mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-13 02:43:32 +01:00
Thesis: Structure change: feedback Harm
Had a short discussion on the structure with Harm. Introduce new chapter on waveforms and ways to analyse them. Also, move the single sine period degeneracy to a separate chapter.
This commit is contained in:
parent
9c095a8106
commit
580521d72c
5 changed files with 84 additions and 29 deletions
|
@ -32,7 +32,7 @@ This influences the tradeoff between methods.
|
||||||
In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon.
|
In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon.
|
||||||
\Todo{further outline}
|
\Todo{further outline}
|
||||||
|
|
||||||
\section{Physical Setup} %<<<
|
\section{Timing Problem} %<<<
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
|
@ -154,7 +154,7 @@ In the following, two approaches for measuring $(\tMeasArriv)_i$ are examined.
|
||||||
%%%% >>>
|
%%%% >>>
|
||||||
%%%% Pulse
|
%%%% Pulse
|
||||||
%%%%
|
%%%%
|
||||||
\section{Intermittent Pulse Beacon}% <<<
|
\section{Pulse Beacon}% <<<
|
||||||
\label{sec:beacon:pulse}
|
\label{sec:beacon:pulse}
|
||||||
If the stability of the clock allows for it, the synchronisation can be performed during a discrete period.
|
If the stability of the clock allows for it, the synchronisation can be performed during a discrete period.
|
||||||
The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation.
|
The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation.
|
||||||
|
@ -277,7 +277,7 @@ Since the filtered signal is sampled discretely, this means the start of the
|
||||||
%%%% >>>
|
%%%% >>>
|
||||||
%%%% Sine
|
%%%% Sine
|
||||||
%%%%
|
%%%%
|
||||||
\section{Continuous Sine Beacon}% <<<
|
\section{Sine Beacon}% <<<
|
||||||
\label{sec:beacon:sine}
|
\label{sec:beacon:sine}
|
||||||
% continuous -> can be discrete
|
% continuous -> can be discrete
|
||||||
In the case that the stations need continuous synchronisation, a different route must be taken.
|
In the case that the stations need continuous synchronisation, a different route must be taken.
|
||||||
|
|
|
@ -11,39 +11,26 @@
|
||||||
\label{sec:introduction}
|
\label{sec:introduction}
|
||||||
|
|
||||||
|
|
||||||
\section{Cosmic Rays}
|
\section{Cosmic Particles}
|
||||||
\label{sec:crs}
|
\label{sec:crs}
|
||||||
|
Particles from outer space,
|
||||||
|
Particle type,
|
||||||
|
Energy,
|
||||||
|
magnetic fields -- origin,
|
||||||
|
|
||||||
\subsection{Airshowers}
|
\subsection{Air Showers}
|
||||||
\label{sec:airshowers}
|
\label{sec:airshowers}
|
||||||
|
Particle cascades,
|
||||||
|
Xmax?,
|
||||||
|
Radio emission,
|
||||||
|
|
||||||
\subsection{Detectors}
|
\subsection{Experiments}
|
||||||
\label{sec:detectors}
|
\label{sec:detectors}
|
||||||
Standalone devices,
|
Standalone devices,
|
||||||
\gls*{PA},
|
\gls*{PA},
|
||||||
\gls*{GRAND}
|
AugerPrime RD,
|
||||||
|
\gls*{GRAND},
|
||||||
\section{Time Synchronisation}
|
\gls*{LOFAR}?,
|
||||||
\label{sec:timesynchro}
|
|
||||||
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
|
||||||
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
|
|
||||||
\\
|
|
||||||
|
|
||||||
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
|
||||||
|
|
||||||
\begin{figure}
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
|
||||||
\caption{
|
|
||||||
Using a reference clock to compare two other clocks.
|
|
||||||
}
|
|
||||||
\label{fig:reference-clock}
|
|
||||||
\todo{
|
|
||||||
redo figure with less margins,
|
|
||||||
remove spines,
|
|
||||||
rotate labels
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
|
|
||||||
\section{Interferometry}
|
\section{Interferometry}
|
||||||
|
@ -93,4 +80,27 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
|
||||||
\caption{Trace overlap due to wrong positions}
|
\caption{Trace overlap due to wrong positions}
|
||||||
\label{fig:trace_overlap}
|
\label{fig:trace_overlap}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Time Synchronisation}
|
||||||
|
\label{sec:timesynchro}
|
||||||
|
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
||||||
|
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
|
||||||
|
\\
|
||||||
|
|
||||||
|
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
||||||
|
\caption{
|
||||||
|
Using a reference clock to compare two other clocks.
|
||||||
|
}
|
||||||
|
\label{fig:reference-clock}
|
||||||
|
\todo{
|
||||||
|
redo figure with less margins,
|
||||||
|
remove spines,
|
||||||
|
rotate labels
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
26
documents/thesis/chapters/radio_measurement.tex
Normal file
26
documents/thesis/chapters/radio_measurement.tex
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
\documentclass[../thesis.tex]{subfiles}
|
||||||
|
|
||||||
|
\graphicspath{
|
||||||
|
{.}
|
||||||
|
{../../figures/}
|
||||||
|
{../../../figures/}
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\chapter{Measuring with Radio Antennas}
|
||||||
|
\label{sec:waveform}
|
||||||
|
Electric fields,
|
||||||
|
Antenna Polarizations,
|
||||||
|
Frequency Bandwidth,
|
||||||
|
\\
|
||||||
|
|
||||||
|
Time Domain,
|
||||||
|
Sampling,
|
||||||
|
Waveform + Time vector,
|
||||||
|
\\
|
||||||
|
|
||||||
|
Analysis:
|
||||||
|
Fourier Transforms,
|
||||||
|
Correlation
|
||||||
|
|
||||||
|
\end{document}
|
13
documents/thesis/chapters/single_sine_interferometry.tex
Normal file
13
documents/thesis/chapters/single_sine_interferometry.tex
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
\documentclass[../thesis.tex]{subfiles}
|
||||||
|
|
||||||
|
\graphicspath{
|
||||||
|
{.}
|
||||||
|
{../../figures/}
|
||||||
|
{../../../figures/}
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\chapter{Single Sine Beacon and Interferometry}
|
||||||
|
\label{sec:single}
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -31,9 +31,15 @@
|
||||||
%% Introduction
|
%% Introduction
|
||||||
\subfile{chapters/introduction.tex}
|
\subfile{chapters/introduction.tex}
|
||||||
|
|
||||||
|
%% Electric field from airshower to waveform analysis
|
||||||
|
\subfile{chapters/radio_measurement.tex}
|
||||||
|
|
||||||
%% Disciplining by Beacon (Simulation)
|
%% Disciplining by Beacon (Simulation)
|
||||||
\subfile{chapters/beacon_discipline.tex}
|
\subfile{chapters/beacon_discipline.tex}
|
||||||
|
|
||||||
|
%% Single Sine Synchronisation and Radio Interferometry
|
||||||
|
\subfile{chapters/single_sine_interferometry.tex}
|
||||||
|
|
||||||
%% Comparing GNSS system (GRAND experiments)
|
%% Comparing GNSS system (GRAND experiments)
|
||||||
\subfile{chapters/grand_characterisation.tex}
|
\subfile{chapters/grand_characterisation.tex}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue