo{
redo figure with less margins,
remove spines,
rotate labels
}
\end{figure}
\section{Interferometry} \section{Interferometry}
@ -93,4 +80,27 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
\caption{Trace overlap due to wrong positions} \caption{Trace overlap due to wrong positions}
\label{fig:trace_overlap} \label{fig:trace_overlap}
\end{figure} \end{figure}
\section{Time Synchronisation}
\label{sec:timesynchro}
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
\\
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
\caption{
Using a reference clock to compare two other clocks.
}
\label{fig:reference-clock}
\todo{
redo figure with less margins,
remove spines,
rotate labels
}
\end{figure}
\end{document} \end{document}

View file

@ -0,0 +1,26 @@
\documentclass[../thesis.tex]{subfiles}
\graphicspath{
{.}
{../../figures/}
{../../../figures/}
}
\begin{document}
\chapter{Measuring with Radio Antennas}
\label{sec:waveform}
Electric fields,
Antenna Polarizations,
Frequency Bandwidth,
\\
Time Domain,
Sampling,
Waveform + Time vector,
\\
Analysis:
Fourier Transforms,
Correlation
\end{document}

View file

@ -0,0 +1,13 @@
\documentclass[../thesis.tex]{subfiles}
\graphicspath{
{.}
{../../figures/}
{../../../figures/}
}
\begin{document}
\chapter{Single Sine Beacon and Interferometry}
\label{sec:single}
\end{document}

View file

@ -31,9 +31,15 @@
%% Introduction %% Introduction
\subfile{chapters/introduction.tex} \subfile{chapters/introduction.tex}
%% Electric field from airshower to waveform analysis
\subfile{chapters/radio_measurement.tex}
%% Disciplining by Beacon (Simulation) %% Disciplining by Beacon (Simulation)
\subfile{chapters/beacon_discipline.tex} \subfile{chapters/beacon_discipline.tex}
%% Single Sine Synchronisation and Radio Interferometry
\subfile{chapters/single_sine_interferometry.tex}
%% Comparing GNSS system (GRAND experiments) %% Comparing GNSS system (GRAND experiments)
\subfile{chapters/grand_characterisation.tex} \subfile{chapters/grand_characterisation.tex}